Cambridge Assessment

Skills Pack

Determining the density of solids and liquids

Cambridge IGCSE ${ }^{\text {TM }}$
 Co-ordinated Sciences 0654

```
This Skills Pack can also be used with the following syllabuses:
- Cambridge IGCSEM (9-1) Physics 0972
- Cambridge IGCSETM Combined Science 0653
- Cambridge IGCSETM (9-1) Co-ordinatedSciences (Double Award) 0973
- Cambridge IGCSETM Physical Science0652
- Cambridge O Level Physics 5054
- Cambridge O Level Combined Science 5129
```

Copyright © UCLES 2023
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Contents

Introduction. 4
Experiment: Detemining the density of solids and liquids 5
Briefing lesson: Making accurate measurements 6
Lab lesson: Option 1 - run the experiment 8
Teacher notes 9
Teacher method 10
Lab lesson: Option 2 - virtual experiment 11
Debriefing lesson: Extended writing skills 12
Worksheets and answers 13

Icons used in this pack:

Lab lesson: Option 1 - run the experiment

Lab lesson: Option 2 - virtual experiment

Debriefing lesson

Introduction

This pack will help you to develop your learners' experimental skills as defined by assessment objective 3 (AO3 Experimental skills and investigations) in the course syllabus.

> Important note
> Our Skills Packs have been written by classroom teachers to help you deliver topics and skills that can be challenging. Use these materials to supplement your teaching and engage your learners. You can also use them to help you create lesson plans for other experiments.

> This content is designed to give you and your learners the chance to explore practical skills. It is not intended as specific practice for Paper 5 (Practical Test) or Paper 6 (Alternative to the Practical Test).

There are two options for practising experimental skills. If you have laboratory facilities, this pack will support you with the logistics of running the experiment. If you have limited access to experimental equipment and/or chemicals, the pack will help you to deliver a virtual experiment.

This is one of a range of Skills Packs. Each pack is based on one experiment with a focus on specific experimental techniques. The packs can be used in any order to suit your teaching sequence.

The structure is as follows:

Briefing lesson (1 hour*)

This lesson introduces the focus experimental skills to be developed. It also introduces any content needed for your learners to understand the experiment being carried out in the Lab lesson.

Lab lesson	$(1$ hour*)		
Option 1 - run the experiment	Option 2 - virtual experiment		
This lesson allows the experiment to	This lesson allows your learners to		
be run with your learners, providing an			
complete a virtual experiment,			
opportunity to practise the experiment			
skills introduced in the Briefing lesson.			providing an opportunity to practise the experiment skills introduced in the Briefing lesson.
:---:			

Debriefing lesson (1 hour*)

This lesson consolidates and builds on the progress learners have made. In some cases, it will also provide the opportunity to practise extended writing skills.
*the timings given here are guides; you may need to adapt the lessons to suit your circumstances.
In this pack you will find the lesson plans, worksheets for learners and teacher resource sheets you will need to successfully complete this experiment.

Experiment: Determining the density of solids and liquids

This Skills Pack focuses on determining the density of solids and liquids.
The density of an object can be calculated by measuring its mass and volume. Measuring the mass is easy using a top pan balance. Volume measurement for regularly shaped objects is also straightforward. To measure the volume of irregularly shaped solids, the displacement method is used. The volume of liquids can be measured by graduated cylinders or similar containers.

This experiment has links to the following syllabus content (see syllabus for detail):

1.4 Density

The experiment covers the following skills, adapted from AO3: Experimental skills and investigation (see syllabus for assessment objectives):

- make and record observations, measurements and estimates
- evaluate methods and suggest possible improvements.

Prior knowledge

Knowledge from the following syllabus topics is useful for this experiment.

- 1.1 Length and time
- 1.3 Mass and weight

Going forward

The knowledge and skills gained from this experiment can be used throughout the course as learners will develop their understanding of how to measure quantities carefully. Their understanding of density will be also used when they are required to predict whether an object will float.

Briefing lesson: Making accurate measurements

Resources

- Samples of several regular and irregular shaped solids, and various amounts of different liquids (such as water, oil, washing up liquid etc.)
- Two utensils, e.g. spoons, of similar shape; one metal and one plastic
- Blocks of the same dimensions but different materials
- Top pan balances, graduated cylinders, displacement beaker
- Worksheet A

Learning objectives	By the end of the lesson: - all learners should be able to explain that density of an object is calculated by the formula density $=\frac{\text { mass }}{\text { volume }}$. They should be able to safely and accurately take measurements and be able to suggest possible improvements for their methods - most learners will be able to evaluate methods and suggest two possible improvements for mass and volume measurements of solids and liquids - some learners will be able to evaluate methods and suggest several possible improvements for mass and volume measurements of solids and liquids

Lab lesson: Option 1 - run the experiment

Resources

- Equipment as outlined in the teacher notes
- Worksheets B, C and D

Learning
objectives
:---
all learners should be able to use the formula density= $=\frac{\text { mass }}{\text { volume }}$ to
calculate density. They should be able to safely and accurately
take measurements and be able to suggest possible
improvements for their methods

most learners will be able to evaluate methods and suggest two
possible improvements
some learners will be able to evaluate methods and suggest
several possible improvements.

Activity

Starter/Introduction

Check your learners' understanding of the following statement.

- Density is a measure of how much mass an object has per unit volume, and is calculated by the formula: density $=\frac{\text { mass }}{\text { volume }}$

Main lesson

Outline that learners will work in groups They will be calculating the density of the following:

- three regularly shaped solids
- three irregularly shaped solids
- two different liquids

Provide learners with the method shown on Worksheet B.
Make sure that they have a table into which they can record their results and calculate the densities. Worksheet C has a pre-prepared results table.

Safety

Circulate the classroom at all times during the experiment so that you can make sure that your learners are safely using the equipment and that the data they are collecting is accurate. If any lead blocks are used wash your hands afterwards.

Each group selects the objects and liquids they wish to work with and they should measure their masses, dimensions and volumes. Using this data should allow them to calculate their densities.

If any group finishes early, ask what method they could use if the objects they needed to measure floated.

Plenary

Hand out Worksheet D. Learners should complete this and submit this at the end of the lesson.

Teacher notes

Watch the teacher walkthrough video and read these notes.
Each group will require:

- Displacement beakers, beakers, 30 cm rulers and measuring cylinders.
- Three non-porous regularly shaped objects.
- Three non-porous irregularly shaped objects. Some should fit in the measuring cylinder and some should not (this will force learners to decide whether to use the cylinders or displacement beakers).
- $50 \mathrm{~cm}^{3}$ of three different liquids, e.g. water, oil, washing up liquid.

Safety

No specific risks have been identified for this experiment.
It is your responsibility to carry out an appropriate risk assessment for this experiment.

Equipment set-up

Teacher method

This is your version of the method. The learner method is on WorksheetB.

Before you begin

Plan how you will group your learners during the experiment.

Think about:

- the number of groups you will need (groups of three learners are generally good)
- depending on the ability of your learners and the materials available to you, you may like to increase the suggested number of solid and liquid samples.

Experiment

Circulate during the experiment in case learners encounter any difficulties. You may like to let them conduct some parts of the experiment weakly or imperfectly, as long as they are fully safe. Any problems they encounter could be used to evaluate the method.

Steps

Notes

1. Learners should collect all the equipment they need from the front of the class.
2. For the regular shaped objects, learners should use a ruler to measure the dimensions and calculate the volume.

Remind learners that the dimensions reported should match the resolution of the ruler they are using.
3. To measure the volume of the irregular shape the learners will have to use the displacement beaker or a graduated cylinder with aknown volume of liquid.
4. To measure the volume of the liquid, learners should use a graduated cylinder.

Make sure that the displacement beaker is full to the spout and all of the displaced water is collected.

Learners should minimise the parallax error by reading from the bottom of the meniscus. They should report the volume in line with the cylinder's resolution.
5. For each of the samples, learners should use the top pan balance to establish their mass.

For the mass of the liquids, learners need to place the empty graduated cylinder on the balance and zero it.
6. Using the collected data, learners should be able to calculate the densities of their samples.

Clean-up

After the experiment learners should:

- clean all glassware and tidy up their work space
- ensure any spillages have been mopped up
return all equipment.

Lab lesson: Option 2 - virtual experiment

Resources

- A data projector or similar
- Determining density virtual experiment video
- Worksheets E and F

Learning
objectives
:---
\quad all learners should be able to use the formula density $=\frac{\text { mass }}{\text { volume }}$ to
calculate density. They should be able to safely and accurately take
measurements and suggest possible improvements for their methods
most learners will be able to evaluate methods and suggest two

possible improvements
some learners will be able to evaluate methods and suggest several
possible improvements.

	Starter/Introduction
The virtual experiment video shows how to find the density of an irregularly shaped	
object and a liquid. Check if your learners can describe density as a measure of how	
much mass is present per unit volume.	
You could guide a discussion on this using the following question: Is steel denser	
than wood? The masses of each atom and the spacing between them determine the	
density of materials. We think of density as the relative 'lightness' or 'heaviness' of	
materials of the same volume. It is a measure of the compactness of matter, of how	
much mass occupies a given space.	

Debriefing lesson: Extended writing skills

Resources - Data collected from the experiment
Learning

objectives \quad| By the end of the lesson: |
| :--- |
| all learners should have been able to summarise their findings |
| most learners will be able to review their work, improving it in line |
| with the success criteria |
| some learners will be able to evaluate methods and suggest |
| several possible improvements. |

| Starter/Introduction |
| :--- | :--- |
| Ask learners to review their findings from the experiment. You may want them to |

Worksheets and answers

	Worksheets	Answers
For use in the Briefing lesson:		
A: Check your understanding	$14-15$	27
For use in Lab lesson: Option 1:		
B: Method	16	-
C: Results table	17	-
D: Evaluation of the experiment	$19-20$	$28-29$
For use in Lab lesson: Option 2:	$21-22$	$30-31$
E: Virtual experiment		
F: Density calculations practise		
		-
For use in the Debriefing lesson:	$23-24$	-
G: Interpretation and evaluation	25	-
H: Using connectives	26	
I: Sentence starters		

Worksheet A: Check your understanding

For each of the questions, tick the box next to the best answer(s).

1. Which instrument would be the best to measure the dimensions of a mobile phone?
$\square \quad$ A metre rule
$\square \quad$ A 30 cm ruler
$\square \quad$ A micrometer
2. Which instrument is best to measure the mass of an object?
$\square \quad$ A top pan balance
$\square \quad$ A newton meter
3. Which two statements describe how to use a top pan balance accurately?
$\square \quad$ It is set to zero before any measurement is taken
$\square \quad$ It is kept in a closed box when not in use
$\square \quad$ It can measure at least 5000 g
$\square \quad$ It sits on a flat surface
4. Which is the correct way to find the volume of a rectangular prism?
$\square \quad$ Its length is multiplied by 3
$\square \quad$ Its height is multiplied by 3
\square The length, height and width are multiplied together
5. Which two statements describe how to measure accurately with a graduated cylinder?
$\square \quad$ It needs to be long enough
$\square \quad$ It needs to sit on a flat surface
$\square \quad$ Your eye should be level with the surface of the liquid

Worksheet A: Check your understanding

6. What two things might be a problem when using an almost full graduated cylinder to measure an irregular object?
\square If the cylinder is too full it will overflow
$\square \quad$ Some irregular solids float
$\square \quad$ The object displaces the same amount of water as its volume
7. A displacement beaker is used to measure the volume of an irregular object when:
$\square \quad$ The object has a mass greater than 10 g
$\square \quad$ The object is too large to fit in a graduated cylinder
8. What could be a problem when using a displacement beaker?
$\square \quad$ All of the displaced water is caught in a graduated cylinder
$\square \quad$ The displacement beaker has to be filled to the spout
$\square \quad$ The graduated cylinder is removed too quickly from under the spout and some displaced water is not collected
9. Which two values are needed to calculate the density of an object?

Mass and weight

Mass and surface area

Volume and mass
10. What is the density of a 24 kg cube with 2 m long sides?

$12 \mathrm{~kg} / \mathrm{m}^{3}$

$3 \mathrm{~kg} / \mathrm{m}^{3}$

$8 \mathrm{~kg} / \mathrm{m}^{3}$

Worksheet B: Method

1. Collect all of your equipment from the front of the class.
2. For the regular shaped objects, use a ruler to measure their dimensions and calculate their volume.

Make sure that you report the dimensions of your samples accurately.

3. To measure the volumes of the irregular shapes you will have to use the displacement method.

> Check that you have set up your displacement beaker or graduated cylinder accurately. You need a known quantity of liquid in the graduated cylinder, and once the object is in, it should not overflow.
> For the displacement beaker, make sure it is filled up to the level of the spout be fore you put your irregular object in.
4. To measure the volume of your liquid samples, use a graduated cylinder.

To measure the level of fluid in the cylinder accurately, make sure the cylinder is on a level surface and that you measure to the bottom of the meniscus.

5. For each of your samples, use the top pan balance to establish their mass.
6. Add the data of the volumes and masses to the table.

Make sure you calculate the volumes of the regular shapes accurately.

7. Use the equation density $=\frac{\text { mass }}{\text { volume }}$ to calculate the density of each sample.

Worksheet C: Results table

Use the table below to record the data you collect.
To calculate the density, use this formula:

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

Worksheet D: Evaluation of the experiment

Use the questions below to help you think about the experiment you have just completed

1. Explain what you have done to make sure that your mass measurements were as accurate as possible.
\qquad
\qquad
\qquad
\qquad
\qquad
2. Explain what you have done to make sure that your volume measurements and/or calculations were as accurate and reliable as possible.
\qquad
\qquad
\qquad
\qquad
\qquad
3. Can you think of anything that you could improve to make the mass and volume readings more accurate?
\qquad
\qquad
\qquad
\qquad
\qquad

Worksheet E: Virtual experiment

As you watch the video, record your answers into the spaces below.

1. How can we make sure that the mass measurement is as accurate as possible?
\qquad
\qquad
\qquad
\qquad
\qquad
2. Is there anything specific to remember about the amount of water put into the displacement beaker?
\qquad
\qquad
3. How can we make sure all of the water that is displaced is collected? What can be done to make sure the measurement of the displaced water is accurate?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Worksheet E: Virtual experiment

4. $\frac{54.25}{9}$ is actually 6.027777 . Why do we write our answer as 6.0 ?
\square It is a recurring number. We need to cut it somewhere.
\square The minimum number of significant figures used in the calculation was two, so the answer has to be in two significant figures as well.
\square We always report any numerical answer in one or two decimal places.
5. What is the purpose of setting the top pan balance to zero?
$\square \quad$ It needs to be reset in between every measurement.
\square Setting the top pan balance to zero will mean that only the mass of the liquid in the beaker will be measured, not the mass of the beaker and liquid together.
6. Is there anything wrong with the amount of oil measured into the graduated cylinder?
\qquad
\qquad
7. Can you think of a different way to measure the volume and mass of the liquid?
\qquad
\qquad
\qquad
\qquad
8. Which one of the below is another acceptable unit for density measurement?
$\square \mathrm{N} / \mathrm{m}^{3}$
$\square \mathrm{kg} / \mathrm{m}^{2}$
$\square \mathrm{kg} / \mathrm{m}^{3}$

Worksheet F: Density calculations practice

Complete these calculations to work out the densities of each substance. You need to show your working. The first one has been done for you.

$$
\text { Remember: density }=\frac{\text { mass }}{\text { volume }}
$$

1. A baker buys a 1200 g bag of sugar which has a volume of $750 \mathrm{~cm}^{3}$. What is the density of the sugar?

$$
\text { density }=\frac{\text { mass }}{\text { volume }} \quad \text { density }=\frac{1200}{750} \quad \text { density }=1.6 \mathrm{~g} / \mathrm{cm}^{3}
$$

2. A mechanic records the mass of a steel cube as 515 g . If one side of the cube measures 4 cm , what is the density of the steel?
\qquad
\qquad
3. 28.5 g of iron is added to a graduated cylinder containing $45.5 \mathrm{~cm}^{3}$ of water. The water level rises to $49.1 \mathrm{~cm}^{3}$
What is the density of the iron?
\qquad
\qquad
4. A builder needs to move this block of limestone which weighs 2560 g .

What is the density of the limestone?

5. A batch of calcium chloride for orange fireworks has a mass of 1300 g and volume of $604 \mathrm{~cm}^{3}$. What is the density of the calcium chloride?
\qquad
\qquad

Worksheet F: Density calculations practice

Use this table to help identify the mystery objects.

Table of densities			
Substance	Density/ $\mathbf{g} / \mathbf{c m}^{\mathbf{3}}$	Substance	Density/ $\mathbf{/} / \mathbf{c m}^{\mathbf{3}}$
Granite	2.75	Bronze	7.58
Limestone	2.56	Gold	19.32
Sapphire	3.98	Silver	10.5

6. A block used as a doorstop measures 3 cm by 4 cm by 6 cm in size. It weighs 198 g . What is the block made out of?

\qquad
\qquad
7. You think the stone in a brooch is a sapphire. It has a mass of 7.96 g and a volume of $2 \mathrm{~cm}^{3}$. Is it a sapphire?

\qquad
\qquad
8. You find a ring with a mass of 96.6 g . You put $10 \mathrm{~cm}^{3}$ of water in a graduated cylinder and then add the ring. The water rises to the $15 \mathrm{~cm}^{3}$ mark.
What is the ring made of?

\qquad
\qquad
9. You find an old coin. It has a mass of 11.37 g and a volume of $1.5 \mathrm{~cm}^{3}$.

What is the coin made out of?
\qquad
\qquad

Worksheet G: Interpretation and evaluation

Use this worksheet to help you to write up your interpretations and evaluation for the experiment.

Interpretation

Use this section to explain each the measurements you made. Make sure you support this with the data collected. You should refer to:
which materials you calculated the density for the states of the materials that you were calculating the densities for the physical properties of the materials you calculated the densities for

Evaluation

Use this section to describe the strengths of the experiment and what you could do to make it better. You should refer to:
what went well and the reasons for this
what problems you experienced and why
how you could solve the problems if you did the experiment again.

Worksheet G: Interpretation and evaluation

This worksheet shows some ideas and techniques you might want to use when writing up your experiments.

Section	What to include
Plan	This section should explain the processes involved in your experiment. You might also need to explain a theory or concept linked to your experiment. - Begin with general statements to introduce the background, e.g. 'Density is a measure of the mass in a substance per unit volume. This means that ...' - Your vocabulary should be precise and you should use relevant technical words. - Your language should be impersonal. Do not use words like 'l' or 'we'.
Instructions or method	This section should have a sequence of steps that show how a task should be carried out. - State what you want to achieve, e.g. 'How to measure the density of irregular shaped objects'. - Make sure you explain (or draw) the equipment and materials needed. - Explain clearly what steps should be taken to achieve the goal, e.g. 'Fill the displacement beaker to just below the spout'. - You should use imperatives like 'Zero the top pan balance and weight the dry, empty graduated cylinder.' Your instructions should be like a series of commands. - Use numbers or temporal connectives to show the stages involved. - Your language should be clear so that someone could repeat the experiment without mistakes.
Observations	This section should be made up of what you have been able to measure or observe. - Only record what can be seen or measured - do not make guesses about what the products of an experiment are without testing them, e.g. if you see bubbles, this is all you can say (unless you have tested the gas produced). - Your observations need to be as accurate as possible. Make sure you record them using the correct units. You may need to repeat observations.
Interpretations	This is where you need to make sense of the observations you have collected. - Now you can use your scientific knowledge to explain your observations. - Support points made with evidence from your observations or measurements, e.g. 'The bubbles observed turned the limewater cloudy, therefore it is clear these were carbon dioxide.'
Evaluation	The evaluation is an opportunity to discuss both the strengths and weaknesses of an experiment. - Identify both the strengths and weaknesses of the experiment. - Avoid meaningless comments like 'It did not work very well.' Be specific and explain why the experiment did not work well and how you could improve it. - Use connectives to balance the strengths and weaknesses, e.g. 'although' or 'however'; or to give evidence, e.g. 'This is because ...' or 'this shows that'.

Worksheet H: Using connectives

Connectives help to develop your extended writing by allowing you to link ideas. This means that you can show how parts of the experiment link or how your observations might be supported by evidence.

In the table below there are examples of connectives you could use in your writing.

Useful connectives and where you might use them	
These connectives help you to show how time progresses. They are very useful in the planning and instruction sections.	- next - after - first, second, third etc. - 20 minutes later - meanwhile
These connectives help you to show cause and effect. They are very useful in the interpretation and evaluation sections.	- because - so - since - therefore - as a result
These connectives help you to show links and connections. They are very useful in the interpretation and evaluation sections.	- therefore this shows because in fact for example furthermore in conclusion
These help you to give comparisons, or to show differences. They are very useful in the interpretation and evaluation sections.	- although - while - similarly - equally - unless - whereas
These connectives help you to add evidence in your writing. They are very useful in the interpretation section.	- this shows that - as can be seen - as suggested by

Worksheet I: Sentence starters

Below are sentence starters for each of the points that should be addressed in the interpretation and method sections.

```
Interpretations
This section should include:
- which materials you calculated the density for
- the states of the materials that you were calculating the densities for
the physical properties of the materials you calculated the densities for
```

Density was calculated for ...

The density for a range of different states was measured. These included ...

It was found that the densities of the materials tested in this experiment ranged from ... to...

This compares to other materials like ... and ... which have densities of ...

```
Evaluation
This section should include:
- what went well and the reasons for this
- what problems you experienced and why
- how you could solve the problems if you did the experiment again.
```

The method that worked particularly well was ...

It worked well because ...

There was a problem with ...

This problem affected the results by ..

To improve the experiment ...

Worksheet A: Answers

For each of the questions, tick the box next to the best answer(s).

1. Which instrument would be the best to measure the dimensions of a mobile phone?

A 30 cm ruler
2. Which instrument is best to measure the mass of an object?

A top pan balance
3. Which two statements describe how to use a top pan balance accurately?

- It is set to zero before any measurement is taken
\square It sits on a flat surface

4. Which is the correct way to find the volume of a rectangular prism?

- The length, height and width are multiplied together

5. Which two statements describe how to measure accurately with a graduated cylinder?
$\square \quad$ It needs to sit on a flat surface

- Your eye should be level with the surface of the liquid

6. What two things might be a problem when using an almost full graduated cylinder of water to measure an irregular object?

- If the cylinder is too full it will overflow

7. A displacement beaker is used to measure the volume of an irregular object when:
\square The object is too large to fit in a graduated cylinder
8. What could be a problem when using a displacement beaker?

- The graduated cylinder is removed too quickly from under the spout and some displaced water is not collected

9. Which two values are needed to calculate the density of an object?

Volume and mass
10. What is the density of a 24 kg cube with 2 m long sides?

$$
3 \mathrm{~kg} / \mathrm{m}^{3}
$$

Worksheet E: Answers

As you watch the video, record your answers into the spaces below.

1. How can we make sure that the mass measurement is as accurate as possible? The balance must be on a flat surface, and zeroed before measuring any mass.
2. Is there anything specific to remember about the amount of water put into the displacement beaker?

The water level should be just below the spout.
3. How can we make sure all of the water that is displaced is collected? What can be done to make sure the measurement of the displaced water is accurate?

Wait until all the water in the spout flows into the beaker. Sometimes touching the water in the spout with a needle may help (due to cohesive forces). The beaker and the graduated cylinder must be dry beforehand, and all of the contents of the beaker should be poured into the cylinder. The level of water in the cylinder should be read in such a way that the line of sight is level with the bottom of the meniscus created by the water surface.
4. $\frac{54.25}{9}$ is actually 6.027777 . Why do we write our answer as 6.0 ?

The minimum number of significant figures used in the calculation was two, so the answer has to be in two significant figures as well.
5. What is the purpose of setting the top pan balance to zero?

Setting the top pan balance to zero will mean that only mass of the liquid in the beaker will be measured, not the mass of the beaker and liquid together.
6. Is there anything wrong with the amount of oil measured into the graduated cylinder? They intended amount was 30 ml of liquid but the amount in the cylinder is about 31 ml . This is a difference of about 3%, which could decrease the accuracy of the calculations.

Worksheet E: Answers

7. Can you think of a better way to measure the volume and mass of the liquid? The graduated cylinder could be used to measure both the volume and the mass. That would eliminate the problem of any measured volume of liquid remaining inside the cylinder after it got transferred into the beaker.
8. Which one of the below is another acceptable unit for density measurement?
$\mathrm{kg} / \mathrm{m}^{3}$

Worksheet F: Answers

Complete these calculations to work out the densities of each substance. You need to show your working. The first one has been done for you.

$$
\text { Remember: density }=\frac{\text { mass }}{\text { volume }}
$$

1. A baker buys a 1200 g bag of sugar which has a volume of $750 \mathrm{~cm}^{3}$.

What is the density of the sugar?

$$
\text { density }=\frac{\text { mass }}{\text { volume }} \quad \text { density }=\frac{1200}{750} \quad \text { density }=1.6 \mathrm{~g} / \mathrm{cm}^{3}
$$

2. A mechanic records the mass of a steel cube as 515 g . If one side of the cube measures 4 cm , what is the density of the steel?
Volume $=64 \mathrm{~cm}^{3}$
Density $=515 / 64$
Density $=8.04 \mathrm{~g} / \mathrm{cm}^{3}$
3. 28.5 g of iron is added to a graduated cylinder containing $45.5 \mathrm{~cm}^{3}$ of water. The water level rises to $49.1 \mathrm{~cm}^{3}$
What is the density of the iron?
Volume $=3.6 \mathrm{~cm}^{3}$
Density $=28.5 / 3.6$
Density $=7.92 \mathrm{~g} / \mathrm{cm}^{3}$
4. A builder needs to move this block of limestone which weighs 2560 g .

What is the density of the limestone?

> Volume $=1000 \mathrm{~cm}^{3}$
> Density $=2560 / 1000$
> Density $=2.56 \mathrm{~g} / \mathrm{cm}^{3}$
5. A batch of calcium chloride for orange fireworks has a mass of 1300 g and a volume of $604 \mathrm{~cm}^{3}$.
What is the density of the magnesium?
Density $=1300 / 604$
Density $=2.15 \mathrm{~g} / \mathrm{cm}^{3}$

Worksheet F: Answers

Use this table to identify the objects.

Table of densities				
Substance	Density/ $\mathbf{g} / \mathbf{c m}^{\mathbf{3}}$	Substance	Density/ $\mathbf{/} / \mathbf{c m}^{\mathbf{3}}$	
Granite	2.75	Bronze	7.58	
Limestone	2.56	Gold	19.32	
Sapphire	3.98	Silver	10.5	

6. A block used as a doorstop measures 3 cm by 4 cm by 6 cm in size. It weighs 198 g . What is the block made out of?

Volume $=72 \mathrm{~cm}^{3}$

Density $=198 / 72$
Density $=2.75 \mathrm{~g} / \mathrm{cm}^{3}$
The block is granite.
7. You think the stone in a brooch is a sapphire. It has a mass of 7.96 g and a volume of $2 \mathrm{~cm}^{3}$. Is it a sapphire?

Density $=7.96 / 2$
Density $=3.98 \mathrm{~g} / \mathrm{cm}^{3}$
The stone is a sapphire.
8. You find a ring with a mass of 96.6 g . You put $10 \mathrm{~cm}^{3}$ of water in a graduated cylinder and then add the ring. The water rises to the $15 \mathrm{~cm}^{3}$ mark.
What is the ring made of?
Volume $=5 \mathrm{~cm}^{3}$
Density $=96.6 / 5$
Density $=19.32 \mathrm{~g} / \mathrm{cm}^{3}$
The ring is made of gold.
9. You find an old coin. It has a mass of 11.37 g and a volume of $1.5 \mathrm{~cm}^{3}$.

What is the coin made out of?

Density $=11.37 / 1.5$
Density $=7.58 \mathrm{~g} / \mathrm{cm}^{3}$
The coin is made of bronze.

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

