Interactive Example Candidate Responses Paper 2 (May/June 2016), Question 1 Cambridge International AS \& A Level Physics 9702

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2018
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Answer all the questions in the spaces provided.

1 (a) Define acceleration.
...rate of change of velocity. \qquad
... $[1]$
(b) A man travels on a toboggan down a slope covered with snow from point A to point B and then to point C . The path is illustrated in Fig. 1.1.

Fig. 1.1 (not to șcale)
The slope $A B$ makes an angle of 40° with the horizontal and the slope $B C$ makes an angle of 20° with the horizontal. Friction is not negligible.

The man and toboggan have a combined mass of 95 kg .

The man starts from rest at A and has constant acceleration between A and B . The man takes 19 s to reach B . His speed is $36 \mathrm{~ms}^{-1}$ at B .
(i) Calculate the acceleration from A to B .

$$
\begin{array}{ll}
v^{2}=4^{2}+2 a s & v=u+a t \\
36^{2}=0+2 a(19) & 36=9(19) \\
0 & a=1.9
\end{array}
$$

$$
\text { acceleration }=\ldots \ldots . .
$$

(ii) Show that the distance moved from A to B is 340 m .

$$
\begin{aligned}
v^{2} & =u^{2}+2 a s \\
36^{2} & =2(1,9) \mathrm{s} \\
s & =342 \\
& \approx 340 \mathrm{~m}
\end{aligned}
$$

Your Mark
 \square

01	Mark scheme		
(a)	acceleration = change in velocity $/$ time (taken) or rate of change of velocity B1		[1]
(b)(i)	$\begin{aligned} & v=0+\text { at or } v=\text { at } \\ & (a=36 / 19=) 1.9(1.8947) \mathrm{m} \mathrm{~s}^{-2} \end{aligned}$		[2]
(b)(ii)	$\begin{aligned} & s=1 / 2(u+v) t \quad \text { or } s=v^{2} / 2 a \quad \text { or } s=1 / 2 a t^{2} \\ & =1 / 2 \times 36 \times 19=36^{2} /(2 \times 1.89)=1 / 2 \times 1.89 \times 19^{2} \\ & =340 \mathrm{~m}(342 \mathrm{~m} / 343 \mathrm{~m} / 341 \mathrm{~m}) \end{aligned}$		[1]
(b)(iii)	$\begin{aligned} & \text { 1. }(\Delta \mathrm{KE}=) 1 / 2 \times 95 \times(36)^{2} \\ & =62000(61560) \mathrm{J} \mathrm{~A} 1 \\ & \text { 2. }(\Delta \mathrm{PE}=) 95 \times 9.81 \times 340 \sin 40^{\circ} \text { or } \\ & \quad 95 \times 9.81 \times 218.5 \\ & =200000 \mathrm{JA} 1 \end{aligned}$	C1 C1	[2] [2] [4]
(b)(iv)	work done (by frictional force) $=\triangle P E-\triangle K E$ or work done $=200000-62000$ (values from 1b(iii) 1. and 2.) C1 (frictional force $=138000 / 340=$) $410(406) \mathrm{N}$ [420 N if full figures used]		[2]
(b)(v)	$\begin{aligned} & -m a=m g \sin 20^{\circ}-f \text { or } m a=-m g \sin 20^{\circ}+f \\ & -95 \times 3.0=95 \times 3.36-f \\ & f=600(604) \mathrm{N} \end{aligned}$	C1	[2]

1(b)(v) \square
(iii) For the man and toboggan moving from \dot{A}.to B , calculate

1. the change in kinetic energy,

$$
\begin{aligned}
& \frac{1}{2} m v^{2} \\
= & \frac{1}{2}(95)\left(36^{2}\right) \\
\approx & 62000 \\
= & 61560
\end{aligned}
$$

change in kinetic energy $=\ldots \ldots . .$.
2. the change in potential energy.

```
chumge.ta kE = change in PE
\(=m g^{h}\)
\(=95 \times 9.81 \times 342\)
\(=318727\)
\(\approx 319000\)
```

change in potential energy $=\ldots \ldots . .319000$
(iv) Use your answers in (iii) to determine the average frictional force that acts on the toboggan between A and B .

$$
\begin{aligned}
& 318727-61560 \\
&=257 \times 10^{3} \mathrm{~J} \\
& W= F_{S} \\
& F=\frac{257 \times 10^{3}}{342} \\
&=75 \mathrm{f} \\
& \text { frictional force }=\ldots \ldots . ~
\end{aligned}
$$

(v) A parachute opens on the toboggan as it passes point B . There is a constant deceleration of $3.0 \mathrm{~m} \mathrm{~s}^{-2}$ from B to C .

Calculate the frictional force that produces this deceleration between B and C .

$$
\begin{aligned}
F & =m a \\
& =95 x-3
\end{aligned}
$$

$$
F_{f}-F=m a=-285
$$

$$
\begin{aligned}
F_{f} & =-285+F \\
& =-28.5-750
\end{aligned}
$$

$$
=-1035 \text { frictional force }=
$$ 1035

1(b) (i) \square

01	Mark scheme		
(a)	acceleration = change in velocity $/$ time (taken) or rate of change of velocity B1		[1]
(b)(i)	$\begin{aligned} & v=0+\text { at or } v=\text { at } \\ & (a=36 / 19=) 1.9(1.8947) \mathrm{m} \mathrm{~s}^{-2} \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	[2]
(b)(ii)	$\begin{aligned} & s=1 / 2(u+v) t \quad \text { or } s=v^{2} / 2 a \quad \text { or } s=1 / 2 a t^{2} \\ & =1 / 2 \times 36 \times 19=36^{2} /(2 \times 1.89)=1 / 2 \times 1.89 \times 19^{2} \\ & =340 \mathrm{~m}(342 \mathrm{~m} / 343 \mathrm{~m} / 341 \mathrm{~m}) \end{aligned}$		[1]
(b)(iii)	$\begin{aligned} & \text { 1. }(\Delta \mathrm{KE}=) 1 / 2 \times 95 \times(36)^{2} \\ & =62000(61560) \mathrm{J} \mathrm{~A} 1 \\ & \text { 2. }(\Delta \mathrm{PE}=) 95 \times 9.81 \times 340 \sin 40^{\circ} \text { or } \\ & 95 \times 9.81 \times 218.5 \\ & =200000 \mathrm{JA} 1 \end{aligned}$	C1 C1	[2] [2] [4]
(b)(iv)	work done (by frictional force) $=\triangle \mathrm{PE}-\triangle \mathrm{KE}$ or work done $=200000-62000$ (values from 1b(iii) 1. and 2.) C1 (frictional force $=138000 / 340=$ =) $410(406) \mathrm{N}$ [420 N if full figures used]	A1	[2]
(b)(v)	$\begin{aligned} & -m a=m g \sin 20^{\circ}-f \text { or } m a=-m g \sin 20^{\circ}+f \\ & -95 \times 3.0=95 \times 3.36-f \\ & f=600(604) \mathrm{N} \end{aligned}$		[2]

1(b)(v) \qquad

1 (a) Define acceleration.

time.
(b) A man travels on a toboggan down a slope covered with snow from point A to point B and then to point C . The path is illustrated in Fig. 1.1.

Fig. 1.1 (not to scale)
The slope $A B$ makes an angle of 40° with the horizontal and the slope $B C$ makes an angle of 20° with the horizontal. Friction is not negligible.

The man and toboggan have a combined mass of 95 kg

The man starts from rest at A and has constant acceleration between A and B. The man takes 19 s to reach B . His speed is $36 \mathrm{~ms}^{-1}$ at B .
(i) Calculate the acceleration from A to B .

$$
\begin{aligned}
& a=\frac{36-0}{19} \\
& a=\frac{36}{19} \\
& a=1.89
\end{aligned}
$$

$$
19
$$

acceleration $=$ \qquad 1.89 \qquad ms^{-2} [2]
(ii) Show that the distance moved from A to B is 340 m .

$$
\begin{array}{rl}
S \times \frac{1}{2} a t^{2} \quad & S=\frac{1}{2} \times 1.89 \times(19)^{2} \\
S & S=4 t+\frac{1}{2} a t^{2} . \\
& S=341.145 \mathrm{~m} .
\end{array}
$$

01	Mark scheme	
(a)	acceleration = change in velocity / time (taken) or rate of change of velocity B1	[1]
(b)(i)	$\begin{aligned} & v=0+\text { at or } v=a t \\ & (a=36 / 19=) 1.9(1.8947) \mathrm{m} \mathrm{~s}^{-2} \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 [2] } \end{aligned}$
(b)(ii)	$\begin{aligned} & s=1 / 2(u+v) t \quad \text { or } s=v^{2} / 2 a \quad \text { or } s=1 / 2 a t^{2} \\ & =1 / 2 \times 36 \times 19=36^{2} /(2 \times 1.89)=1 / 2 \times 1.89 \times 19^{2} \\ & =340 \mathrm{~m}(342 \mathrm{~m} / 343 \mathrm{~m} / 341 \mathrm{~m}) \end{aligned}$	$\mathrm{M} 1 \quad[1]$
(b)(iii)	$\begin{aligned} & \text { 1. }(\Delta K E=) 1 / 2 \times 95 \times(36)^{2} \\ & =62000(61560) \mathrm{JA} 1 \\ & \text { 2. }(\Delta \mathrm{PE}=) 95 \times 9.81 \times 340 \sin 40^{\circ} \text { or } \\ & \quad 95 \times 9.81 \times 218.5 \\ & =200000 \mathrm{JA} 1 \end{aligned}$	C1 [2] C1 [2] [4]
(b)(iv)	work done (by frictional force) $=\triangle P E-\triangle K E$ or work done $=200000-62000$ (values from 1b(iii) 1. and 2.) C1 (frictional force $=138000 / 340=$) $410(406) \mathrm{N}$ [420 N if full figures used]	A1 [2]
(b)(v)	$\begin{aligned} & -m a=m g \sin 20^{\circ}-f \text { or } m a=-m g \sin 20^{\circ}+f \\ & -95 \times 3.0=95 \times 3.36-f \\ & f=600(604) \mathrm{N} \end{aligned}$	C1 [2]

(iii) For the man and toboggan moving from A to B, calculate

1. the change in kinetic energy,

$$
\begin{aligned}
& E_{k}=\frac{1}{2} \text { miv }^{2} \\
& E_{k}=\frac{1}{2} \times 95 \times 17.955 \\
& E_{x}=852.86 \mathrm{~J}
\end{aligned}
$$

change in kinetic energy $=$ \qquad 852.86. J [2]
2. the change in potential energy.

$$
\begin{aligned}
95 \times 9.81 \times 340 \sin 40^{\circ} & =284274 \\
& =204274
\end{aligned}
$$

204274 \qquad J [2]
(iv) Use your answers in (iii) to determine the average frictional force that acts on the toboggan between A and B .

$$
\begin{gathered}
E_{p}-E_{x}=\text { friction Force. } \\
204274-852.86 . \\
203421.79 \\
2.08 \times 10^{5}
\end{gathered}
$$

$$
\text { frictional force }=\ldots23 \times 10^{5}
$$

(v) A parachute opens on the toboggan as it passes point B . There is a constant deceleration of $3.0 \mathrm{~ms}^{-2}$ from B to C .

Calculate the frictional force that produces this deceleration between B and C .
f=Ma

$$
\begin{aligned}
& F=95 \times 3 \\
& F=285 \mathrm{~N} .
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& E_{p}=m g h .
\end{aligned}
$$

\square

01 Mark scheme

(a)	acceleration = change in velocity $/$ time (taken) or rate of change of velocity B1	[1]
(b)(i)	$\begin{aligned} & v=0+\text { at or } v=\text { at } \\ & (a=36 / 19=) 1.9(1.8947) \mathrm{m} \mathrm{~s}^{-2} \end{aligned}$	$\begin{array}{ll} \text { C1 } \\ \text { A1 [2] } \end{array}$
(b)(ii)	$\begin{aligned} & s=1 / 2(u+v) t \quad \text { or } s=v^{2} / 2 a \quad \text { or } s=1 / 2 a t^{2} \\ & =1 / 2 \times 36 \times 19=36^{2} /(2 \times 1.89)=1 / 2 \times 1.89 \times 19^{2} \\ & =340 \mathrm{~m}(342 \mathrm{~m} / 343 \mathrm{~m} / 341 \mathrm{~m}) \end{aligned}$	M1 [1]
(b)(iii)	$\begin{aligned} & \text { 1. }(\Delta \mathrm{KE}=) 1 / 2 \times 95 \times(36)^{2} \\ & =62000(61560) \mathrm{JA} 1 \end{aligned}$	C1

2. $(\triangle \mathrm{PE}=) 95 \times 9.81 \times 340 \sin 40^{\circ}$ or
$95 \times 9.81 \times 218.5$
C1
$=200000 \mathrm{~J} \mathrm{~A} 1$

1(b)(iii) \square

1(b)(iv) \square

1(b)(v) \qquad
1(b)(ii) \square

1(b)(iii)
\square

Answer all the questions in the spaces provided.

1 (a) Define acceleration.
.......aceleration.........change in selocited time taken
(b) A man travels on a toboggan down a slope covered with snow from point. A to point B and then to point \mathbf{C}. The path is illustrated in Fig. 1.1.

The slope $A B$ makes an angle of 40° with the horizontal and the slope $B C$ makes an angle of 20° with the horizontal. Friction is not negligible.

The man and toboggan have a combined. mass of 95 kg .
The man starts from rest at A and has constant acceleration between A . and B . The man takes 19 s to reach B. His speed is $36 \mathrm{mg}^{-1}$ at B.
(i) Calculate the acceleration from A to :

$$
a=\frac{36}{19} \rightarrow 1.89
$$

acceleration $=$ \qquad 89 $\mathrm{ms}^{-2}[2]$
(ii) Show that the distance moved from A to B is 340 m .

$$
\begin{aligned}
& S=u t+\frac{1}{2} a t^{2} \quad S=0+\frac{1}{2} \times 1.89 \times 19^{2} \\
&=341 .+45 \mathrm{~m} \simeq 340 \mathrm{~m} \\
& 145
\end{aligned}
$$

 work done \(=200000-62000\)
 (values from 1b(iii) 1. and 2.) C1
 (frictional force \(=138000 / 340=\)) \(410(406) \mathrm{N}\)
 [420 N if full figures used]
 | 01 | Mark scheme | |
| :---: | :---: | :---: |
| (a) | acceleration = change in velocity / time (taken) or rate of change of velocity B1 | [1] |
| (b)(i) | $\begin{aligned} & v=0+\text { at or } v=\text { at } \\ & (a=36 / 19=) 1.9(1.8947) \mathrm{m} \mathrm{~s}^{-2} \end{aligned}$ | $\begin{aligned} & \text { C1 } \\ & \text { A1 [2] } \end{aligned}$ |
| (b)(ii) | $\begin{aligned} & s=1 / 2(u+v) t \quad \text { or } s=v^{2} / 2 a \quad \text { or } s=1 / 2 a t^{2} \\ & =1 / 2 \times 36 \times 19=36^{2} /(2 \times 1.89)=1 / 2 \times 1.89 \times 19^{2} \\ & =340 \mathrm{~m}(342 \mathrm{~m} / 343 \mathrm{~m} / 341 \mathrm{~m}) \end{aligned}$ | M1 [1] |
| (b)(iii) | 1. $(\triangle K E=) 1 / 2 \times 95 \times(36)^{2}$ | C1 |

2. $(\triangle \mathrm{PE}=) 95 \times 9.81 \times 340 \sin 40^{\circ}$ or $95 \times 9.81 \times 218.5$

(b)(iv) | work done (by frictional force) $=\triangle P E-\triangle K E$ |
| :--- |
| or |

(b)(v) $\quad-m a=m g \sin 20^{\circ}-f$ or $m a=-m g \sin 20^{\circ}+f \quad C$ $-95 \times 3.0=95 \times 3.36-f$
$\mathrm{f}=600(604) \mathrm{N}$
1(b)(v) \square
(iii) For the man and toboggan moving from A to B , calculate

1. the change in kinetic energy,

$$
k E=\frac{1}{2} m v^{2}
$$

$=\frac{1}{2} \times 95 \times 30$

$$
=1710
$$

change in kinetic energy $=1710$
2. the change in potential energy.

$$
\begin{aligned}
& G P E=m g h \\
& =95 \times 9.81 \times \mathrm{h} . \\
& \sin 40^{\circ}=\frac{0}{341.145} \therefore 0=34+145 \sin 40^{\circ} \\
& 1710=95 \times 9.81 \times h=274.283 \\
& =-98 \times 9.81 \times 219.283 \\
& h=1.83 \\
& \text { qPE }=95 \times 9.81 \times 1.83=1705.47 \\
& 95 \times 9.81 \times
\end{aligned}
$$

(iv) Use your answers in (iii) to determine the average frictional force that acts on the toboggan between A and B .

$$
\text { We: } \begin{aligned}
W & =m g \\
& =95 \times 9.81 \rightarrow 931.95
\end{aligned}
$$

(v) A parachute opens on the toboggan as it passes point B . There is a constant deceleration of $3.0 \mathrm{~m} \mathrm{~s}^{-2}$ from B to C .

Calculate the frictional force that produces this deceleration between B and C .

$$
\begin{array}{l|ll}
W-F=m a & 932-F=288 & W=m g \\
W-F=95 \times 30 & F=1217 & =98 \times 9.81 \rightarrow 931.95 \\
&
\end{array}
$$

\qquad
\qquad N [2]

1(b)(i) \square

1(b)(ii) \square

1(b)(iii) \square

01	Mark scheme		
(a)	acceleration = change in velocity $/$ time (taken) or rate of change of velocity B1		[1]
(b)(i)	$\begin{aligned} & v=0+\text { at or } v=\text { at } \\ & (a=36 / 19=) 1.9(1.8947) \mathrm{m} \mathrm{~s}^{-2} \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	[2]
(b)(ii)	$\begin{aligned} & s=1 / 2(u+v) t \quad \text { or } s=v^{2} / 2 a \quad \text { or } s=1 / 2 a t^{2} \\ & =1 / 2 \times 36 \times 19=36^{2} /(2 \times 1.89)=1 / 2 \times 1.89 \times 19^{2} \\ & =340 \mathrm{~m}(342 \mathrm{~m} / 343 \mathrm{~m} / 341 \mathrm{~m}) \end{aligned}$		[1]
(b)(iii)	$\begin{aligned} & \text { 1. }\left(\Delta K E=1 / 2 \times 95 \times(36)^{2}\right. \\ & =62000(61560) \mathrm{J} \mathrm{~A} 1 \\ & \text { 2. }(\Delta \mathrm{PE}=) 95 \times 9.81 \times 340 \mathrm{sin} 40^{\circ} \text { or } \\ & 95 \times 9.81 \times 218.5 \\ & =200000 \mathrm{JA} 1 \end{aligned}$	C1 C1	[2] [2] [4]
(b)(iv)	work done (by frictional force) $=\triangle \mathrm{PE}-\triangle \mathrm{KE}$ or work done $=200000-62000$ (values from 1b(iii) 1. and 2.) C1 (frictional force $=138000 / 340=$) $410(406) \mathrm{N}$ [420 N if full figures used]		[2]
(b)(v)	$\begin{aligned} & -m a=m g \sin 20^{\circ}-f \text { or } m a=-m g \sin 20^{\circ}+f \\ & -95 \times 3.0=95 \times 3.36-f \\ & f=600(604) \mathrm{N} \end{aligned}$		[2]

1(b)(v) \square

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554 f: +44 1223553558
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES March 2018

