Teaching Pack
 Pressure and the imploding can

Cambridge IGCSE ${ }^{\text {TM }}$
 Physics 0625

[^0]Copyright © UCLES 2023
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Contents

Introduction 4
Experiment: Pressure and the imploding can 5
Briefing lesson: Pressure 6
Lab lesson: Option 1 - run the experiment 7
Teacher notes 8
Teacher method 9
Lab lesson: Option 2 - virtual experiment 11
Debriefing lesson: Understanding pressure. 12
Worksheets and answers 13

Icons used in this pack:

Briefing lesson

Lab lesson: Option 1 - run the experiment

Lab lesson: Option 2 - virtual experiment

Debriefing lesson

Introduction

This pack will help you to develop your learners' experimental skills as defined by assessment objective 3 (AO3 Experimental skills and investigations) in the course syllabus.

Important note

Our Teaching Packs have been written by classroom teachers to help you deliver topics and skills that can be challenging. Use these materials to supplement your teaching and engage your learners. You can also use them to help you create lesson plans for other experiments.

This content is designed to give you and your learners the chance to explore practical skills. It is not intended as specific practice for Paper 5 (Practical Test) or Paper 6 (Alternative to the Practical Test).

There are two options for practising experimental skills. If you have laboratory facilities this pack will support you with the logistics of running the experiment. If you have limited access to experimental equipment and/or chemicals, this pack will help you to deliver a virtual experiment.

This is one of a range of Teaching Packs. Each pack is based on one experiment with afocus on specific experimental techniques. The packs can be used in any order to suit your teaching sequence.

The structure is as follows:

Briefing lesson (1 hour*)

This lesson introduces the focus experimental skills to be developed. It also introduces any content needed for your learners to understand the experiment being carried out in the Lab lesson.

*the timings given here are guides; you may need to adapt the lessons to suit your circumstances.
In this Teaching Pack you will find the lesson plans, worksheets for learners and teacher resource sheets you will need to successfully complete this experiment.

Experiment: Pressure and the imploding can

This Teaching Pack focuses on pressure and the imploding can experiment.
Pressure is defined as the force per unit area. Atmospheric pressure, the pressure of the Earth's atmosphere around us, allows us to observe this concept in action. In this experiment, you will create low pressure inside the can and this will result in the atmospheric pressure imploding the can.

This experiment has links to the following syllabus content (see syllabus for detail):

1.8	Pressure
1.5	Forces
2.1.1	States of matter
1.8	Pressure changes

The experiment covers the following experimental skills, adapted from AO3: Experimental skills and investigations (see syllabus for assessment objectives):

- demonstrate knowledge of how to safely use techniques, apparatus and materials
- make and record observations.

Prior knowledge

Knowledge from the following syllabus topics is useful for this experiment.

- 1.5	Forces
- 1.8	Pressure changes

Going forward

The knowledge and skills gained from this experiment will be useful for when you teach learners about the simple mercury barometer and the use of a manometer.

Briefing lesson: Pressure

Resources	- 100 g mass and 2 drawing pins (for each learner)
- 2 pieces of white-tac for each learner	
- Glass or plastic bottle and balloons	
- Glass, cardboard (approx. $10 \mathrm{~cm} \times 10 \mathrm{~cm}$) and access to water	
- Plunger and smooth surface (e.g. table or tile)	
- Plastic bottle (or tin can) with two holes and access to water	
	- Worksheets A and B or C

Learning objectives

By the end of the lesson:

- all learners should be able to make observations.
- most learners should be able to record observations and identify the tools used to make them.
- some learners will be able to explain their observations in detail and link them to theoretical concepts.

| | Starter/Introduction
 Encourage your learners to discuss and list their responses to the following |
| :--- | :--- | :--- | :--- |
| questions: | |
| 1. What tools can we use to make observations? | |
| 2. How can we record our observations? | |
| 3. What might we use our observations for? | |
| Collate your learners' ideas and discuss which are valid, efficient and most effective. | |

Lab lesson: Option 1 - run the experiment

Resources

- Teacher notes
- Teacher walkthrough video
- Worksheets D and E
- Equipment as outlined in the notes
Learning

objectives \quad| By the end of the lesson: |
| :--- |
| all learners should be able to make and record observations. |
| most learners should be able to demonstrate knowledge of how to |
| safely use techniques, apparatus and materials. |
| some learners will be able to recognise that an imbalance of |
| pressure can produce forces that change the size and shape of a |
| body. |

| Simings | Activity |
| :--- | :--- | :--- | :--- | :--- | :--- |

Teacher notes

Watch the Teacher walkthrough video and read these notes.
Each group will require:

```
- access to water
```

- large tray
- ice (enough to make two ice-water baths in large trays)
- Bunsen burner, gauze and tripod
- heat mat
- can
- heat-resistant gloves OR tongs large enough to hold the can
- small beaker to measure 25 ml of water

Safety

The information in the table below is a summary of the key points you should consider before undertaking this experiment with your learners.

It is your responsibility to carry out an appropriate risk assessment for this experiment.

Substance	Hazard	First aid
-	Burns	Flood burnt area with water for at least 10 minutes. For serious injuries see a doctor.

Teacher method

This is your version of the method for this experiment that accompanies the Teacher walkthrough video.

Do not share this method with learners. Give them Worksheet D.

Before you begin

Plan how you will group your learners during the experiment session.

Think about:

- the number of groups you will need (group size 2-4 learners)
- the amount of equipment required
- whether you are demonstrating this experiment or allowing learners to attempt the experiment

Experiment

Circulate during the experiment in case learners encounter any difficulties.
Depending on the ability of the learners, you may wish to run this experiment as a demonstration instead. Ensure you have completed the experiment yourself before instructing the learners to attempt it.

Steps

Notes

1. Learners collect equipment from the front of the class.
2. They should prepare an ice-water bath in the large tray.
3. The Bunsen burner is placed on the heat mat. Over this, learners should arrange the tripod and gauze.
4. Learners should place the can on top of the gauze. They should practise either:
a. Using the heat-resistant gloves to remove the can, secure the lid and place in the tray.
b. Using the tongs to remove the can, then tip it over quickly so that the open end of the can is submerged in the ice-water.

Learners may share trays, but the learners' equipment must be close to the tray and they must communicate with each other to avoid both using it at the same time. In the video a can with a lid is used (option a). The same experiment can be carried out with a ring-pull drinks can (option b). Decide in advance which method is to be used and advise your learners accordingly.
5. Learners place the can on the desk and pour approximately $25 \mathrm{~cm}^{3}$ of water from the beaker into the can.

It is better to have slightly less water than too much. With more water it will take longer to boil. For a smaller can, less water is advised.
6. Learners should place the can on top of the gauze and ensure that it is stable.
7. Learners check that they are happy with the set-up and that everything is secure - does it match your demonstration of the set-up?
8. Learners put on safety goggles and ensure chairs are out of the way. They must conduct this experiment standing up.
9. Learners light the Bunsen burner and ensure it is beneath the gauze and the can.
10. Learners observe the can.
11. When steam can be seen rising consistently from the can, it is time to perform the next stage of the experiment. Learners turn off the Bunsen burner. Either:
a. Using the heat resistant gloves to remove the can, secure the lid and place in the tray.
b. Using the tongs to remove the can, tip over quickly so that the open end of the can is submerged in the ice-water.

Remind learners to check the stability of the equipment so there is no risk of boiling water being spilled during the experiment.

Waiting for the steam may take some time. Ensure learners remain focused on the task.
end observe what happens next and record their observations from the experiment.

Clean-up

After the experiment learners should:

- Leave equipment to cool and then return the equipment to you.

Lab lesson: Option 2 - virtual experiment

Resources - Virtual experiment video

- Worksheets D and E

Learning	By the end of the lesson:
objectives	all learners should be able to make and record observations.
- most learners should be able to demonstrate knowledge of how to	
safely use techniques, apparatus and materials.	
some learners will be able to recognise that an imbalance of	
pressure can produce forces that change the size and shape of a	
body.	

| Timings | Activity |
| :--- | :--- | | Starter/Introduction |
| :--- |
| Ask your learners to work in small groups to discuss and identify the necessary safety |
| precautions for an experiment using a Bunsen burner and water. |
| Collate their ideas through class discussion. |

Debriefing lesson: Understanding pressure

Resources	Worksheets F, G, H and I		
Learning	Aerosol can	By the end of the lesson:	all learners should be able to explain that an imbalance of
:---			
objectives			
pressure can produce forces.			
most learners should be able to explain that these forces change			
the size and shape of a body.			
some learners will be able to identify other examples of			
imbalances of pressure producing forces.			

Timings	Starter/Introduction Provide your learners with Worksheet F.
They should work through the worksheet independently to begin with. After 3 minutes,	
they should share their thoughts with a partner. You should then take feedback from	
each pair so that the whole class can share their ideas (think, pair, share).	
All learners should have the same answer to the first question, but answers to the	
others may differ. This is not a problem, as long as they can justify their thinking.	

Worksheets and answers

	Worksheets	Suggested answers
For use in the Briefing lesson:		
A: Pressure	14	25
B: Atmospheric pressure	15-16	26-27
C: Atmospheric pressure	17-18	-
For use in Lab lesson: Option 1:		
D: Method	19	-
E: Observations of the imploding can	20	-
For use in Lab lesson: Option 2:		
D: Method	19	-
E: Observations of the imploding can	20	-
For use in the Debriefing lesson:		
F: Making observations	21	28
G: Calculating pressure	22	29
H: Taking precautions	23	-
I: Match up	24	30

Worksheet A: Pressure

Read through the information below before completing the questions in the space provided.
Pressure is defined as the force per unit area. The more concentrated the force over a smalle r area, the higher the pressure.

$$
\text { pressure }=\frac{\text { force }}{\text { area }}
$$

Pressure is measured in Pascals (Pa), force is measured in Newtons (N) and area in metres squared (m^{2}).

1. Fill in the spaces below:
a. 1 Pascal $=\ldots \ldots \ldots . \mathrm{N} / \mathrm{m}^{2}$
b. For a given area, increasing the force will the pressure.
c. For a given force, increasing the area will the pressure.
2. Discuss and answer the following questions.
a. Why do tractors have large flat tyres?

b. Why do you sink in snow less when you wear skis?
\qquad
\qquad
\qquad

c. Why do camels have large flat feet?

Worksheet B: Atmospheric pressure

Atmospheric pressure

- is caused by the weight of air above us
- decreases with altitude
- acts in all directions
- Average sea-level pressure is 101000 Pa .

Write observations for the experiments below:

Worksheet B: Atmospheric pressure

Worksheet C: Atmospheric pressure

Atmospheric pressure

- is caused by the weight of air above us
- decreases with altitude
- acts in all directions
- Average sea-level pressure is 101000 Pa .

Think about the role of atmospheric pressure in the experiments below:

A balloon is placed inside a bottle creating a seal over the rim. It is almost impossible to blow up.	Explain why this happens.
When a glass is almost filled with water and a square of cardboard is placed firmly over the top, it can be turned upside down slowly and the water stays in place. Carefully take your hand away and see what happens.	Explain why this happens. \qquad \qquad \qquad

Worksheet C: Atmospheric pressure

Worksheet D: Method

Follow the instructions to carry out the experiment.

1. Collect all of your equipment from the front of the class. You will need:

- access to water
- a large tray
- ice (enough to make an ice-water bath in the large tray)
- Bunsen burner, gauze and tripod
- heat mat
- an empty can
- heat-resistant gloves OR tongs large enough to hold the can
- small beaker to measure $25 \mathrm{~cm}^{3}$ of water

2. Put on your safety goggles and ensure chairs are out of the way. You must conduct this experiment standing up.
3. Prepare an ice-water bath in the large tray
4. Set up the Bunsen burner on the heat mat. Place the tripod and gauze above the Bunsen burner.
5. Place the can on top of the gauze. Practise either:
a. Using the heat resistant gloves to remove the can, secure the lid and place in the tray.
b. Using the tongs to remove the can, then tip it over quickly so that the open end of the can is submerged in the ice-water. If this is not done quickly, the water vapour will condense and pour out, and air will refill the can.
6. Place the can on the desk and pour approximately $25 \mathrm{~cm}^{3}$ of water from the beaker into the can.
7. Place the can on top of the gauze. Ensure that it is stable.
8. Check that you are happy with the set-up and that everything is secure - does it match your teacher's demonstration of the set-up?
9. Light the Bunsen burner and ensure it is beneath the gauze and the can.
10. Observe the can.

Eventually you should notice steam rising from the can.

11. When steam is rising consistently from the can, it is time to perform the next stage of the experiment. Turn off the Bunsen burner, and either:
a. Use the heat-resistant gloves to remove the can, secure the lid and place in the tray.
b. Use the tongs to remove the can, then tip it over quickly so that the open end of the can is submerged in the ice-water.

If this is not done quickly, the water vapour will condense, and air will refill the can.
12. Observe what happens next.

This will happen quickly; make sure you pay close attention.

13. Record your observations from the experiment.
14. Leave the can in the tray to cool. Leave the Bunsen burner, tripod, gauze and tongs on the heat mat to cool. Return the tongs/gloves, goggles and beaker.

Worksheet E: Observations of the imploding can

Complete the diagrams and explanations to record your observations of the experiment.
Initially the water and air inside the can are at
room temperature.
The pressure of the air inside the can is equal
to the atmospheric pressure outside the can.
Arrows represent the force spread over the
area of the can. Note that there are equal
amounts inside and outside because the
pressure is the same.

Worksheet F: Making observations

Look at the picture below.

Source: http://www.railroad.net/forums/viewtopic.php?f=9\&t=63568
Answer the following questions:

1. What do you see in this picture? (Observations)
2. What do you think about this picture? (Deductions)
3. What do you think has led to this? (Hypothesis)
4. What are the reasons for your hypothesis? (Scientific thinking)
\qquad

Worksheet G: Calculating pressure

Carry out the calculations of pressure, force and surface area.
Recall: pressure $=\frac{\text { force }}{\text { area }}$

1. A worker has a weight of 800 N and wears big work boots.
a. Calculate the worker's pressure when he stands with both feet on the ground. Each boot has a surface area of $0.032 \mathrm{~m}^{2}$.
b. The worker uses his ladder to clean a very large tanker. The two feet of the ladder have a surface area of just $0.005 \mathrm{~m}^{2}$. Calculate the pressure of the ladder on the ground with the worker on it.
2. If a person falls into the water of a frozen lake, a ladder can be used to prevent the rescuers also falling through the ice. Explain how a ladder can be used in this way.
3. The empty tanker has a weight 210000 N . The total surface area of the tankers steel wheels is $0.002 \mathrm{~m}^{2}$.
a. Calculate the pressure of the tanker on the ground.
b. If a lorry with the same weight as the tanker exerts a pressure of 150000 Pa , what is the total surface area of its rubber wheels in contact with the ground?
c. Would loading the tanker and the lorry cause an increase or decrease of pressure on the ground? Explain each case carefully and consider all factors.
4. The tanker has a surface area of $40 \mathrm{~m}^{2}$. The pressure inside the tanker is 78000 Pa below the atmospheric pressure outside the tanker when it is crushed. Calculate the force that has been applied to the tanker by the atmosphere around it.

Extension:
5. Estimate the force required to crush the can used in the experiment in the last lesson.

Worksheet H: Taking precautions

The tanker pictured on Worksheet \mathbf{F} became crushed because it was steam-cleaned and then sealed. There were no vents to re-introduce the air that had been displaced. As the steam inside cooled, the pressure inside the tanker decreased to become much lower than the atmospheric pressure. The tanker collapsed under the immense force created by the pressure difference, just like the can in our experiment.

As the owner of a tanker company, write a letter to the staff responsible for cleaning the tankers. Explain the safety issues and precautions that they must take to ensure the tankers do not implode after being cleaned. Include a clear explanation of pressure so that they understand why these precautions need to be taken.
\qquad

Worksheet I: Match up

Match up the sentences below:

Force divided by area is the equation for...	the pressure inside is lower than outside.
For a given force, increasing the area...	the pressure inside is higher than outside.
For a given area, increasing the force...	reduces the pressure.
The can in our experiment implodes because...	in all directions.
An aerosol can might explode when heated because...	pressure.
A force may produce...	heating.
Atmospheric pressure acts...	a change in the size and shape of a body.
Pressure can be increased by...	increases the pressure.
Pressure can be decreased by...	cooling.

Worksheet A: Answers

1. Fill in the spaces below:
a. 1 Pascal $=1 \mathrm{~N} / \mathrm{m}^{2}$
b. For a given area, increasing the force will increase the pressure.
c. For a given force, increasing the area will decrease the pressure.
2. Discuss and answer the following questions.
a. Why do tractors have large flat tyres?

Large flat tyres have a large surface area. This spreads the weight/force of the tractor, reducing the pressure so it does not get stuck in the mud.
b. Why do you sink in snow less when you wear skis? Skis have a larger surface area than your feet so this reduces the pressure on the snow even though your weight is identical
c. Why do camels have large flat feet?

Large flat feet have a large surface area.

This spreads the weight/force of the camel, reducing the pressure and helping the camel to walk on sand without sinking.

Worksheet B: Answers

Atmospheric pressure

- is caused by the weight of air above us
- decreases with altitude
- acts in all directions
- Average sea-level pressure is 101000 Pa .

Write observations for the experiments below:

A balloon is placed inside a bottle creating a	
seal over the rim. Try to blow it up.	What do you observe? It is difficult to blow up the balloon inside the bottle. Explain why this happens. To blow up the balloon the air blown into the bottle must be at a higher pressure than the air already inside the bottle. To blow up the balloon, the air already inside the bottle has to be compressed.
Almost fill a glass with water, place a square	
of cardboard firmly over the top and turn it	
upside down slowly.	What do you observe? The cardboard stays attached to the glass, holding the water inside for some happens
time.	
Explain why this happens.	
The water creates a seal between the	
glass and the cardboard. The atmospheric	
pressure presses on the card, holding the	
water in place.	
Once the card becomes soaked and is no	
longer stiff, it collapses and the	
atmospheric pressure is no longer enough	
to hold the water in.	

Worksheet B: Answers

Press the plunger into a smooth surface. Try to pull it away.	What do you observe? The plunger is difficult to pull away. Explain why this happens. When the plunger is pushed down, the air inside is pushed out, leaving a lower pressure inside the plunger cup than outside. The atmospheric pressure acting on the outside of the plunger cup holds it in place.
The bottle has two holes, one higher than the other. Fill it with water and put on the lid. If the top hole is covered, what happens to the water coming out of the lower hole?	What do you observe? The water streaming out of the lower hole can be stopped by covering the top hole. Explain why this happens. ine water only streams out of the lower
The if air can get into the bottle via the	
hole if	
top hole. That air exerts pressure on the	
water in the bottle, pushing it out of the	
hole at the bottom.	

Worksheet F: Answers

Look at the picture below.

Source: http://www.railroad.net/forums/viewtopic.php?f=9\&t=63568
Answer the following questions:

1. What do you see in this picture? (Observations)
2. What do you think about this picture? (Deductions)
3. What do you think has led to this? (Hypothesis)
4. What are the reasons for your hypothesis? (Scientific thinking)
5. The tanker is compressed or squashed. It looks like it has been sucked in on itself.
6. The tanker may have had some structural problems. Something has occurred inside the tanker. This is an issue that could be dangerous or costly to the company
7. Something has happened inside the tanker to lower the pressure so that the atmospheric pressure is greater leading to the collapse.
8. The bending in the tanker looks like the same effects of the steam condensing in the can in the experiment. It is likely that heating has occurred inside the container and then it has been sealed so that the internal pressure has reduced and the force of the higher atmospheric pressure outside has caused it to implode.

Worksheet G: Answers

1. A worker has a weight of 800 N and wears big work boots.
a. Calculate the worker's pressure when he stands with both feeton the ground. Each boot has a surface area of $0.032 \mathrm{~m}^{2}$.

$$
P=F / A=800 /(2 \times 0.032)=12500 \mathrm{~Pa}
$$

b. The worker uses his ladder to clean a very large tanker. The two feet of the ladder have a surface area of just $0.005 \mathrm{~m}^{2}$. Calculate the pressure of the ladder on the ground with the worker on it.
$P=F / A=800 / 0.005=160000 \mathrm{~Pa}$
2. If a person falls through the surface ice into the water of a frozen lake, a ladder can be used to prevent the rescuers also falling through the ice. Explain how a ladder can be used in this way.

It can be laid down flat on the ice. This provides a largersurface area than if a person walked out on the ice. This spreads the weight of the rescuers and reduces the risk of the ice breaking further.
3. The empty tanker has a weight 210000 N . The total surface area of the tankers steel wheels is $0.002 \mathrm{~m}^{2}$.
a. Calculate the pressure of the tanker on the ground.
$P=F / A=210000 / 0.002=105$ million Pa
b. If a lorry with the same weight exerts a pressure of 150000 Pa , what is the total surface area of its rubber wheels in contact with the ground?
$A=F / P=210000 / 150000=1.4 \mathrm{~m}^{2}$
c. Would loading the tanker and the lorry cause an increase or decrease of pressure on the ground? Explain each case carefully and consider all factors.
Loading the tanker increases the force, which leads to an increase of pressure.
Loading the lorry increases the force, which leads to an increase of pressure.
However, loading the lorry may cause the rubbertyres to be compressed, which increases the surface area of the tyres in contact with the ground. This would mean the pressure does not increase as much as for the tanker with the same weight.
4. The tanker has a surface area of $40 \mathrm{~m}^{2}$. The pressure inside the tanker is 78000 Pa below the atmospheric pressure outside the tanker when it is crushed. Calculate the force that has been applied to the tanker by the atmosphere around it.
$F=P \times A=3120000 \mathrm{~N}$

Extension:

5. Estimate the force required to crush the can used in the last lesson.

Learners should use values from the tanker question to scale down the force required. The final answer is not important, instead look at learner's scientific thinking and application of logic.

WorksheetI: Answers

Match up the sentences below:

Force divided by area is the equation for...	pressure.
For a given force, increasing the area...	reduces the pressure.
For a given area, increasing the force...	increases the pressure.
The can in our experiment implodes	
because...	the pressure inside is lower than
outside.	

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

[^0]: This Teaching Pack can also be used with the following syllabuses:

 - Cambridge IGCSE ${ }^{\text {TM }}(9-1)$ Physics 0972
 - Cambridge IGCSE ${ }^{\text {TM }}$ Combined Science 0653
 - Cambridge IGCSE ${ }^{\text {TM }}$ Co-ordinatedSciences (Double Award) 0654
 - Cambridge IGCSEM (9-1) Co-ordinated Sciences (Double Award) 0973
 - Cambridge IGCSE ${ }^{\text {TM }}$ Physical Science 0652
 - Cambridge O Level Physics 5054

