

Teaching Pack Differentiation

Cambridge IGCSE[™] Mathematics 0580

This *Teaching Pack* can also be used with the following syllabuses:

Cambridge IGCSE™ (9–1) Mathematics 0980

Cambridge IGCSE[™] International Mathematics 0607

© Cambridge University Press & Assessment 2022

Cambridge Assessment International Education is part of Cambridge University Press & Assessment. Cambridge University Press & Assessment is a department of the University of Cambridge.

Cambridge University Press & Assessment retains the copyright on all its publications. Registered centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within a centre.

Contents

Introduction	. 4
Skill: Differentiation	. 5
Common misconceptions: Differentiation	. 7
Lesson 1: Introduction to Calculus	. 8
Lesson 2: Using differentiation to find the gradient of a curve	10
Lesson 3: Classifying Turning Points	12
Lesson 4: Exam Practise and Second Derivatives	13
Worksheets and answers	15

Introduction

This pack will help you to develop your learners' mathematical skills as defined by assessment objective 1 (AO1 Knowledge and understanding of mathematical techniques) in the course syllabus.

Important note

Our *Teaching Packs* have been written by **classroom teachers** to help you deliver topics and skills that can be challenging. Use these materials to supplement your teaching and engage your learners. You can also use them to help you create lesson plans for other skills.

This content is designed to give you and your learners the chance to explore mathematical skills. It is not intended as specific practice for exam papers.

This is one of a range of *Teaching Packs*. Each pack is based on one mathematical topic with a focus on specific mathematical techniques. The packs can be used in any order to suit your teaching sequence.

In this pack you will find the lesson plans and worksheets for learners you will need to successfully complete the teaching of this mathematical skill.

Skill: Differentiation

This *Teaching Pack* links to the following syllabus content (see syllabus for detail):

- E2.12 Estimate gradients of curves by drawing tangents
- E2.13 Understand the idea of a derived function.
- Use the derivative of functions in the form y = axn, and simple sums of not more than three of these.
- Apply differentiation to gradients and turning points (stationary points).
- Discriminate between maxima and minima by any method.

For assessments from 2025

E2.12

- Estimate gradients of curves by drawing tangents.
- Use the derivatives of functions of the form *ax*^{*n*}, where a is a rational constant and n is a positive integer or zero, and simple sums of not more than three of these.
- Apply differentiation to gradients and stationary points (turning points).
- Discriminate between maxima and minima by any method.

The pack covers the following mathematical skills, adapted from **AO1: Demonstrate knowledge and understanding of mathematical techniques** (see syllabus for assessment objectives):

- organising, processing and presenting information accurately in written, tabular, graphical and diagrammatic forms
- using and interpreting mathematical notation correctly
- performing calculations and procedures by suitable methods, including using a calculator
- using geometrical instruments to measure and to draw to an acceptable degree of accuracy

For assessments from 2025

AO1: Knowledge and understanding of mathematical techniques

- organise, process present and understand information in written form, tables, graphs and diagrams
- understand and use mathematical notation
- performing calculations with and without a calculator
- measure and draw using geometrical instruments to an appropriate degree of accuracy

The pack covers the following mathematical skills, adapted from **AO2: Reason, interpret and communicate mathematically when solving problems** (see syllabus for assessment objectives):

- presenting arguments and chains of reasoning in a logical and structured way
- applying combinations of mathematical skills and techniques using connections between different areas of mathematics in problem solving
- interpreting results in the context of a given problem and evaluating the methods used and solutions obtained

For assessments from 2025 **AO2: Analyse, interpret and communicate mathematically**

- analyse a problem and identify a suitable strategy to solve it, including using a combination of process when appropriate
- make logical inferences and draw conclusions from mathematical data or results
- communicate methods and results in a clear and logical form

Prior knowledge

Knowledge from the following syllabus topics is useful for this unit.

- E1.8 Use the four rules for calculations with whole numbers, decimals and fractions including mixed numbers and improper fractions), including correct ordering of operations and use of brackets.
 E2.1 Substitute numbers for words or letters into complicated formulae.
- E2.2 Manipulate directed numbers.
 - Use brackets and extract common factors.
- E2.5 Derive and solve quadratic equations by factorisation.
- E2.11 Construct tables of values and draw graphs for functions of the form *axⁿ* and simple sums of these functions.
- Recognise, sketch and interpret graphs of linear, quadratic, cubic functions
 E2.12 Estimate gradients of curves by drawing tangents.
- E3.2 Find the gradient of a straight line.
 - Calculate the gradient of a straight line from coordinates of two points on it.

For assess	For assessments from 2025								
• E1	.6 Use the four operations for calculations with integers, fractions and decimals								
	and fractions, including correct ordering of operations and use of brackets.								
• E2	.1 Know that letters can be used to represent generalised numbers.								
	Substitute numbers into expressions and formulas.								
• E2	.2 Expand products of algebraic expressions.								
	Factorise by extracting common factors.								
• E2	.5 Construct expressions, equations and formulas.								
	Solve quadratic equations by factorisation, completing the square and by use								
	of the quadratic formula.								
• E2	.10 Construct tables of values and draw, recognise and interpret graphs for								
	functions of the following form:								
	 axⁿ (includes sums of no more than three of these) 								
	• $ab^{x} + c$								
	where $n = -2, -1, -\frac{1}{2}, 0, 1, 2, 3$; a and c are rational numbers and b is a								
	positive integer.								
• E2	.12 Estimate gradients of curves by drawing tangents.								
• E3	.3 Find the gradient of a straight line.								
	Calculate the gradient of a straight line from the coordinates of two points on it.								

Before you begin

This *Teaching Pack* includes a **Teacher Introduction** video to which you should refer before using the resources in this pack. The video is available to watch in Resource Plus within the topic section relevant to this **Teaching Pack**.

The video introduces the resources available for teaching this topic, and explains how they can be used to successfully deliver the topic to your students. In particular, the video highlights typical student misconceptions and common errors this *Teaching Pack* will help you to overcome.

Common misconceptions: Differentiation

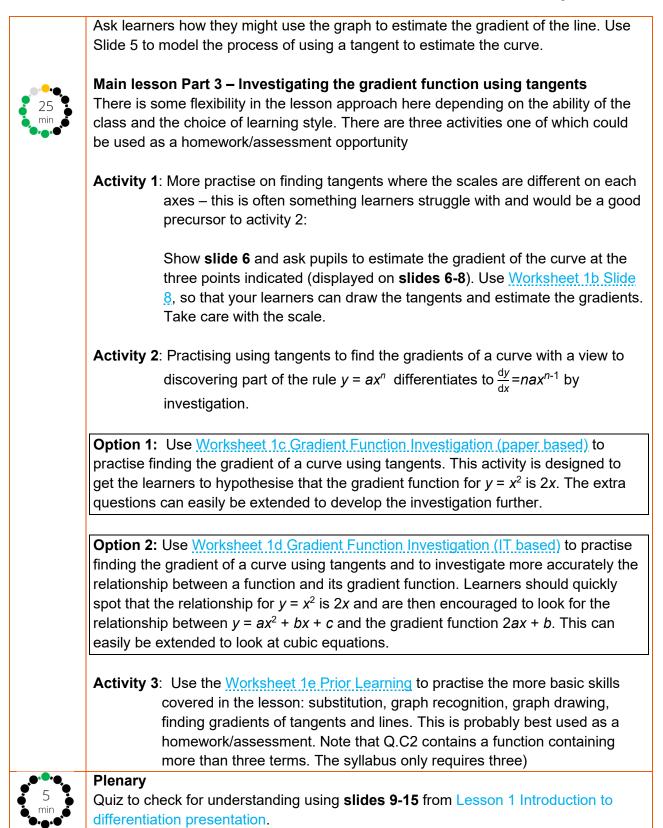
Learners often...

Pre Learning:

Struggle to find gradients of lines when the scales differ along each axes.

Main Topic:

Confuse the gradient function and the original function, for example when finding the *y* coordinate of a stationary point.


When using a second derivative to classify a turning point intuitively mistaking that a positive value

of $\frac{d^2y}{dx^2}$ indicates a maximum value when in fact it represents a minimum value. Vice-versa for a minimum value.

Lesson 1: Introduction to Calculus

Resource	 Whiteboard Video: Overview of Calculus Lesson 1 Introduction to differentiation presentation Worksheets 1a, 1b, 1c, 1d, 1e. 									
Learning objectives	By the end of the lesson:									
Timings	Activity									
10 min	Starter/Introduction Teach this lesson using Lesson 1 Introduction to differentiation presentation.									
	Watch the video "Overview of Calculus" (slide 3).									
	From 0.00 to 2.17 the video introduces the concepts of integration and differentiation together with some examples of applications.									
	The section from 2.17 to 8.04 explains the prior learning that will be required for study of the topic and could also be played. This section of the video could be show later in the lesson									
5 min	Main lesson Part 1 – Recap finding the gradient/equation of a line Show your learners Slide 4 from Lesson 1 Introduction to differentiation presentation. Ask learners to find the gradients of the lines shown. As an extension learners could also revise their knowledge of straight line graphs to write down the actual equations of the lines.									
	Ensure that students know how to find the gradient of a line.									
Main lesson Part 2 – Using tangents to estimate the gradient of a curve Show your learners Slide 5 from Lesson 1 Introduction to differentiation presentation. A copy of Slide 5 (Worksheet 1a Slide 5) is provided for learners this lesson.										
	Ask learners about the issues surrounding finding the gradient of a curve, ensuring that they understand that a curve is a curve because the gradient changes smoothly and is not constant.									

Lesson 2: Using differentiation to find the gradient of a curve

Resources	 Whiteboard Video: Introduction to Calculus Lesson 2 Differentiation and gradients presentation Worksheet 2a, 2b, 2c.
Learning objectives	 By the end of the lesson: all learners should be able to differentiate a polynomial up to degree 3 and use the derivative to find the gradient of a curve for a specific x-value most will be able to use differentiation to find the coordinates of a point on a curve with a specific gradient some will begin to understand how we can use differentiation to find local maxima and minima points

Timings	Activity
10 min	Starter/Introduction Teach this lesson using Lesson 2 Differentiation and gradients presentation
	Show slide 3. Ask learners to complete the activity (answers on slide 4).
	A competitive challenge is to look for the arrangement of <i>x</i> values that would give the highest score. Answers on slide 4 .
5	Main lesson Part 1 – Learning how to differentiate a polynomial using the correct notation
	Show your learners the Video: Introduction to Calculus (Slide 5) from 0.00 to 4.05. This explains how to differentiate a function.
	Optional: Slides 6-8 cover the same content, linking back to the work from lesson 1, but if using the slides, ensure that the correct language is used and focus on the correct notation.
15 min	Give your learners <u>Worksheet 2a: Differentiating polynomials</u> to complete, which provides an assessment opportunity on differentiating polynomials using the correct notation.
	Extension: To consider how to reverse the process. A learning opportunity to demonstrate that polynomials with the same shape, but different vertical positions, will have the same gradient function.
10 min	Main lesson Part 2 – Using differentiation to find the gradient of a curve at a point
* ••••* *	Show your learners the Video: Introduction to Calculus from 4.00 to 6.45. This explains how to use differentiation to find the gradient of a curve at a point.

Use **slides 9-10** to assess learners understanding of the video, or as an alternative to the video to demonstrate how to use differentiation to solve problems relating to the gradient of a curve.

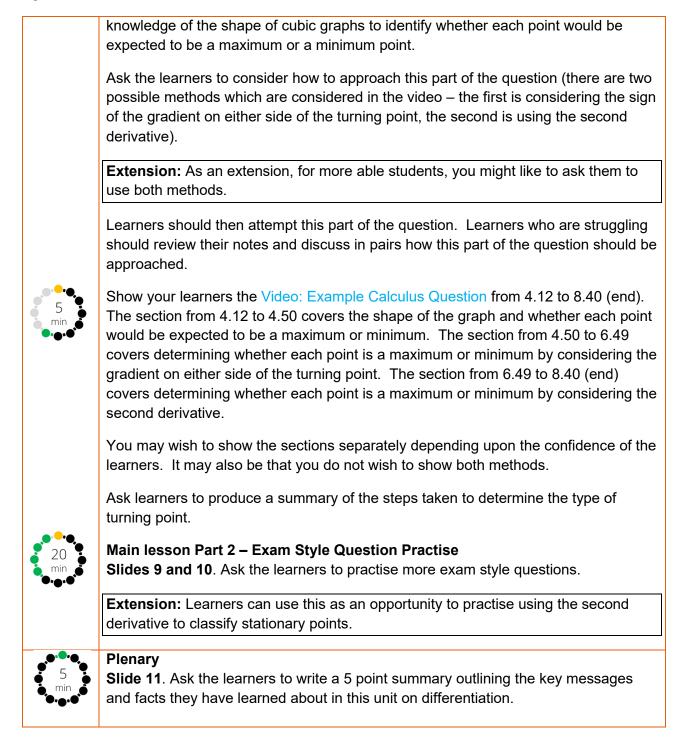
Handout <u>Worksheet 2b Differentiation to find gradients of curves</u> to your learners to complete. It provides an assessment opportunity using differentiation to find gradients of curves and other related problems that link into the next lesson on locating stationary points. Note that Q.5 contains a function of more than three terms. The syllabus only requires three.

Plenary

Slides 11-32. Bingo game to reinforce the process of differentiating a polynomial expression and using it to find a gradient. Instructions to follow are on slide 11, and the remaining slides contain the problems for learners to solve and mark off on their 3x3 grids.

Worksheet 2c Card Sort – match the functions to their derived functions (you will need to cut out sets of the cards and give them to your learners). This activity could alternatively be used as homework. Note that there are 4 cards that include more than three functions, but these are good opportunities for extension of your learners. Note that Cards 9, 11, F and G fall outside the syllabus requirements in E2.12 point 2.

Lesson 3: Classifying Turning Points


Resource	 Video: Introduction to Calculus Lesson 3 Classifying turning points presentation
	Worksheet 3a
Learning objectives	By the end of the lesson: all learners should be able to understand what turning points/stationary points are most learners should be able to use differentiation to find and classify turning points
Timinara	
Timings	Activity
5 min	Starter/Introduction Teach this lesson using Lesson 3 Classifying turning points presentation.
	Show slide 3 and ask learners to answer the questions, to recap the knowledge learned in the previous lesson. Answers are provided on the slide.
5 min	Main lesson Part 1 – Learning about stationary points and classifying them Show your learners the Video: Introduction to Calculus (Slide 4) from 6.45 until 10.39.
15 min	Get learners to do some of the examples on slides 3 to 13 to check their understanding of the video.
25 min	Activity: Use <u>Worksheet 3a Locating and classifying turning points</u> with your learners. They can check their answers by plotting the graph of the function using Geogebra, Desmos or Autograph. Note Q.4 falls outside the syllabus requirements in E2.12.2.
	Extension: Ask students to research the use of the second derivative to classify turning points. They can compare and contrast this method to the method of checking the signs on either side of the turning point.
	Plenary
10 min	Watch the Video: Introduction to Calculus from 10.25 to 11.22 (end). This introduces the concept of stationary points which are not turning points and provides a brief summary of how to classify these points.
	Extension: Work through slides 11 to 12 with the students to cover the same content as the video using interactive teaching and worked examples. Start by asking the learners if it possible for the gradient of a curve to be zero at a point and for the point not to be a turning point? Use the example of finding the turning points for $y = x^3$ on slide to show the existence of points of inflection.

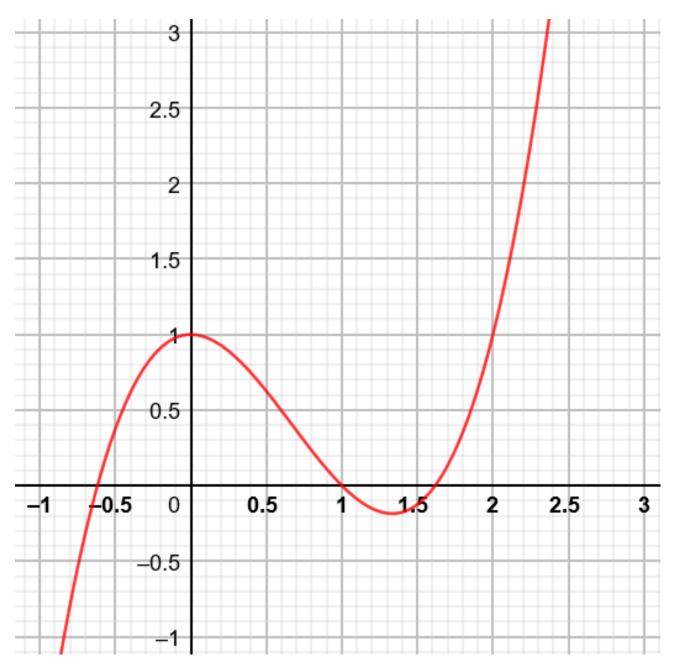
Lesson 4: Exam Practise and Second Derivatives

Resources	 Whiteboard and mini-whiteboards for the starter Video Example Question Calculus Lesson 4 Exam Practise and Second Derivative presentation Worksheets 4a
Looming	By the end of the lessen
Learning	By the end of the lesson:

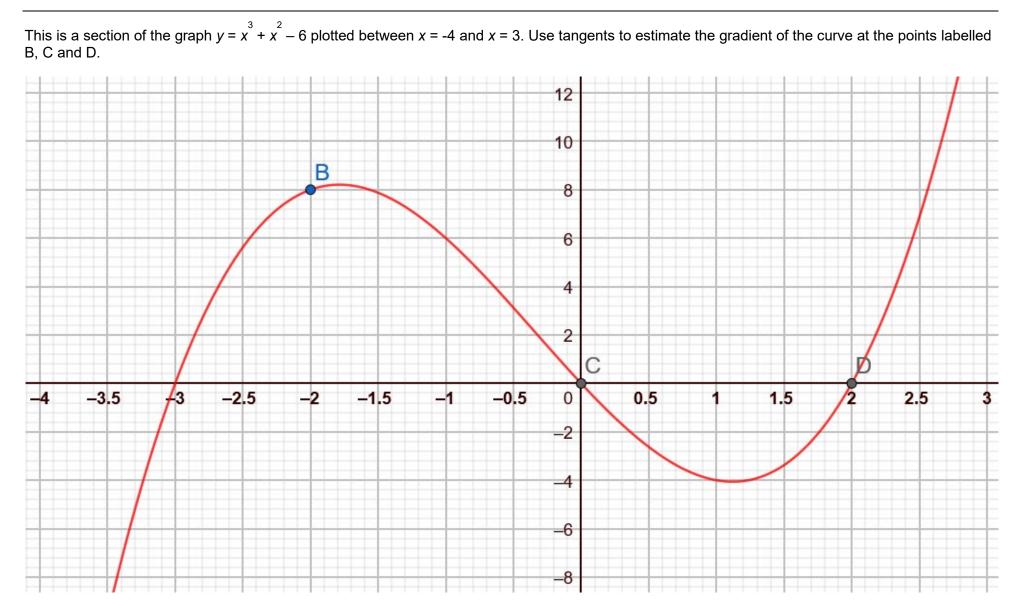
Leanning	By the end of the lesson.
objectives	 all learners should be able to apply differentiation to
	turning points in the context of an examination question
	 all learners should be able to discriminate between
	maxima and minima by any method in the context of an
	examination question
	some learners will be able to use the second derivative
	to classify turning points

Timings	Activity
10 min	Starter/Introduction Teach this lesson using Lesson 4 Exam Practise and Second Derivatives presentation.
	Hand out mini-whiteboards and show slides 3 to 6 in turn. The learners should take about 1 minute to work out the answers to the questions on their whiteboard and show the results when instructed by the teacher. The activity provides for an assessment opportunity as well as a chance to recap key knowledge covered in lessons 1 to 3.
10 min	Main lesson Part 1 – Exam Style Question Walkthrough Ensure that learners have a copy of the question <u>Worksheet 4a Exam-style question</u> so that they have a copy of the exam question to work through. The question and the answer are on Slide 7 .
	Show your learners the Video: Example Calculus Question (Slide 8) from 0.00 to 1.06. Pause at this point to enable the learners to consider the steps required to answer part (a) of the question.
	If learners are able to identify the steps then they should attempt this part of the question. If learners are not able to identify the steps then they should review their notes and discuss in pairs how this part of the question should be approached.
10 min	Show your learners the Video: Example Calculus Question from 1.06 to 4.12 and get them to mark their work.
	Pause the video at this point and ask the learners to consider the steps required to answer part (b) of the question. Start by asking the learners to consider whether they expect each point to be a maximum or minimum point. They can use their

Worksheets and answers


	Worksheets	Answers
For use in Lesson 1:		
1a: Slide 5	16	N/A
1b: Slide 7	17	N/A
1c: Gradient Function Investigation (paper based)	18-21	N/A
1d: Gradient Function Investigation (IT based)	22-27	N/A
1e: Prior Learning Worksheet (Homework)	28-33	44-45
For use in Lesson 2:		
2a: Differentiating polynomials	34	46
2b: Differentiation to find gradients of curves	35-37	47-48
2c: Card Sort	38-39	49
For use in <i>Lesson 3:</i>		
3a: Locating and classifying turning points	40-42	50-52
For use in <i>Lesson 4:</i>		
4a: Exam-style question	43	N/A
	43	N/A

Worksheet 1a: Slide 5


The graph shown is $y = x^3 - 2x^2 + 1$

What can you say about the gradient of the graph?

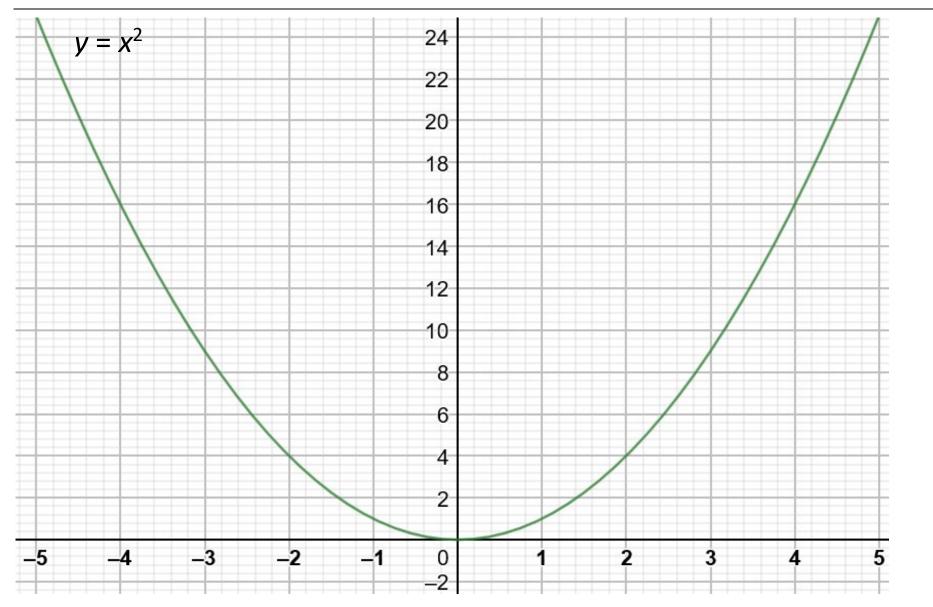
How can we estimate the gradient of the graph at the coordinate (2,1)?

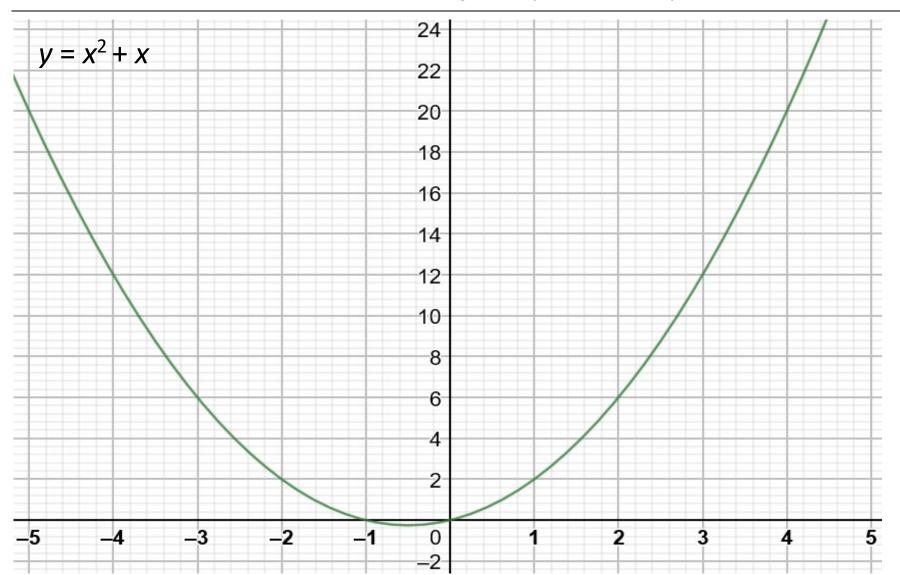
Worksheet 1b: Slide 8

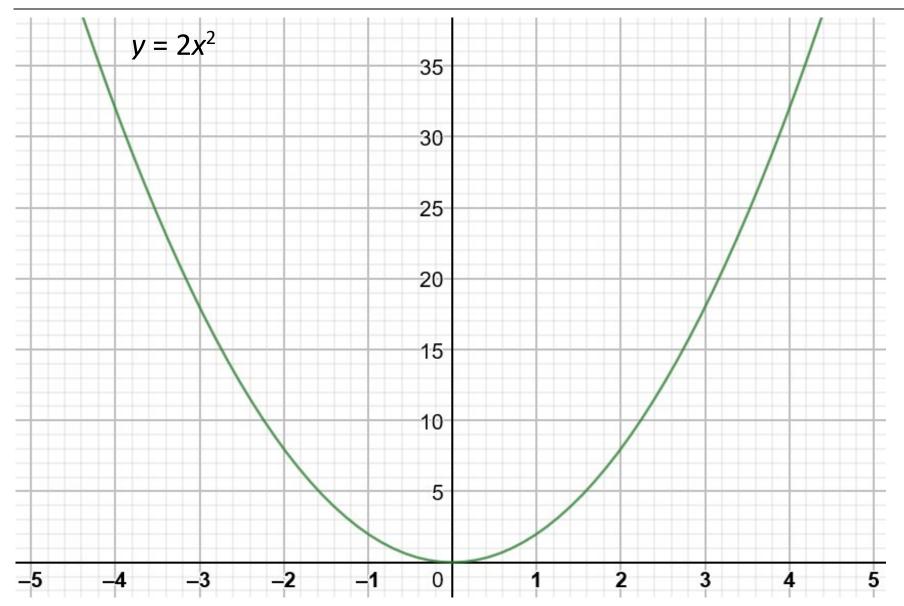
Worksheet 1c: Gradient Function Investigation (paper based)

Investigation to find the gradient function of $y = x^2$ by drawing tangents

Use the graph on the next page to estimate the gradient of the curve $y = x^2$ at each of the *x*-values given in the table:


x-coordinate	-4	-3	-2	-1	0	1	2	3	4
Gradient of the curve									

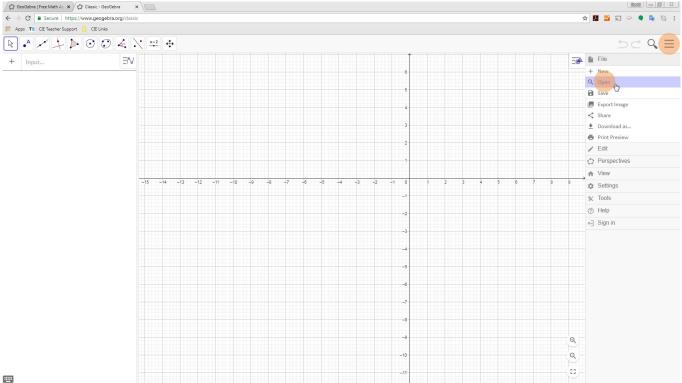

- a) There is a simple relationship between the gradient of the curve and the *x*-coordinate value. Use your table of results to suggest what this relationship might be.
- b) If we repeated this task for the graphs of


i)
$$y = x^2 + 1$$

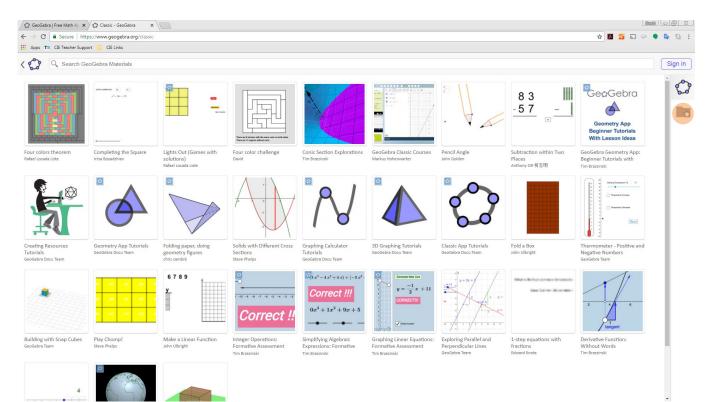
ii) $y = x^2 - 3$
iii) $y = -x^2$

- iv) $y = 2x^2$
- v) $y = x^2 + x$

How would the relationship that you suggested in part (a) change? (The graphs of $y = 2x^2$ and $y = x^2 + x$ are printed for you to test your ideas)



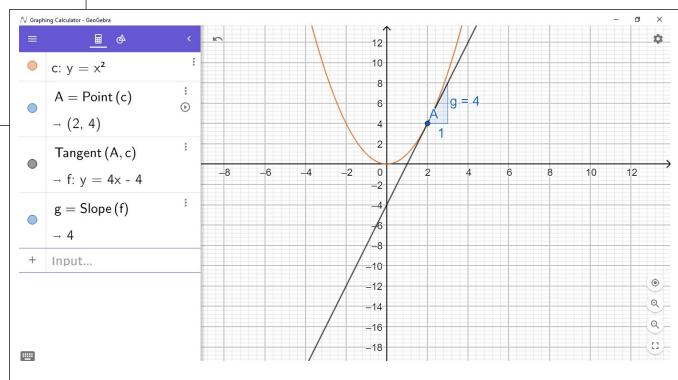
Investigation to find the gradient function of $y = x^2$ by drawing tangents using GeoGebra^{*}

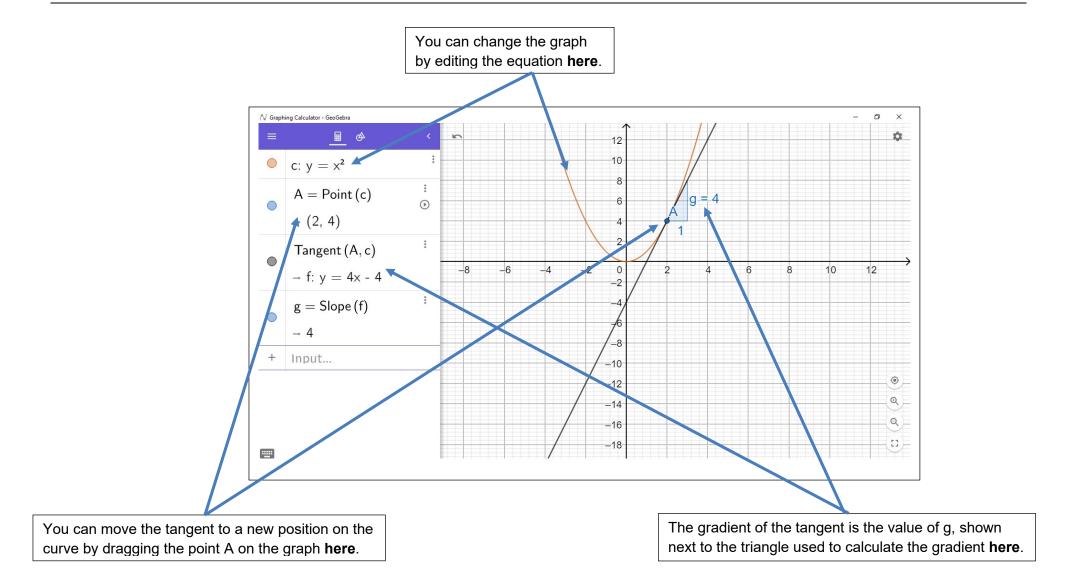

* or use an alternative graphing package such as DESMOS or Autograph

You can download GeoGebra for free here https://www.geogebra.org/download and install it. However, GeoGebra will run on any modern browser without needing to be installed. To do this:

- 1. Navigate to the GeoGebra home page https://www.geogebra.org/
- 2. Choose and click on the appropriate app (GeoGebra Classic) to open it
- 3. Open the top right main menu and click on 'Open'

4. Select the folder button to choose a file, and navigate to the GeoGebra file you want to open




Load the file: Investigating the gradient function using geogebra.ggb

Once loaded the file allows you to find the gradient of a tangent to a curve of your choice at any point on the curve.

The default file shows:

- The graph of $y = x^2$
- A tangent drawn at the point (2,4)
- The gradient of the tangent = 4

Use the graph to estimate the gradient of the curve $y = x^2$ at each of the *x*-values given in the table:

x-coordinate	-4	-3	-2	-1	0	1	2	3	4
Gradient of the curve									

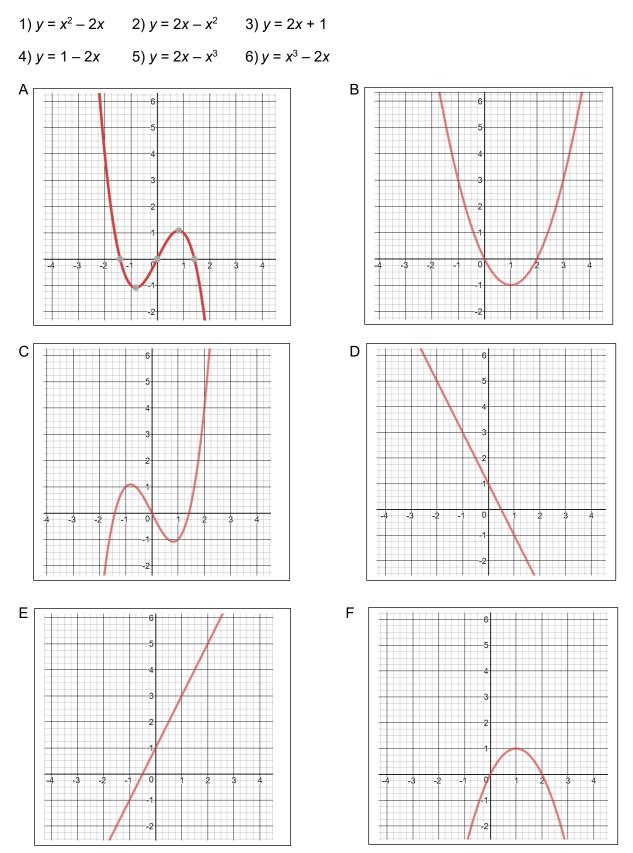
a) There is a simple relationship between the gradient of the curve and the *x*-coordinate value. Use your table of results to suggest what this relationship might be.

b) If we repeated this task for the graphs of

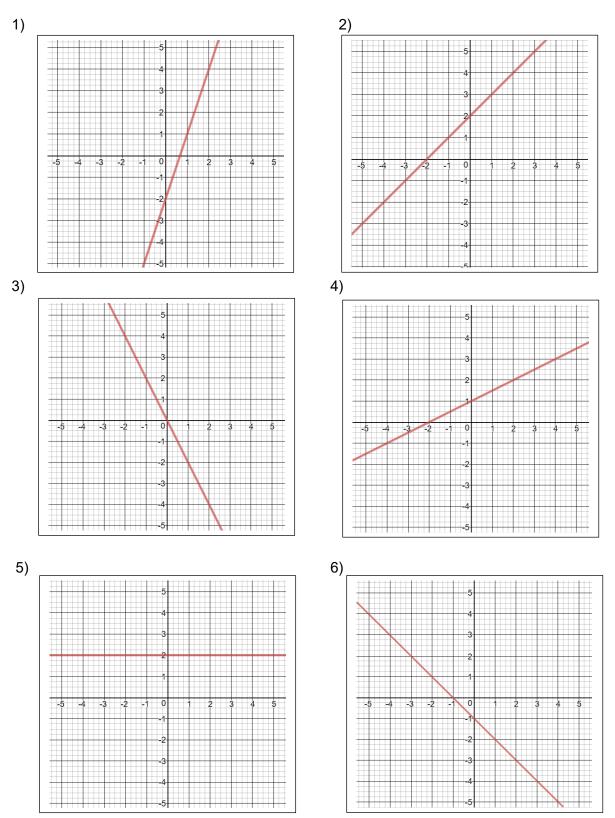
i)
$$y = x^{2} + 1$$

ii) $y = x^{2} - 3$
iii) $y = -x^{2}$
iv) $y = 2x^{2}$
v) $y = x^{2} + x$

How would the relationship that you suggested in part (a) change?

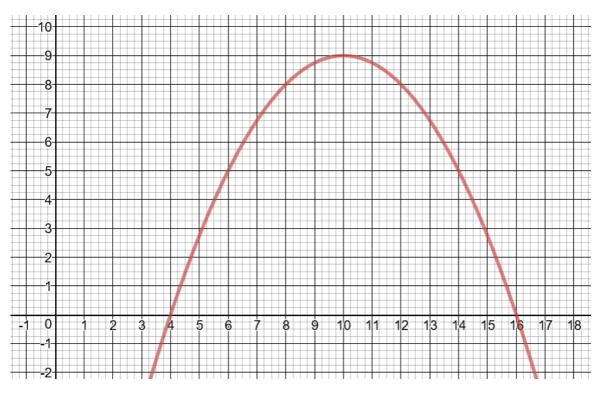

Draw each of these graphs in turn to verify your results.

c) Can you find a relationship between the graph of $y = ax^2 + bx + c$ and its gradient function?

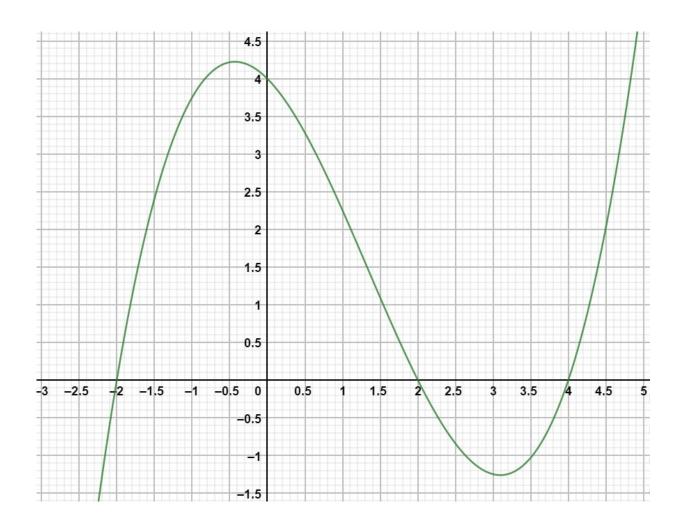

Worksheet 1e: Prior Learning Worksheet

A) Recognising Types of graphs

Match each graph to its equation:



B) Finding gradients of lines


C) Drawing tangents and estimating gradients of curves

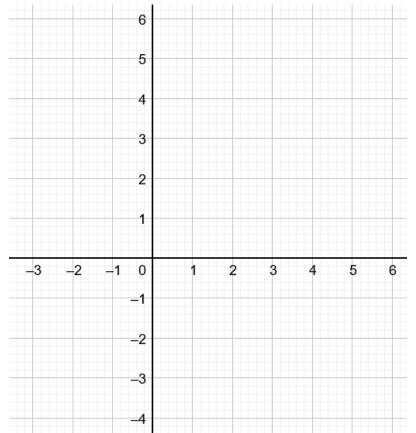
1. Look at the graph below:

- a) Use a tangent to the curve at the point when x = 8 to make an estimate of the gradient of the curve at this point.
- b) Use a tangent to the curve at the point when x = 14 to make an estimate of the gradient of the curve at this point.

2. The graph below shows the function $y = 0.25x^3 - x^2 - x + 4$

Use tangents to estimate the gradient of the curve for the following *x* values:

- a) *x* = -2
- b) x = 0
- c) x = 2
- d) x = 4

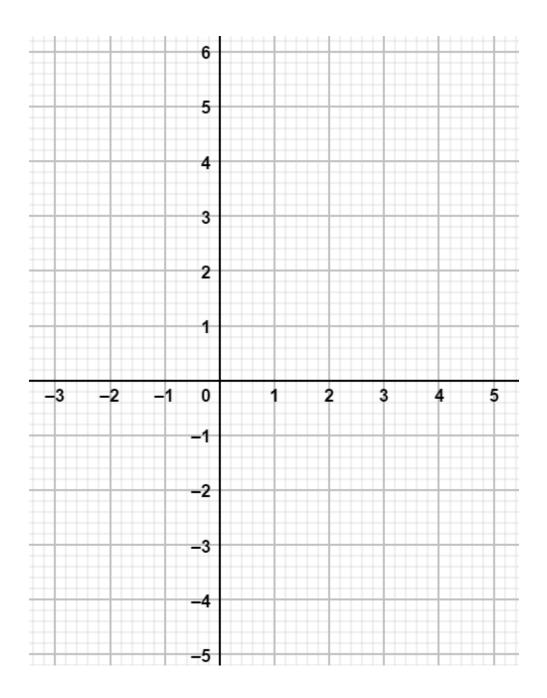

D) Substituting Values into functions/Drawing graphs

1) Let $y = x^2 - 2x - 3$

Complete the table of values below for values of *x* from -1 to 4.

x	-1	0	1	2	3	4
У						

Use the table of values to plot the graph of $y = x^2 - 2x - 3$ for x values between -1 and 4 on the axes below:



2) Let $y = x^3 - 4x^2 + 5$

Complete the table of values below for values of x from -1 to 4.

x	-1	0	1	2	3	4
У						

Use the table of values to plot the graph of $y = x^3 - 4x^2 + 5$ for x values between -1 and 4 on the axes below:

Worksheet 2a: Differentiating polynomials

Copy and complete this table, the first line has been completed for you:

Function	Derivative
$y = 2x^3$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2$
y = 3x - 2	
<i>y</i> = 7	
$y = 3x^2 + 2x - 4$	
$y = 5x^3 + 2x^2 - 3x$	
$y = 4 - 3x^3$	
y = 2x + 1	
<i>y</i> = 5 <i>x</i>	
$y = 1 - \frac{1}{2}x$	
$y = 5x^2 - 2x + 1$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x - 2$

Worksheet 2b: Differentiation to find gradients of curves

1. Find the gradient of the curve $y = 3x^2 - 5x + 1$ at the point (4, 29).

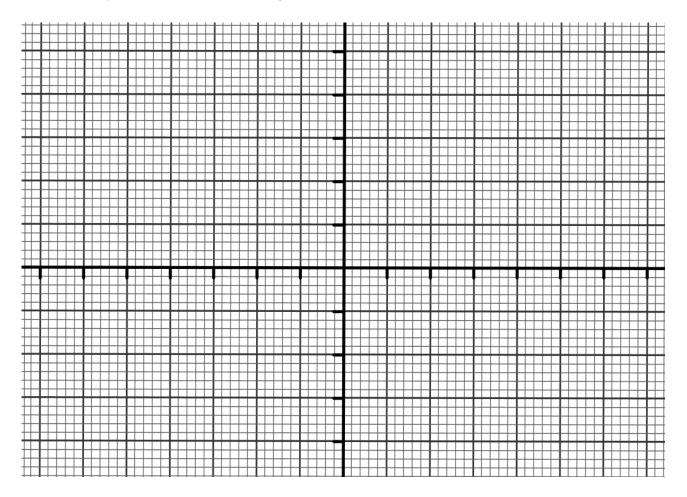
2. Find the gradient of the curve $y = 2x^3 - x^2 + 3x$ at the point (-2, -26).

3. Find the coordinate where the curve $y = x^2 - 3x + 1$ has a gradient of 7.

4. Find the coordinate where the curve $y = 3x^2 + 4x - 1$ has a gradient of -2.

5. Find the coordinates where the graph of $y = x^3 - 7x^2 + 15x + 1$ has a gradient of 20.

6.

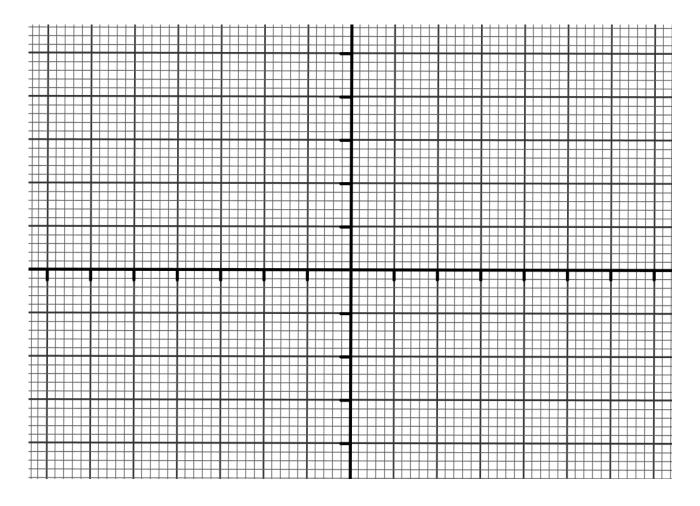

a. Find the gradient of the curve $y = 2x^3 - 54x + 7$ when x = 3.

b. What does this tell you about the graph at this point?

Worksheet 2b: Differentiation to find gradients of curves continued

c. What other 'x' coordinate has the same property?

d. Can you use this to sketch the graph of *y*?



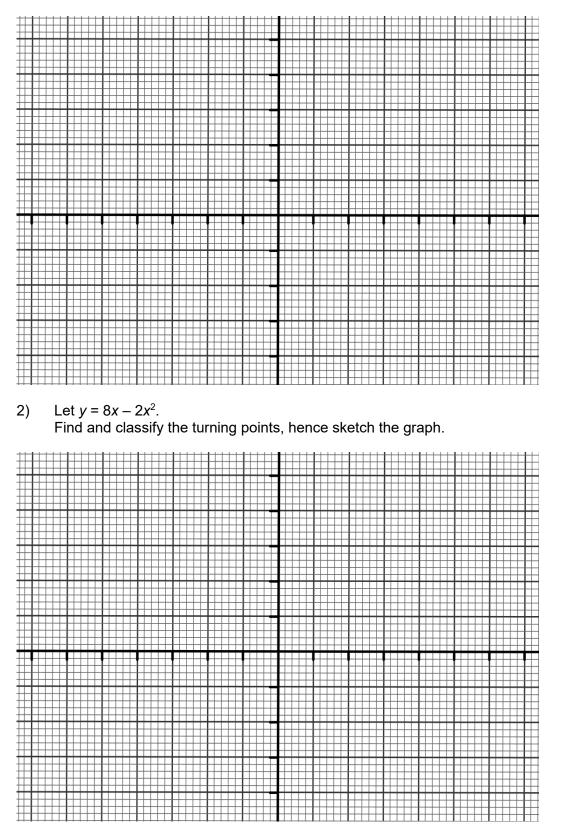
Worksheet 2b: Differentiation to find gradients of curves continued

7. Consider the graph $y = 3x^2 - x^3$.

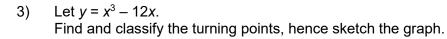
a. What are the *x* values where the graph has a gradient of zero?

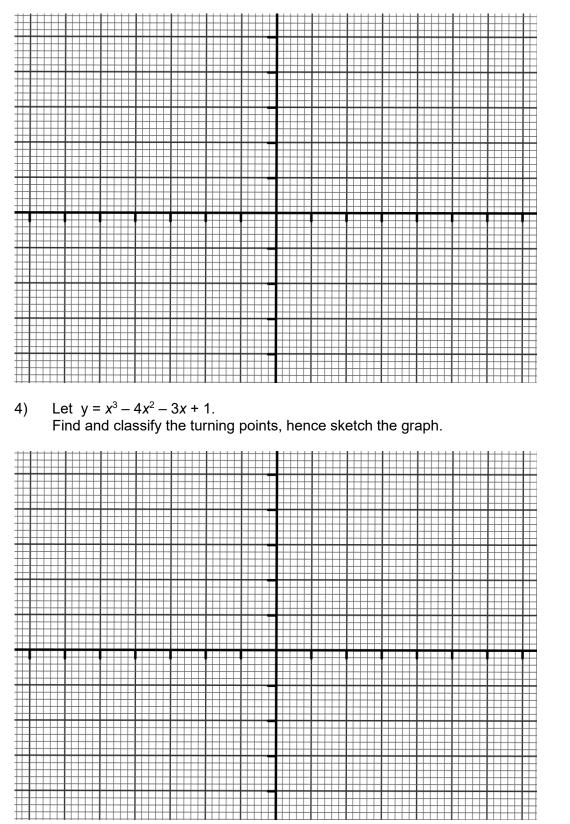
b. Use this information to sketch the graph.

Worksheet 2c: Card Sort


$\begin{array}{c} 1 \\ y = x^4 + 3x^2 \end{array}$	$2 y = 4x^2 - 5x$	3 y = 3
$\begin{array}{c} 4 \\ y = 2x^3 - 5x \end{array}$	5 y = 3x + 2	6 $y = 2x^2 + 3x - 1$
y = 6x + 7	$x = (x+3)^2$	9 $y = x^{-3} + 1$

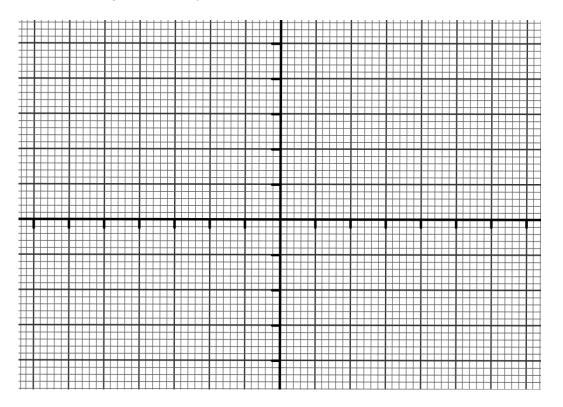
Worksheet 2c: Card Sort continued


$$\begin{array}{c|c} \mathbf{A} \\ \frac{dy}{dx} = 4x + 3 \\ \hline \frac{dy}{dx} = 8x - 5 \\ \hline \frac{dy}{dx} = 6x^2 - 5 \\ \hline \frac{dy}{dx} = 2x + 6 \\ \hline \frac{dy}{dx} = 2x + 6 \\ \hline \frac{dy}{dx} = 0 \\ \hline \frac{dy}{dx} = \frac{-2}{x^3} \\ \hline \frac{dy}{dx} = -3x^{-4} \\ \hline \frac{dy}{dx} = 6x + 5 \\ \hline \frac{dy}{dx} = 3 \\ \hline \frac{dy}{dx} = 4x^3 + 6x \\ \hline \frac{dy}{dx} = 2x - 6 \end{array}$$


Worksheet 3a: Locating and classifying turning points

1) Let $y = 2x^2 + 6x - 3$. Find and classify the turning points, hence sketch the graph.

Worksheet 3a: Locating and classifying turning points contd


Worksheet 3a: Locating and classifying turning points contd

5) A ball is thrown from the ground at an angle of 30 degrees to the horizontal. The height, h, of a ball is related to the time that the ball is in flight, t, by the equation:

$$h = 2 + 12t - t^2$$

What is the maximum height obtained by the ball?

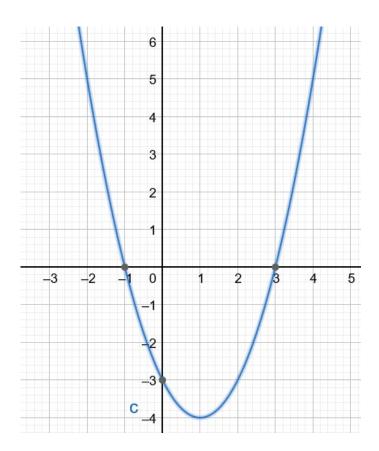
Plot the graph to verify this result.

Worksheet 4a: Exam-style question

A curve has equation $y = x^3 - 6x^2 + 16$.

(a) Find the coordinates of the two turning points.

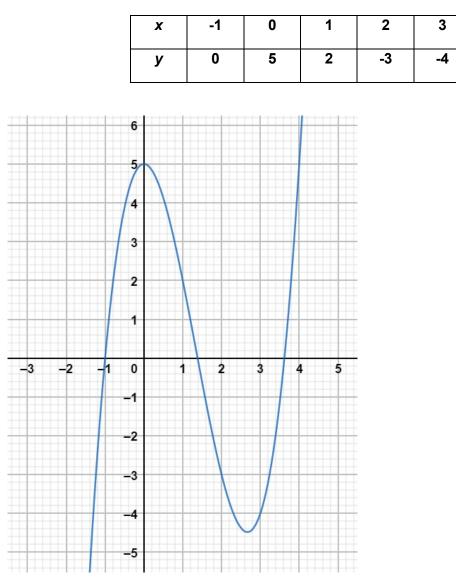
(b) Determine whether each of the turning points is either a maximum or a minimum. Give reasons for your answers.


Worksheet 1e: Answers

Answers:

A) 1 and B 2 and F 3 and E 4 and D 5 and A 6 and C B) 1) 3 2) 1 3) -2 4) 1/2 5) 0 6) -1 C) 1) a) gradient = 1 (tangent is y = x) b) gradient = -2 (tangent is y = -2x + 33) 2) a) gradient = 6 (tangent is y = 6x + 12) b) gradient = -1 (tangent is y = -x + 4) c) gradient = -2 (tangent is y = -2x + 4) d) gradient = 3 (tangent is y = 3x - 12)

x	-1	0	1	2	3	4
У	0	-3	-4	-3	0	5



4

5

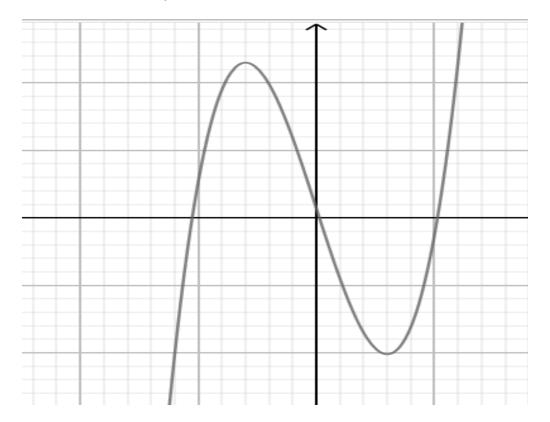
Worksheet 1e: Answers continued

2)

Worksheet 2a: Answers

Function	Derivative
$y = 2x^3$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2$
y = 3x - 2	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3$
<i>y</i> = 7	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
$y = 3x^2 + 2x - 4$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x + 2$
$y = 5x^3 + 2x^2 - 3x$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 15x^2 + 4x - 3$
$y = 4 - 3x^3$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -9x^2$
y = 2x + 1	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2$
y = 5x	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5$
$y = 1 - \frac{1}{2}x$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{2}$
$y = 5x^2 - 2x + 1$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 10x - 2$
$y = 3x \pm \text{something}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3$
$y = 2x^2 - 2x \pm \text{something}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x - 2$

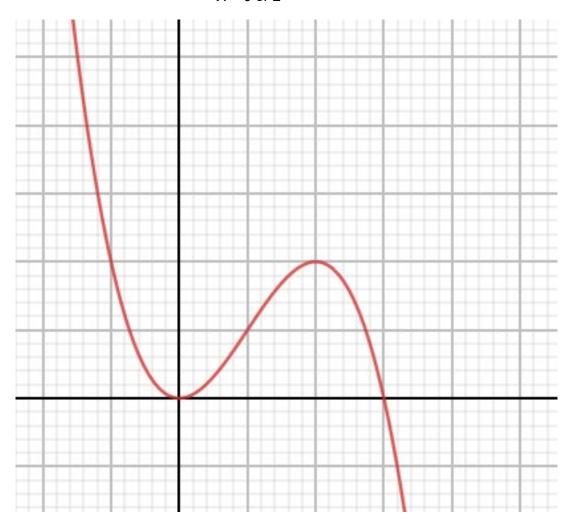
Worksheet 2b: Answers


1. $\frac{dy}{dx} = 6x - 5$ when x = 4 $\frac{dy}{dx} = 19$ so gradient is 19 2. $\frac{dy}{dx} = 6x^2 - 2x + 3$ when $x = -2 \frac{dy}{dx} = 31$ so gradient is 31 3. $\frac{dy}{dx} = 2x - 3$ Solving 2x - 3 = 7 x = 5, y = 11 so (5, 11) 4. $\frac{dy}{dx} = 6x + 4$ Solving 6x + 4 = -2 x = -1, y = -2 so (-1, -2) 5. $\frac{dy}{dx} = 6x^2 - 14x + 15$ Solving $3x^2 - 14x + 15 = 20$ Solving $3x^2 - 14x - 5 = 0$ (3x + 1)(x - 5) = 0 $x = -\frac{1}{3}$ and x = 5Coordinates $(-\frac{1}{3}, -4\frac{22}{27})$ and (5, 26)

6.

a. $\frac{dy}{dx} = 6x^2 - 54$ when x = 3 $\frac{dy}{dx} = 0$ so gradient is 0

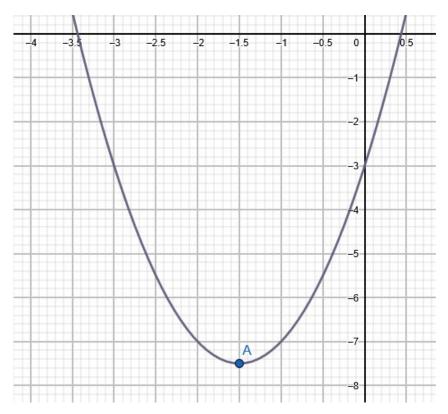
b. The gradient is horizontal, graph must have a local maxima or local minima


c. $6x^2 - 54 = 0$ solving x = -3 as well as 3

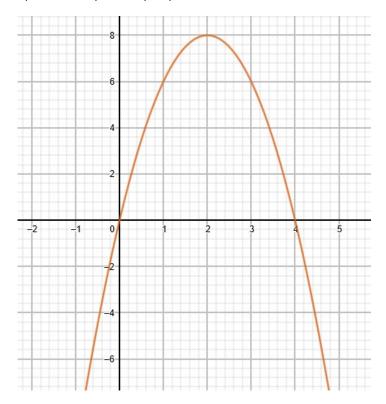
Worksheet 2b: Answers continued

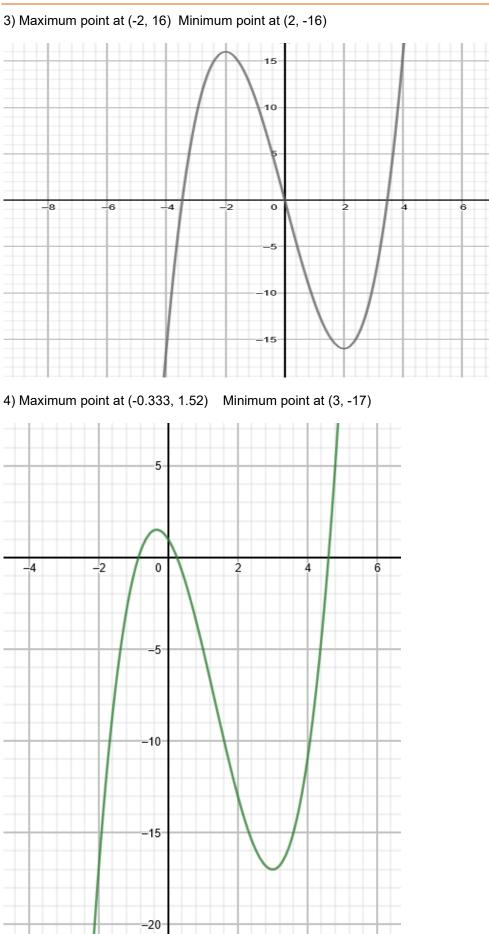
7. $\frac{dy}{dx} = 6x - 3x^2$ when $\frac{dy}{dx} = 0$ $0 = 6x - 3x^2$ 0 = 3x(2 - x)

X = 0 or 2



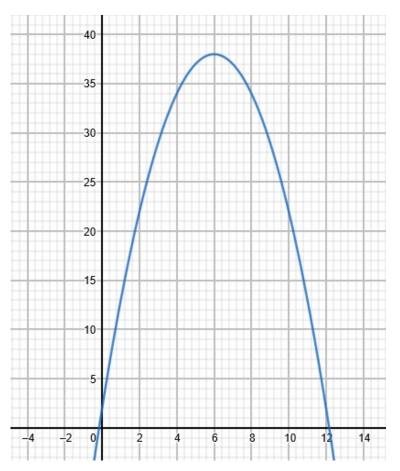
Worksheet 2c: Answers


Answers to the Card Sort match-up: 1 and K 2 and B 3 and E 4 and C 5 and I 6 and A 7 and J 8 and D 9 and G 10 and H 11 and F 12 and L


Worksheet 3a: Answers

1) Turning point is a minimum at (-1.5, -7.5)

2) Maximum point at (2, 8)



Worksheet 3a: Answers continued

Worksheet 3a: Answers continued

5) Maximum height 38m when t = 6s

Cambridge Assessment International Education The Triangle Building, Shaftsbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554 e: info@cambridgeinternational.org www.cambridgeinternational.org