

Teaching Pack

Identifying alkenes, alcohols and halogenoalkanes

Cambridge International AS & A Level Chemistry 9701

Copyright© UCLES 2023

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Contents

Introduction	. 4
Experiment: Identifying alkenes, alcohols and halogenoalkanes	. 5
Briefing lesson: Simple organic molecules	. 6
Planning lesson: Identifying colourless liquids	. 7
Lab lesson: Identifying organic liquids	. 8
Teacher notes	. 9
Teacher method	16
Debriefing lesson: Use of analytical techniques	19
Worksheets and answers	20

Introduction

This pack will help you to develop your learners' experimental skills as defined by assessment objective 3 (AO3 Experimental skills and investigations) in the course syllabus.

Important note

Our *Teaching Packs* have been written by **classroom teachers** to help you deliver topics and skills that can be challenging. Use these materials to supplement your teaching and engage your learners. You can also use them to help you create lesson plans for other experiments.

This content is designed to give you and your learners the chance to explore practical skills. It is not intended as specific practice for Paper 3 (Advanced Practical Skills) or Paper 5 (Planning, Analysis and Evaluation).

This is one of a range of *Teaching Packs* and each pack is based on one experiment. The packs can be used in any order to suit your teaching sequence.

The structure is as follows:

In this pack you will find lesson plans, worksheets and teacher resource sheets.

4

Experiment: Identifying alkenes, alcohols and halogenoalkanes

There are a vast number of organic compounds which have a similar physical appearance yet contain different functional groups. This pack enables learners to identify the following functional groups: alkenes, alcohols and halogenoalkanes.

This experiment has links to the following syllabus content (see syllabus for detail):

- 14.2 Alkenes
- 16.1 Alcohols
- 15.1 Halogenoalkanes
- 22.1-22.2 Analytical techniques

The experiment covers the experimental skills, as listed in **AO3: Experimental skills and investigations:**

- plan experiments and investigations
- collect, record and present observations, measurements and estimates
- analyse and interpret data to reach conclusions
- evaluate methods and quality of data and suggest improvements.

Prior knowledge

Learners will most probably have met these functional groups before in IGCSE Chemistry and also be able to draw and name simple aliphatic analogues.

Briefing lesson: Simple organic molecules

Resource	• Worksheet A			
	Molecular models (if available)			
Learning	By the end of the lesson:			
objective	s all learners should be able to recognise some of the features of the			
Objective	given compounds			
	• most learners should be able to recognise the majority of the features of			
	the given compounds			
	• some learners will be able to recognise all of the features of the given			
	compounds.			
Timinas	Activity			
innigo	Starter/Introduction			
10 min	Ask some of your learners to draw the structural formulae of any alkane on the board. Look at the variety of structures drawn and discuss why there are so many possibilities. Depending on what the learners remember about organic chemistry, the conversation may involve discussions about crude oil, fractional distillation and isomerism.			
	Main lesson			
10 min	Discuss the meaning of the term 'functional group' with your learners and ask them which ones they can recall. Ask learners to draw a map of the different functional groups found in organic chemistry. This will form the basis of a single sheet that will depict the different functional groups that learners need to know about and that can be added to with additional information such as the tests to distinguish them and how to change one to another. This will be useful when learners come to revise this topic.			
20 min	Hand out Worksheet A. If available, it is strongly encouraged that learners build models of the molecules to help them. If molecular models are unavailable, there are 3D models provided within the <i>Resource Plus</i> platform.			
10 • 10	Learners should check each other's answers here using the answer sheet provided.			
10 min	Plenary Ask the learners, in pairs, to imagine they were given a number of colourless organic liquids to identify. By considering qualitative analysis tests for inorganic compounds, learners should try to make a brief list of reasons how qualitative analysis for inorganic compounds is quite different to that for organic compounds.			
	If the learners are unable to think of any, the following could be discussed:			
	 tests for inorganic compounds are based on the fact that they contain ions. In organic compounds, there are no ions to test. 			
	 Tests for organic compounds usually only serve to identify certain functional groups in the molecules, whereas, in inorganic tests, it is often possible to identify the actual compound (cation(s) and anion(s)). 			
	• Organic liquids are often flammable, so the use of Bunsen burners is prohibited.			

6

×=

Planning lesson: Identifying colourless liquids

Resources	 Worksheet B Small samples of lithium chloride, sodium chloride and potassium chloride Colourless organic liquid samples
Learning	By the end of the lesson:
objectives	 all learners should be able to identify the functional groups to be tested and the names of the tests for each most learners should be able to suggest why a specific test is used for a particular functional group some learners will be able to describe each test in detail, explain why it is used and make links between the tests for organic compounds and inorganic compounds.

Timings	Activity
10 min	Starter/Introduction Show your learners three solids: lithium chloride, sodium chloride and potassium chloride (no labels). Ask them what type of tests they would do to find out the identity of the solids (allow the discussion to explore cation and anion identification). Then give learners more information by giving the compound names – based on this new information, what is the main difference (the cation) and how can these cations be distinguished (allow discussion of flame tests).
10 min	 Main lesson Provide learners with Worksheet B. Show them some samples of colourless organic liquids. The liquids are labelled as follows: 1A and 1B (cyclohexane / cyclohexene) 2A and 2B (methanol / ethanol) 3A and 3B (1-bromobutane / 1-iodobutane) 4A and 4B (propan-1-ol/2-methylpropan-2-ol) Explain that the aim of the experiment is to find a chemical test that will help to identify each liquid pair. Ask learners to draw each of the structures in the pairs in their lab book. If some learners
30 min	 struggle with this, they can skip it and go onto section two of the worksheet. You may need to provide assistance to learners for some of the structures. Next, learners should use the prompts on the worksheet to record the required information for each pair of substances. They should: identify the functional group in each pair identify the test required for this functional group explain why this test gives a positive result explain what is involved in the test note any safety and disposal considerations for each pair.
10 min	Plenary Watch the experiment video which shows the relevant tests. Allow time for learners to update their lab books and make any final adjustments to their planning.

Lab lesson: Identifying organic liquids

8

Teacher notes

Watch the *Identification of alkenes, alcohols and halogenoalkanes* (*Teacher Walkthrough*) and read these notes.

Each pair will require access to:

- cyclohexane (1A)
- cyclohexene (**1B**)
- absolute ethanol (2A)
- methanol (2B)
- 1-iodobutane (3A)
- 1-bromobutane (3B)
- propan-1-ol (**4A**)
- 2-methylpropan-2-ol (**4B**)
- bromine water [0.005 mol dm⁻³]
- sodium hydroxide solution [1.0 mol dm⁻³]
- iodine solution [0.5 mol dm⁻³] in potassium iodide solution [0.2 mol dm⁻³]
- silver nitrate solution [0.1 mol dm⁻³]
- deionised water
- acidified potassium dichromate(VI) solution [0.2 mol dm⁻³]
- clean test-tubes
- one beaker (250 cm³) per group to make a water-bath
- water-baths set at approx. 50 °C and 80 °C [if unavailable, electric kettle(s), for learners to make up hot water-baths themselves using glass beakers]
- standard lab alcohol thermometers
- plastic pipettes
- 2 × bungs per pair
- Heavy metals disposal bottle

Safety

The information in the table below is a summary of the key points you should consider before undertaking this experiment with your learners.

It is your responsibility to carry out an appropriate risk assessment for this experiment.

Substance	Hazard	First aid
Cyclohexane	GHS02 (flammable F)	In the eye: flood the eye with gently- running tap water for 10 min and consult a doctor. Swallowed: wash out the mouth with water. Do not induce vomiting. Consult a doctor.
	GHS07 (moderate hazard MH)	Spilt on skin or clothing: remove contaminated clothing and shoes immediately and rinse. Wash off the skin with plenty of water. Consult a doctor. Clothing catches fire: smother flames on clothing or skin with a fire blanket or other

Substance	Hazard	First aid
	GHS08 (health hazard HH) GHS09 (hazardous to the aquatic environment N)	 material. Cool any burnt skin with gently- running tap water for 10 min. Other fires: allow fires in sinks, etc. to burn out. Fires at the top of test-tubes, beakers, etc. should be smothered with a damp cloth or heat-proof mat. Spilt on floor, bench, etc.: put out all Bunsen burner flames. Wipe up small amounts with a cloth. Rinse well. For larger amounts open windows, cover with mineral absorbent (e.g. cat litter), scoop into a bucket and add water.
Cyclohexene	GHS02 (flammable F)	In the eye: flood the eye with gently- running tap water for 10 min and consult a doctor. Swallowed: wash out the mouth with water. Do not induce vomiting. Consult a doctor. Spilt on skin or clothing: remove contaminated clothing and shoes immediately and ripse. Wash off the skin
	GHS07 (moderate hazard MH) GHS08 (health hazard HH) GHS09 (hazardous to the aquatic environment N)	 immediately and rinse. Wash off the skin with plenty of water. Consult a doctor. Clothing catches fire: smother flames on clothing or skin with a fire blanket or other material. Cool any burnt skin with gently-running tap water for 10 min. Other fires: allow fires in sinks, etc. to burn out. Fires at the top of test-tubes, beakers, etc. should be smothered with a damp cloth or heat-proof mat. Spilt on floor, bench, etc.: put out all Bunsen burner flames. Wipe up small amounts with a cloth. Rinse well. For larger amounts open windows, cover with mineral absorbent (e.g. cat litter), scoop into a
Methanol	GHS02 (flammable F) GHS07 (moderate hazard MH) GHS07 (health hazard HH)	 bucket and add water. In the eye: flood eye with gently-running tap water for 10 min. Consult a doctor. Swallowed: do no more than wash out the mouth with water. Do not induce vomiting. Sips of water may help cool the throat and help keep the airway open. See a doctor. If inhaled: move person into fresh air. If not breathing, give artificial respiration. Consult a doctor. Clothing catches fire: smother flames on clothing or skin with fire blanket or other material. Cool any burnt skin with gently-running tap water for 10 min. Other methanol fires: allow fires in sinks, etc. to burn out. Fires at the top of test-

Substance	Hazard	First aid
		tubes, beakers, etc. should be smothered
		with a damp cloth or heat-proof mat.
		Spilt on floor, bench, etc.: put out all
		Bunsen burner flames. Wipe up small
		amounts with a cloth. Rinse well. For larger
		amounts open windows, cover with mineral
		absorbent (e.g. cat litter), scoop into a
		bucket and add water.
		Spilt on the skin or clothing: remove
		contaminated clothing. If more than a test-
		tube amount was involved, wash the
		affected area and clothing with plenty of
		water.
Ethanol	^	In the eve: flood the eve with gently-
		running tap water for 10 min. Consult a
		doctor
		Swallowed: do no more than wash out the
		mouth with water. Do not induce vomiting.
	GHS02 (flammable F)	Sips of water may help cool the throat and
		help keep the airway open. Consult a
		doctor. Note: The person may show signs
	•	of drunkenness.
		Spilt on the skin or clothing: remove
	GHS07 (moderate hazard MH)	contaminated clothing and rinse it. Wash
		the affected area and clothing with plenty of
		water.
		Clothing catches fire: Smother flames on
		clothing or the skin with a fire blanket or
	CUSOS (boolth borord UU)	other material. Cool any burnt skin with
	GI ISOS (nealth hazard HH)	gently-running tap water for 10 min.
		Other ethanol fires: Allow fires in sinks,
		etc. to burn out. Fires at the top of test-
		tubes, beakers, etc. should be smothered
		with a damp cloth or heat-proof mat.
		Spilt on the floor, bench, etc.: extinguish
		all Bunsen burner flames. Wipe up small
		amounts with a cloth and rinse it well. For
		larger amounts, open all windows, cover
		with mineral absorbent (e.g. cat litter),
		scoop into a bucket and add water.
1-Bromobutane	\wedge	In the eye: immediately flush the eyes with
		plenty of water for at least 15 min,
	<u><u> </u></u>	occasionally lifting the upper and lower
		eyelids. Consult a doctor.
	GHS02 (flammable F)	Swallowed: do not induce vomiting.
		Consult a doctor.
		In malea: remove from exposure and
		move to tresh air immediately. If not
		breathing, give artificial respiration. If

Substance	Hazard	First aid
	GHS08 (health hazard HH)	breathing is difficult, give oxygen. Consult a
		doctor.
		Spilt on skin or clothing: immediately
		flush skin with plenty of water for at least 15
		min while removing contaminated clothing
		and shoes. Consult a doctor.
1-lodobutane		In the eye: Immediately flush the eyes with
		occasionally lifting the upper and lower
		evelids. Consult a doctor
		Swallowed: do not induce vomiting
	GHS02 (flammable F)	Consult a doctor.
		If inhaled: remove from exposure and
		move to fresh air immediately. If not
		breathing, give artificial respiration. If
	×	breathing is difficult, give oxygen. Consult a
	GHS08 (health hazard HH)	doctor.
		Spilt on skin or clothing: immediately
		flush skin with plenty of water for at least 15
		and choos. Consult a doctor
Propan 1 ol	^	In the over flood the even with confly
Fiopan-1-01		running tap water for 10 min. See a doctor
		Swallowed: do no more than wash out the
		mouth with water. Do not induce vomiting.
		Sips of water may help cool the throat and
	GHS02 (hanimable F)	help keep the airway open. See a doctor.
		Vapour breathed in: move person into
		fresh air. Keep them warm. See a doctor if
		breathing is difficult.
	GHS07 (moderate bazard MH)	Clothing catches fire: smother flames on
	Grisor (moderate nazard Will)	other material. Cool any burnt skin with
		aently-running ten water for 10 min
		Other fires: allow fires in sinks, etc. to bur
		out. Fires at the top of test-tubes, beakers,
		etc. should be smothered with a damp cloth
		or heat-resistant mat.
		Spilt on the skin or clothing: remove
		contaminated clothing. If more than a test-
		tube amount was involved, wash the
		affected area and clothing with plenty of
		Water.
		Split on the noor, bench etc.: put out all Bunsen humer flames. Wine up small
		amounts with a cloth and rinse it well
		For larger amounts, open all windows
		cover with mineral absorbent (e.g. cat
		litter), scoop into a bucket and add water.
2-Methylpropan-2-ol		In the eye: flood the eye with gently-
		running tap water for 10 min. See a doctor.
	<u>E3</u>	Swallowed: do no more than wash out the
		mouth with water. Do not induce vomiting.

Substance	Hazard	First aid
	GHS02 (flammable F)	Sips of water may help cool the throat and
	\wedge	help keep the airway open. See a doctor.
		Vapour breathed in: move person into
		fresh air. Keep them warm. See a doctor if
		breathing is difficult.
	GHS07 (moderate hazard MH)	Clothing catches fire: smother flames on
		clothing or the skin with a fire blanket or
		other material. Cool any burnt skin with
		gently-running tap water for 10 min.
		Other fires: Allow fires in sinks, etc. to burn
		out. Fires at the top of test-tubes, beakers,
		etc. should be smothered with a damp cloth
		or neat-resistant mat.
		contaminated clothing. If more than a test
		tube amount was involved wash the
		affected area and clothing with plenty of
		water
		Spilt on the floor, bench etc.; put out all
		Bunsen burner flames. Wipe up small
		amounts with a cloth and rinse it well.
		For larger amounts, open all windows,
		cover with mineral absorbent (e.g. cat
		litter), scoop into a bucket and add water.
Bromine water		In the eye: flood the eye with gently-
[0.005 M]		running tap water for 10 min. See a doctor.
	•	Swallowed: do no more than wash out the
		mouth with water. Do not induce vomiting.
	GHS07 (moderate hazard MH)	Sips of water may help cool the throat and belo keep the sinuary energy see a dester
		Vapour breathed in: move the person to
		fresh air. Call a doctor if breathing is even
		slightly affected.
		Spilt on the skin or clothing: for liquid
		bromine or the moderately-concentrated
		solution, immerse in sodium thiosulfate
		solution (20%, 1 mol dm ⁻³). Remove
		contaminated clothing, soak it and drench
		the skin with plenty of water. See a doctor.
		Spilt on the floor, bench, etc.: for spills of
		all but a few drops of liquid bromine, open
		windows and evacuate the laboratory. For
		solution (20% 1 mol dm^{-3}) and loave for 1
		h Mon un and rinse with plenty of water
Sodium hydroxide	^	In the eve: flood the eve with cently-
solution	Pa	running tap water for at least 20 min. See a
$[1 \text{ mol dm}^{-3}]$		doctor. If a visit to hospital is necessary.
		continue washing the eye during the
	\mathbf{C} HS05 (corrective \mathbf{C})	journey in an ambulance.
		Swallowed: do no more than wash out the
		mouth with water. Do not induce vomiting.

Substance	Hazard	First aid
		Sips of water may help cool the throat and
		help keep the airway open. See a doctor.
		Spilt on the skin or clothing: remove
		contaminated clothing. Drench the skin with
		plenty of water. If a large area is affected or
		blistering occurs, see a doctor.
		Spilt on the floor, bench, etc.: wipe up
		small amounts with a damp cloth and rinse
		It well. For larger amounts, and especially
		for (moderately) concentrated solutions,
		cover with mineral absorbent (e.g. cat litter)
		and scoop into a bucket. Neutralise with
loding colution	^	In the eye: flood the eye with confly
$[0.5 \text{ mol dm}^{-3}]$ in		running tap water for 10 min. See a doctor
potassium iodide		Swallowed: do no more than wash out the
solution [0.2 mol	•	mouth with water. Do not induce vomiting
dm^{-3}	×	Sips of water may help cool the throat and
J	GHS07 (moderate hazard MH)	help keep the airway open. See a doctor.
		Vapour breathed in: move the person to
	¥73	fresh air. Call a doctor if breathing is even
		slightly affected.
		Spilt on the skin or clothing: brush off
	GHS09 (hazardous to the aquatic	solid iodine and immerse in sodium
	environment N)	thiosulfate solution (20%, 1 M). Remove
		contaminated clothing, soak it and drench
		the skin with plenty of water. See a doctor if
		a large area is affected or blistering occurs.
		Spilt on the floor, bench, etc.: scoop up
		any solid iodine, add sodium thiosulfate
		solution (20%, 1 M) to the remaining
		spill and leave for 1 n. Mop up and rinse
Silver nitrate solution		In the eve: flood the eve with cently-
$[0.1 \text{ mol dm}^{-3}]$	BG	running tap water for at least 10 min. See a
		doctor
		Swallowed: do no more than wash out the
		mouth with water. Do not induce vomiting.
	GHS05 (corrosive C)	Sips of water may help cool the throat and
	NV	help keep the airway open. See a doctor.
		Spilt on the skin or clothing: remove
		contaminated clothing and rinse it. Wash off
	\sim	the skin with plenty of water. If the silver
	GHS09 (hazardous to the aquatic	nitrate produces more than small burns,
	environment N)	see a doctor.
		Spilt on the floor, bench, etc.: wear eye
		protection and gloves. Scoop up the solid.
		Kinse the area with water and wipe up,
		rinsing repeatedly. Kinse the mop or cloth
		thoroughly.

Substance	Hazard	First aid
Acidified potassium		In the eye: flood the eye with gently-
dichromate(VI)		running tap water for at least 10 min. See a
solution		doctor.
[0.2 mol dm ^{-s}]		Swallowed: do no more than wash out the
	GHS03 (oxidising O)	Sinc of water may help cool the threat and
	\wedge	beln keen the sinvay open. See a doctor
		Spilt on the skin or clothing: remove
		contaminated clothing and rinse it until no
	V	colour remains. Wash off the skin with
	GHS08 (health hazard HH)	plenty of water. If skin contamination is
	\wedge	more than small, see a doctor.
	¥	Spilt on the floor, bench, etc.: wear eye
		protection and gloves. Scoop up the solid.
		Rinse the area with water and wipe up,
	GHS09 (hazardous to the aquatic	rinsing repeatedly until no colour remains.
	environment N)	Rinse the mop or cloth thoroughly.

Teacher method

This is your version of the method for this experiment that accompanies the *Teacher walkthrough* video.

Do not share this method with learners. Give them Worksheet C or Worksheet D.

Before you begin

Plan how you will group your learners during the experiment session.

Think about:

- if there is enough equipment and space for the learners to work in pairs (if not, increase the group size accordingly)
- the amount of equipment/chemicals required. Each pair/group does not require exclusive access to the reagents in this experiment. Arrange the samples and reagents so that several groups can gain easy access.
- Groups should not all start working with pair 1. Organise it such that learners start working on different pairs of chemicals to identify.
- If there are no fume cupboards, explain that learners should set up experiments 1 and 3 in wellventilated areas of the lab.

Experiment

In this experiment, a variety of chemicals are to be used by the learners. Please refer to the safety information above about each chemical.

Water-baths will need to be ready at approximately 50 °C for pair 3 and at 80 °C for pair 4. If you do not have water-baths, use an electric kettle to boil water and the learners can adjust the temperature of their own water-baths, made using glass beakers.

Given that many of the chemicals are flammable, ensure that there are no matches or Bunsen lighters left within reach of the learners.

Walk around the learners during the experiment in case they encounter any difficulties.

Steps

 Check that learners have access to all of the equipment and chemicals they need for this experiment.

2. Pair 1: cyclohexane (1A) and cyclohexene (1B) – the test for unsaturation

Notes

Ensure that they do experiments 1 and 3 in the fume cupboard or a well-ventilated area.

Make sure gloves are used in this experiment. Make sure that learners do not take the cyclohexene out of the fume cupboard or leave the top off. It has a very powerful odour.

- Approximately 0.5 cm³ of each of samples 1A and 1B are placed in separate test-tubes
- 4. Add the bromine water to each tube and agitate.
- 5. Pair 2: ethanol (2A) and methanol (2B) the iodoform test.
- 6. Add 10 drops of each sample into clean test-tubes.
- 7. Then add 25 drops of iodine solution to each tube.
- 8. Finally, 10 drops of sodium hydroxide solution are added to each tube. Swirl gently and wait for 2 minutes.
- 9. Pair 3: 1-iodobutane (3A) and 1bromobutane (3B) – test for halide ions
- 10. To two clean test-tubes, add 0.5 cm³ of 0.1 mol dm⁻³ silver nitrate (95% ethanol solution).
- 11. Add four drops of sample 3A and 3B.
- 12. Loosely place a bung in the test-tubes and place in the water bath at 50 °C.

It is sufficient to use a plastic pipette for this. Ensure learners replace the bottle tops and leave the pipettes in the fume cupboard so the residual chemicals evaporate.

If no reaction occurs in the tube containing the alkene (1B) it is probably because the learners did not agitate the tube. You may need to advise learners how to agitate the tube from side-to-side gently, rather than needing to find a bung and shake violently.

Sample 2A should produce a positive test. A yellow precipitate of tri-iodomethane (iodoform) should be produced. Learners may notice the characteristic 'medical' smell produced in the positive test which you can explain that is due to the presence of tri-iodomethane.

It may be worth discussing the analogous test used in inorganic chemistry with halides and silver nitrate. Learners would have encountered this at IGCSE.

Prepare a solution of 0.1 mol dm^{-3} AgNO₃ in 95% ethanol for learners to use. A water-bath will need to be ready at approx. 50 °C.

Despite this explicit instruction on their worksheets, be sure to check that none of the bungs have been placed tightly in the mouth of the test-tubes.

- 13. Allow time for the precipitates to develop.
- 14. Dispose of the contents of the testtubes.

15. Pair 4: propan-1-ol (4A) and 2methylpropan-2-ol (4B) – oxidation

- 16. Place the samples (approx. 0.5 cm³) in clean test-tubes.
- 17. Add approx. 1 cm³ of the acidified potassium dichromate(VI) solution to each tube.
- 18. Place both samples in the hot water bath at 80 °C and leave for about 5 min.
- 19. Dispose of the contents of the testtubes.

Sample 4A should turn green fairly quickly. If it has not after 5 min, advise learners to leave in the bath a little longer. Sample 4B is a tertiary alcohol, so no oxidation should occur and thus the orange colour of the unchanged potassium dichromate(VI) solution should remain.

Again, even though the amounts used are very small, ensure that learners dispose of the contents of the test-tubes responsibly, by placing in the heavy metal recovery bottle.

Clean-up

In addition to having placed the potassium dichromate(VI) and silver residues in a separate collection bottle, learners should:

- clean all glassware
- tidy up their work space
- ensure any spillages have been mopped up
- return all equipment and any unused chemicals to you.

For sample 3A, the yellow precipitate should develop quickly. It may take more time for the cream-coloured precipitate to develop with sample 3B.

Even though the amounts used are very small, ensure that learners dispose of the contents of the test-tubes responsibly, by placing in the heavy metal recovery bottle.

Debriefing lesson: Use of analytical techniques

Resources	 Worksheets E, F, G and H Suggested answers for Worksheet E 	
Learning objectives	 By the end of the lesson: <i>all</i> learners should be able to explain some differences between the analytical data for the pairs of molecules <i>most</i> learners should be able to explain many of the differences between the analytical data for the pairs of molecules <i>some</i> learners will be able to comprehensively show the differences between the analytical data for the pairs of molecules. 	
Timings	Activity	
S	Starter/Introduction	

10 min	Starter/Introduction 'In the qualitative analysis of inorganic compounds, it is often possible to determine the exact formula of a test substance. However, regarding organic substances, it is often not possible to do this.'		
	Ask learners, in pairs, to discuss this statement for a couple of minutes and feedback thoughts to the class.		
	Next, in their lab books, ask learners to make a brief list of methods that are commonly used nowadays to determine the exact structures of organic molecules.		
	[It is hoped that learners will be prompted to suggest and then briefly discuss a number of analytical techniques including mass spectrometry, carbon-13 and ¹ H (proton) NMR, and infra-red spectroscopy.		
	Main lesson		
40 min	Give <u>Worksheet E</u> , <u>Worksheet F</u> , <u>Worksheet G</u> and <u>Worksheet H</u> to pairs of learners. With the exception of a slight change to the third pair of molecules, these are the same as		
	those used in the previous main practical lesson.		
	Learners should choose which of the following analytical techniques would be the most helpful in discerning between the pairs of molecules:		
	mass spectrometry		
	• infra-red		
	• carbon-13 NMR		
	• " ¬ (proton) NMR spectroscopy.		
	With guidance, learners should be able to apply a number of the syllabus learning points to this exercise (22.2–22.5).		
	Plenary		
10 min	Learners compare their suggested solutions to those given in the suggested answers.		

Worksheets and answers

	Worksheet	Answers
For use in <i>Briefing lesson</i> :		
A: Alkenes, alcohols and halogenoalkanes	22	31
For use in <i>Planning lesson</i> :		
B: Experiment design	23	32
For use in <i>Lab lesson</i> :		
C: Experiment guidance	24	-
D: Further experiment guidance	25	—
For use in <i>Debriefing lesson</i> :		
E: Use of analytical techniques	27	35
F: ¹ H NMR chemical shifts	28	-
G: Carbon-13 (¹³ C) NMR chemical shifts	29	—
H: IR absorption frequencies	30	_

Worksheet A: Alkenes, alcohols and halogenoalkanes

Here are six organic compounds.

A: CH ₃ CH ₂ CH ₂ OH	D: CH ₃ CH=CHCH ₃
B: CH ₃ CH ₂ C(OH)(CH ₃)CH ₃	E: BrCH ₂ CH ₂ CH ₃
C: CH ₃ (CH ₂) ₃ CH ₃	F: CH ₃ CH(OH)CH ₂ CH ₃

- 1. In your lab book:
 - a. Draw each of the structures A-F
 - b. Identify the functional group
 - c. Write the name of the compound

You are strongly encouraged to build models of each of the structures before you draw them.

- 2. There are **three** different classes of alcohols. Label the alcohols in your list with the correct class.
- 3. These three different classes can also be used for halogenoalkanes. Draw structures of each class of halogenoalkanes and name the compounds. You may choose any halogen atom.
- 4. One of the qualitative tests for cations and anions could be adapted to determine the functional group of which structure?
- 5. (a) What kind of reactions do alkenes undergo?
 - (b) Name **three** simple molecules that would react with ethene.

Worksheet B: Experiment design

Use this worksheet to inform what you write in your lab book.

You have been provided with the following four pairs of colourless organic liquids.

- Pair 1: cyclohexane and cyclohexene
- Pair 2: methanol and ethanol
- **Pair 3:** 1-bromobutane and 1-iodobutane
- Pair 4: propan-1-ol and 2-methylpropan-2-ol

The compounds within each pair will be labelled as either **A** or **B**.

Your task is to choose a suitable qualitative test to perform on each pair of liquids.

- 1. Draw the displayed formulae for each compound.
- 2. For each pair:
 - a. identify the functional group
 - b. identify the test required
 - c. explain why the test will give the result expected
 - d. describe how to carry out the test, including equipment and reagents
 - e. describe any safety and disposal precautions required.

Example: propanone and propanal

Functional group(s) present

ketone = RCOR'

aldehyde = RCOH

(both contain a carbonyl group C=O)

Name of the test required

Tollens' silver mirror test.

Explanation of why test is required

This test gives a positive result with aldehydes but not with ketones.

Description of the test

When an aldehyde is warmed with an ammoniacal solution of silver ions, a silver mirror is

formed on the inside of the test tube.

Safety and disposal:

Flush contents down the sink with plenty of water.

Worksheet C: Experiment guidance

Use this sheet as guidance when writing your results in your lab book.

You have been supplied with four pairs of colourless organic liquids. You are required to perform appropriate tests on each compound and from your results decide on the identity of each sample.

For each pair, you should record in your lab books the following information:

- the reagents required
- the equipment required
- safety information
- your procedure and conditions
- your results (observations)
- your conclusions
- disposal methods.

Worksheet D: Further experiment guidance

Pair 1: cyclohexane and cyclohexene			
Reagents	Bromine water (0.005 mol dm ⁻³ solution).		
Equipment	Two test-tubes, plastic pipettes.		
Safety	Gloves should be worn and this test should be performed in a fume		
	cupboard. Cyclohexane and cyclohexene are both highly		
	flammable and irritating to the eyes, skin and lungs.		
Procedure and	Place approximately 0.5 cm ³ of each of the samples 1A and 1B into		
conditions	separate clean test-tubes. Next add 2–3 drops of bromine water to		
	each test-tube and agitate gently.		
Disposal	Allow the small amount of volatile compounds to evaporate in the		
	back of the fume cupboard. Your teacher will remove these tubes		
	later.		

Pair 2: methanol and ethanol		
Reagents	nts Methanol, absolute ethanol, sodium hydroxide (1 mol dm ⁻³), iodine	
	solution (0.5 mol dm ⁻³) in potassium iodide solution (0.2 mol dm ⁻³).	
Equipment	Test-tubes, plastic pipettes.	
Safety	Methanol and ethanol are highly flammable. Additionally, methanol	
	is highly toxic. Sodium hydroxide solution is corrosive.	
Procedure and	Add 0.5 cm ³ of sample 2A to a clean test-tube. Next add 1 cm ³ of	
conditions the iodine solution followed by 0.5 cm ³ of the sodium hydroxi		
	solution. Gently swirl the test-tube. Wait for 2 min and observe any	
	changes. Repeat this procedure for sample 2B .	
Disposal	The small quantities used in the experiment can safely be flushed	
	down the sink with plenty of water.	

Pair 3: 1-bromobutane and 1-iodobutane			
Reagents	1-Bromobutane, 1-iodobutane, ethanol, silver nitrate solution		
	(0.1 mol dm ⁻³), water, sodium hydroxide.		
Equipment	Test-tubes with bungs (placed loosely), a hot water-bath, a glass		
	beaker, plastic pipettes.		
Safety	Both 1-bromobutane and 1-iodobutane are considered hazardous		
	and must be used in a fume cupboard. Gloves should be used		
	when handling. Ethanol is flammable. Silver nitrate at this low		
	concentration is considered relatively safe.		
Procedure and	Set up a water-bath at around 50 °C. To a clean test-tube add		
conditions	0.5 cm^3 of 0.1 mol dm^{-3} silver nitrate solution in 95% ethanol. Then		
	add four drops of sample 3A . Loosely place a bung in the test tube		
	and place in the water-bath. After 5 min note the colour of the		
	precipitate formed. Repeat this procedure using sample 3B .		
Disposal	Place all silver containing residues in a heavy metals or silver		
	recovery bottle.		

Worksheet D: Further experiment guidance, continued

Pair 4: propan-1-ol and 2-methylpropan-2-ol			
Reagents	nts Propan-1-ol and 2-methylpropan-2-ol, acidified potassium		
	dichromate solution (0.2 mol dm ^{-3}).		
Equipment	Test-tubes, hot water-bath set at 80 °C.		
Safety	Potassium dichromate(VI) is highly toxic and oxidising and is		
	dangerous for the environment.		
Procedure and	Place sample 4A (0.5 cm ³) in a clean test-tube. Add the acidified		
conditions	potassium dichromate(VI) solution (1 cm ³). Place the tube in a hot		
	water bath at 80 °C and wait for 5 min. Repeat this procedure with		
	sample 4B .		
Disposal	Do not throw this waste down the sink. Collect it in a bottle for		
	recovery/disposal.		

Worksheet E: Use of analytical techniques

Mass spectrometry, infra-red spectroscopy, carbon-13 NMR and ¹H (proton) NMR spectroscopy are all commonly used techniques to analyse organic molecules.

It is common to use several of these together, in order to confirm a particular structure.

Consider the following pairs of organic compounds:

- cyclohexane and cyclohexene
- methanol and ethanol
- 1-bromobutane and 1-chlorobutane
- propan-1-ol and 2-methylpropan-2-ol.

As in the previous practical exercise, imagine that these pairs of colourless liquids were unlabelled.

Your task is to show how a combination of analytical techniques could be used to discern between each of them.

You will need to use the supplied data sheets to help you answer these questions in your lab book.

Once again, it is strongly recommended that you draw the displayed formulae for each of these compounds or build models to help you.

Worksheet F: ¹H NMR chemical shifts

These chemical shift values (δ) are relative to TMS = 0

Type of proton	Environment of proton	Example structures	Chemical shift range (δ)
	alkane	-CH3, -CH2-, >CH-	0.9–1.7
	alkyl next to C=O	CH3–C=O, –CH2–C=O, >CH–C=O	2.2–3.0
	alkyl next to aromatic ring	CH ₃ –Ar, –CH ₂ –Ar, >CH–Ar	2.3–3.0
	alkyl next to electronegative atom	CH3–O, –CH2–O, –CH2–C <i>l</i> , >CH–Br	3.2–4.0
	attached to alkyne	≡C–H	1.8–3.1
C–H	attached to alkene	=CH ₂ , =CH–	4.5–6.0
	attached to aromatic ring	Ю-н	6.0–9.0
	aldehyde	R - C H	9.3–10.5
	alcohol	RO-H	0.5–6.0
O–H	phenol	Ю-он	4.5–7.0
(see note below)	carboxylic acid	$ \begin{array}{c} -CH_{3}, -CH_{2-}, >CH_{-} \\ CH_{3-}C=O, -CH_{2-}C=O, \\ >CH_{-}C=O \\ \hline CH_{3-}Ar, -CH_{2-}Ar, >CH_{-}Ar \\ RH_{-}C \\ \hline CH_{-}Br \\ \hline CH_{-}Br \\ \hline CH_{-}Br \\ \hline CH_{-}C \\ H \\ \hline RO_{-}H \\ \hline RO_{-}H \\ \hline RO_{-}OH \\ \hline RO_{-}OH \\ \hline R-C \\ O_{-}H \\ \hline R-NH_{-} \\ \hline CO \\ R-NH_{2} \\ \hline R-C \\ O_{-}H \\ \hline R-NH_{2} \\ \hline CH_{-}C \\ \hline O \\ R-C \\ O_{-}H \\ \hline R-NH_{2} \\ \hline CH_{-}C \\ \hline O \\ R-C \\ O_{-}H \\ \hline R-NH_{2} \\ \hline CH_{-}C \\ \hline O \\ R-C \\ O_{-}H \\ \hline R-NH_{2} \\ \hline CH_{-}C \\ \hline CH_$	9.0–13.0
	alkyl amine	R–NH–	1.0–5.0
	aryl amine	-NH ₂	3.0–6.0
alkyl amine R-NH- aryl amine \bigcirc -NH ₂ N-H (see note below) amide $R - C$ N-H \land -NH	R—С N—Н	5.0–12.0	

Note: δ values for O–H and N–H protons can vary depending on solvent and concentration.

Worksheet G: Carbon-13 (¹³C) NMR chemical shifts

These chemical shift values (δ) are relative to TMS = 0

Hybridisation of the carbon atom	Environment of carbon atom	Example structures	Chemical shift range (δ)
	alkyl	CH ₃ -, CH ₂ -, -CH<, >C<	0–50
	next to alkene/arene	$-\frac{1}{c} - c = c_{i} - \frac{1}{c} - c$	10–40
	next to carbonyl/carboxyl	$-\mathbf{C} - \mathbf{C} - \mathbf{C} \mathbf{C} \mathbf{R}, -\mathbf{C} - \mathbf{C} \mathbf{C} \mathbf{R}, \mathbf{R}$	25–50
sp ³	next to nitrogen	$-\mathbf{C} - \mathbf{NH}_{2}, -\mathbf{C} - \mathbf{NR}_{2}, -\mathbf{C} - \mathbf{NHCO}$	30–65
	next to chlorine (-– CH2-Br and –CH2-I are in the same range as alkyl)	$-\mathbf{c}_{\mathbf{l}}^{\mathbf{l}}$ $-\mathbf{c}_{l}$	30–60
	next to oxygen	- с -он, - с -о-со-	50–70
sp ²	alkene or arene	>C=C<, c	110–160
	carboxyl	R– C O ₂ H, R– C O ₂ R	160–185
	carbonyl	R– C HO, R– C O–R	190–220
sp	alkyne	R- C≡C -	65–85
зр	nitrile	R- C =N	100–125

Worksheet H: IR absorption frequencies

Here are some characteristic infra-red absorption frequencies for some selected bonds.

Bond	Functional groups containing the bond	Absorption range (in wavenumbers) / cm ⁻¹	Appearance of peak (<i>s</i> = <i>strong</i> , <i>w</i> = <i>weak</i>)
C–O	alcohols, ethers, esters	1040–1300	S
C=C	aromatic compounds, alkenes	1500–1680	w unless conjugated
C=O	amides	1640–1690	S
	ketones and aldehydes	1670–1740	S
	carboxylic acids	1680–1730	S
	esters	1710–1750	S
C≡C	alkynes	2150–2250	w unless conjugated
C≡N	nitriles	2200–2250	W
СЦ	alkanes, CH2–H	2850–2950	S
	alkenes/arenes, =C–H	3000–3100	W
N–H	amines, amides	3300–3500	W
O–H	carboxylic acids, RCO2–H	2500–3000	s and very broad
	H-bonded alcohol, RO–H	3200–3600	S
	free alcohol, RO–H	3580–3650	s and sharp

Worksheet A: Answers

- 2. A primary; B tertiary; F secondary
- 3. You may have chosen any halogen atom for this question. Example answers include:

- 4. The test for a halide ion could be adapted to determining the functional group in the halogenoalkanes, E. (Circled above in question 1.)
- (a) addition reactions(b) Some possibilities are: hydrogen, water, bromine and hydrogen bromide.

Worksheet B: Answers

2.

Pair 1: cyclohexane and cyclohexene

Functional group(s) present: None in the alkane and a C=C double bond in the alkene.

Name of the test required: Test for unsaturation using aqueous bromine water.

Explanation of why test is required: In the case of the unsaturated alkene, the bromine will

become decolourised. Decolourisation will not occur with the alkane.

Description of the test: 2-3 drops of bromine water is added to the test substance (0.5 cm³) and the test-tube gently agitated.

Safety and disposal: Allow the small amount of volatile compounds to evaporate in the back of the fume cupboard.

Worksheet B: Answers, continued

Pair 2: methanol and ethanol

Functional group(s) present: Both are alcohols containing the -OH group.

Name of the test required: The iod of orm test.

Explanation of why test is required: Ethanol will give a positive iodoform test, causing

iodoform (tri-iodomethane) to be formed as a yellow precipitate. Methanol will not give this result.

Description of the test: Add 10 drops of the test substance to a clean test-tube. Next, add

25 drops of the iodine solution followed by 10 drops of the sodium hydroxide solution.

Gently swirl the test-tube. Wait for 2 min and observe any changes.

Safety and disposal: The small quantities used in the experiment can safely be flushed down the sink with plenty of water.

Pair 3: 1-bromobutane and 1-iodobutane

Functional group(s) present: Both are primary halogenoalkanes containing a carbon – halogen bond.

Name of the test required: Test for halogenoalkanes.

Explanation of why test is required: Depending on the nature of the halogen, different colours of precipitates are formed.

Description of the test: To a clean test-tube add 0.5 cm³ of silver nitrate in 95% ethanol.

Then 4 drops of the halogenoalkane are added. After 5-10 min in a water-bath at 50 °C,

note the colour of the precipitate formed. 1 –Iodobutane will produce a yellow precipitate

(rapidly) whereas, the bromo analogue will (more slowly) produce a cream -coloured precipitate.

Safety and disposal: Place all silver containing residues in a heavy metals or silver recovery bottle.

Worksheet B: Answers, continued

Pair 4: propan-1-ol and 2-methylpropan-2-ol

Functional group(s) present: Both are alcohols containing the -OH group.

Name of the test required: Oxidation of primary (and secondary) alcohols using acidified potassium dichromate(VI) solution.

Explanation of why test is required: 2 -Methylpropan-2-ol is a tertiary alcohol and will not undergo oxidation under normal conditions. Propan -1 -ol is a primary alcohol and will readily undergo oxidation to give first the aldehyde and finally the acid. A characteristic change from orange to green will be observed.

Description of the test: Pipette the test alcohol (0.5 cm^3) into a clean test-tube. Add

potassium dichromate(VI) solution (1 cm³). Place the tube in a hot water-bath at 80 °C and wait for 5 min.

Safety and disposal: Since chromium is a heavy metal, put the residues in a bottle for recovery/disposal.

Worksheet E: Answers

FOR ALL OF THESE ANSWERS, PLEASE REFER TO THE COPIES OF THE ACTUAL SPECTRA OF THESE COMPOUNDS. IT IS IMPORTANT THAT LEARNERS REALISE THAT NOT ALL OF THE PEAKS CAN BE EASILY IDENTIFIED AT THIS LEVEL.

Pair 1: cyclohexane and cyclohexene Infra-red

In cyclohexene there is a characteristic C=C double bond peak at 1500-1680 cm⁻¹.

Mass spectrometry

This would be useful to determine the relative formula mass of each compound by finding the mass ion peak for each. Cyclohexane gives a mass ion peak of m/z 84 whereas cyclohexene will give a mass ion peak at m/z 82.

Proton NMR

Cyclohexane will produce a singlet (at about δ 1.5 ppm) due to the twelve equivalent protons in its structure.

Cyclohexene, however, will produce a spectrum with three peaks due to the three different environments of the protons within the molecule. If the area under the peaks was inspected (by integration), the ratio of the number of protons under each peak (reading left to right below) would be: 2:4:4

C-13 NMR

Cyclohexane will again produce a singlet peak since all six carbon atoms are in the same environment.

In cyclohexene, there are three different environments for the carbon atoms giving three peaks in the C-13 spectrum. The peak at 127 ppm corresponds to the two carbon atoms of the double bond. There are two peaks quite close together at 22 ppm and 25 ppm. These are due to the other four carbon atoms and the carbons responsible for the peak at 22 ppm are those furthest from the influence of the double bond.

Worksheet E: Answers, continued

Pair 2: methanol and ethanol

Infra-red

This technique will not be useful here as both molecules contain the same functional group (R-OH).

Mass spectrometry

This would be useful to determine the relative formula mass of each compound by finding the mass ion peak for each.

Methanol has a mass ion peak for CH_3OH^+ . Analysis of the fragmentation patterns for methanol reveals that the large peak at m/z 31 is due to methanol losing one proton to give the CH_3O^+ ion. Loss of oxygen atom leaves CH_3^+ ion at m/z15.

For ethanol the m/z peak is at 46. Loss of one proton produces the $CH_3CH_2O^+$ peak at m/z 45.

Note: More advanced learners may identify the CH₂OH⁺ peak at m/z 31 and the CH₃⁺ peak at m/z 15.

Proton NMR

Methanol has a singlet at about 3.4 ppm. This corresponds to the three equivalent H atoms of the methyl group. The singlet at approx. 4.0 ppm is due to the de-shielded proton of the –OH group.

Ethanol shows two alkyl peaks. The $-CH_3$ protons are at 1.2 ppm. Since they are adjacent to a CH_2 group, they produce a triplet splitting pattern. The $-CH_2$ – protons are coupled to the $-CH_3$ protons and produce a quartet splitting pattern.

Note: Depending on the ability level of your class you may wish to discuss the splitting pattern and position of the –OH group proton. You may wish to discuss point 22.5e of the syllabus here (identifying OH protons by D₂O exchange).

<u>C-13 NMR</u>

Methanol produces a singlet at about 50 ppm whereas ethanol gives rise to two peaks due to the two different environments of the carbon atoms. The $-CH_2$ – group is attached to an oxygen atom that causes it to be more downfield at approx. 58 ppm. The $-CH_3$ is correspondingly higher field at about 18 ppm.

Worksheet E: Answers, continued

Pair 3: 1-bromobutane and 1-chlorobutane

Infra-red

There would be no significant difference between the two spectra.

Mass spectrometry

This would be useful to determine the relative formula mass of each compound by finding the mass ion peak for each. Learners should be familiar with the M+2 peak (syllabus ref. 22.3c).

Proton NMR

Not very helpful in discerning between the two analogues, but useful in confirming that the compounds are indeed both primary halogenobutanes in that they both contain:

- A triplet at about 3.5 ppm. This is for the -CH₂ next to the halogen atom (C1). The influence of the halogen atom is strongest at C1, thus causing these protons to appear the most downfield.
- A quintet at about 1.7 ppm which is the $-CH_2$ -adjacent to that carrying the halogen atom (C2).
- The hydrogen atoms attached to C3. This appears as a multiplet (sextet) at about 1.3 ppm.
- The terminal carbon, C4, at about 0.8 ppm is a triplet (coupled to two protons).

<u>C-13 NMR</u>

The chemical shifts of C2, C3 and C4 are in very similar positions in both molecules. However, since chlorine is much more electronegative than bromine, the position of C1 is significantly different. Thus, in 1-chlorobutane C1 is at approx. 45 ppm and in 1bromobutane it is at approx. 35 ppm.

Worksheet E: Answers, continued

Pair 4: Propan-1-ol and 2-methylpropan-2-ol

Infra-red

This technique would not be useful since both molecules contain the same functional group. <u>Mass spectrometry</u>

For propan-1-ol, as expected, there is a molecular ion at m/z60. If learners have not considered the molecule further, it would be worth discussing the base ion at m/z31 which corresponds to the CH₂OH⁺ species.

For 2-methylpropan-2-ol there is a molecular ion peak at m/z 74 as predicted. However, for reasons beyond the scope of this course, it is very small. There is also a strong peak at m/z 31 which corresponds to the CH₂OH+ ion.

Proton NMR

For propan -1 -ol, we have the following peaks:

- The $-CH_2$ methylene protons (on C1) are most influenced by the -OH group and appear at approx. O.9 ppm. They are coupled to an adjacent methylene and thus are seen as a triplet.
- The two protons attached to C2, are coupled to a terminal methyl group and also a $-CH_2$ -group. This gives rise to a multiplet at 1.5 ppm.
- The peak at 3.5 ppm, is a triplet, representing the terminal methyl group, coupled to a -CH₂ - group.
- The –OH has given rise to a singlet in this spectrum but depending on the conditions can vary in its position and multiplicity.

For 2-methylpropan-2-ol, since all of the protons attached to the central carbon atom in the molecule are equivalent, the spectrum is a single peak at about 1.2 ppm, which if integrated would show that it represents nine protons.

<u>C-13 NMR</u>

For propan -1 -ol, we have the following peaks:

- The $-CH_2$ adjacent to the -OH group is most de -shielded and is at about 63 ppm
- The terminal carbon has a peak at approx. 10 ppm.
- The mid-chain carbon atom gives rise to a peak at about 25 ppm.

In 2-methylpropan -2-ol, three carbon atoms are in the same environment giving rise to a large peak at approx. 30 ppm. The peak for the remaining carbon atom, attached to the -OH group is considerably downfield at approx. 70 ppm.

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554 f: +44 1223 553558 e: info@cambridgeinternational.org www.cambridgeinternational.org