

Interactive Example Candidate Responses Paper 3 (May / June 2016), Question 1

Cambridge IGCSE[™] Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Fig. 1.1

(a) Compare the motion of the cyclist and the runner during the first 6 seconds. Explain your answer.

Le	syclist	P. CK	s 40	Speed	leavior	
He	Ymnas.	ما	Same	Speed w	ile It	_
				······		
3.00%				0	dst.	[3

(b) Describe the motion of the cyclist between time $t = 6.0 \, \mathrm{s}$ and time $t = 12.0 \, \mathrm{s}$.

(c) Calculate the total distance travelled by the cyclist between t = 0 and t = 12.0s.

Select page

1(c)

1(d)

V		
Your Mark	Q1	Mark scheme
1(a)	(a)	cyclist accelerating OR moving faster OR cyclist has higher speed both (cyclist and runner) accelerating cyclists gradient steeper OR acceleration values calculated
1(b)	(b)	Constant OR steady OR uniform (speed or motion)
	(c)	indication of an area calculated $6 \times 9 = 54(m)$ $1/2 (6 \times 9) = 27(m)$

(d)	horizontal line finishes at 10 seconds straight line to time zero in two seconds

81(m)

After the first 6.0 seconds, the runner moves at constant speed for 4.0 slows down uniformly and stops in a further 2.0 seconds.	seconds. He th
On Fig. 1.1, complete the graph for the runner's motion.	
	[Total:
•	
•	
*	
,	
	After the first 6.0 seconds, the runner moves at constant speed for 4.0 slows down uniformly and stops in a further 2.0 seconds. On Fig. 1.1, complete the graph for the runner's motion.

Select page

Your
Mark

1(a)

1(b)

1(c)

Q1	Mark scheme
(a)	cyclist accelerating OR moving faster OR cyclist has higher speed both (cyclist and runner) accelerating cyclists gradient steeper OR acceleration values calculated
(b)	Constant OR steady OR uniform (speed or motion)
(c)	indication of an area calculated $6 \times 9 = 54(m)$ ½ $(6 \times 9) = 27(m)$ 81(m)
(d)	horizontal line finishes at 10 seconds straight line to time zero in two seconds

1(d)

1 Fig. 1.1 shows part of the speed-time graphs for a cyclist and for a runner.

Fig. 1.1

(a) Compare the motion of the cyclist and the runner during the first 6 seconds. Explain your answer.

During the first 6 second the ayalist was having more speed than the sunner and that is lecause a cyclist is machine and the sunner is human so their is a hug difference between them [3]

(b) Describe the motion of the cyclist between time t = 6.0 s and time t = 12.0 s.

9 m/s and it moves inconstant speed [1]

(c) Calculate the total distance travelled by the cyclist between t = 0 and t = 12.0 s.

Total distance = Total speed X Total time.
= 9 × 12 = 10 8m

Select page

Your Mark

1(a)

1(b)

1(c)

_		

(d)

Q1	Mark scheme
(a)	cyclist accelerating OR moving faster OR cyclist has higher speed both (cyclist and runner) accelerating cyclists gradient steeper OR acceleration values calculated
(b)	Constant OR steady OR uniform (speed or motion)
(c)	indication of an area calculated $6 \times 9 = 54(m)$ ½ $(6 \times 9) = 27(m)$ 81(m)

horizontal line finishes at 10 seconds

straight line to time zero in two seconds

	l
4 / 11	l
7/41	l
nu.	l
- (/	l
	l

(d)	After the first 6.0 seconds, the runner moves at constant speed for 4.0 seconds. He then slows down uniformly and stops in a further 2.0 seconds.	ı
	On Fig. 1.1, complete the graph for the runner's motion. (decelerates > [2]	ı
	[Total: 10]	ı
		ı
		ı

Select page

Your	
Mark	

1(a)

1(b)

1(c)

	Q1	Mark scheme
	(a)	cyclist accelerating OR moving faster OR cyclist has higher speed both (cyclist and runner) accelerating cyclists gradient steeper OR acceleration values calculated
	(b)	Constant OR steady OR uniform (speed or motion)
	(c)	indication of an area calculated $6 \times 9 = 54(m)$ $\frac{1}{2}(6 \times 9) = 27(m)$ $\frac{81(m)}{2}$
	(d)	horizontal line finishes at 10 seconds straight line to time zero in two seconds

1(d)

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 3 (May / June 2016), Question 2

Cambridge IGCSE[™] Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Fig. 2.1 shows the forces acting on the boy at one point in his fall.

Fig. 2.1

(a) The 540 N force is caused by gravitational attraction.

State the cause of the 100N force.

air resistance [1].

(b) Calculate the mass of the boy.

M =

mass of boy = kg [2]

(c) Calculate the resultant force on the boy. State its direction.

100:10

[Total: 5]

Select page

Your Mark

2(a)

Q2	Mark scheme
(a)	air resistance
(b)	$W = m \times g$ in any form 54 (kg)
(c)	(540 – 100) = 440 (N) B1 downwards

2(c)

2 A boy steps off a high board into a swimming pool.

Fig. 2.1 shows the forces acting on the boy at one point in his fall.

Fig. 2.1

(a) The 540 N force is caused by gravitational attraction.

State the cause of the 100 N force.

¿ Energy force [1]

(b) Calculate the mass of the boy.

mass of boy = $\frac{44}{4}$ kg [2]

(c) Calculate the resultant force on the boy. State its direction.

resultant force =
$$\frac{640}{0000}$$
 N direction = $\frac{0000}{0000}$

[Total: 5]

Select page

Your Mark

2(a)

(a)	air resistance
(b)	$W = m \times g$ in any form 54 (kg)

Mark scheme

(c)	(540 – 100) = 440 (N) B1 downwards

2(c)

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 3 (May / June 2016), Question 3

Cambridge IGCSE[™] Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Fig. 3.1

The plate-warmer contains two small candle heaters. Plates of food are placed on top of the warming-tray.

(a)	(i)	State the name of a process by which the thermal energy from the candles passes to the warming-tray.
		warning-nay.

radiation	•	
(0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1		 1
		•

(11)	State the name	of the process b	y which thermal	energy moves	s through the	warming-tray
	9.					

COUNTERTION	[1	1
	ι,	ı

(b) The outside of the plate-warmer is shiny.

Suggest how this helps the plate-warmer to stay hot.

It con	4-048	beat-	and y	revents	hear	trem [1
heima						

(c) The handles of the plate-warmer are made from metal.

Identify a problem with this, and suggest how the problem could be solved.

problem:	mera	conducts	heat h	nence	4h6	handles	will be	400 DO-7
		ne rougi						
action:	4000	2000	· Out	√ . Ot	- he	×4		

[Total: 5]

Select page

	You
	Ma
3(a)(i)	

(a)(i)	convection C

(a)	(ii)		
, ,	,		

2/1-1	
3(b)	

Q 3	Mark scheme
(a)(i)	convection OR radiation
(a)(ii)	conduction
(b)	poor emitter OR poor radiator (of thermal energy)
(c)	(handles) become hot use an insulator

Fig. 3.1

The plate-warmer contains two small candle heaters. Plates of food are placed on top of the warming-tray.

	_	
(a)	(i)	State the name of a process by which the thermal energy from the candles passes to the warming-tray.
		thermal energy [1]
	(ii)	State the flame of the process by which the mai energy moves though the warming-tray.
		it moves the smoke up to the fray [1]
(b)	The	outside of the plate-warmer is shiny.
	Sug	gest how this helps the plate-warmer to stay hot.
		get reflection [1]
(c)	The	handles of the plate-warmer are made from metal.
	lder	atify a problem with this, and suggest how the problem could be solved.
	prob	olem. The handle could be beated and difficult to touch.
	actio	on: Using a product that is against heat or use gloves [2]

[Total: 5]

Select page

<u> </u>	Mark scheme
a)(i)	convection OR radiation
a)(ii)	conduction
b)	poor emitter OR poor radiator (of thermal energy)
	(handles) become hot use an insulator
i	a)(ii) a)(iii) b)

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 3 (May / June 2016), Question 4

Cambridge IGCSE[™] Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

4 Fig. 4.1 is a simplified diagram of a geothermal power station.

Fig. 4.1

(a)	Describe the energy resource labelle	ed X in Fig. 4.1.	
	Renewa b le		[1]
(b)	Identify the useful energy transform Tick one box in each column.	ation that takes place in the g	geothermal power station.
	input energy	output energ	gy
	chemical	chemical .	
	electrical	electrical	\checkmark
	gravitational	gravitational	
	sound	sound	
	thermal	thermal	[2]
(c)	State two disadvantages of obtaining	g energy from fossil fuels.	
	1. It is better pr	slutant.	
	1		
	2. It is non-ven	errable.	
	2. It is now 2 new	SOORCO ,	
			[2]
			[Total: 5]

Select page

Q4	Mark scheme
(a)	hot rocks
(b)	input: thermal output: electrical
(c)	any two from: air pollution OR atmospheric pollution climate change OR global warming OR greenhouse gases use up diminishing resources OR non-renewable
	(a) Q4 (b)

4 Fig. 4.1 is a simplified diagram of a geothermal power station.

Fig. 4.1

(a)	Describe the energy resourch by to electric energy	ce labelled X in F	ig. 4.1.	, ,		[1
(b)	Identify the useful energy to Tick one box in each column	ransformation the				
	input energy		output	t energy		
	chemical		chemical	V	÷	
	electrical		electrical			
	gravitational		gravitation	nal	-	
	sound		sound			
	thermal	\checkmark	thermal			-[2
(c)	State two disadvantages of	obtaining energy	from fossil fuels			Į2
	1. ar Pollition	n from	. (he	PoWer	S 60 Hon	
	2 Noise	John Che	Police			
	, , , , , , , , , , , , , , , , , , , ,	***************************************				[2
					[To	otal: 5

Select page

	Your		
	Mark	Q4	Mark scheme
4(a)		(a)	hot rocks
		(b)	input: thermal output: electrical
4(b)		(c)	any two from: air pollution OR atmospheric pollution climate change OR global warming OR greenhouse gases use up diminishing resources OR non-renewable

4(c)	
	1

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 3 (May / June 2016), Question 5

Cambridge IGCSE[™] Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

5 Fig. 5.1 shows two men repairing a weak roof using a crawler-board.

Fig. 5.1

(a) Explain why use of the crawler-board prevents the men from falling through the roof.

to How	sand shows	rd ber	*	
It has a	large s	surface	a (ep	
which will				
collopse when	•			
The second second				

(b) The crawler-board has a weight of 400 N. The total weight of the two men is 1600 N. The area of the crawler-board in contact with the roof is 0.8 m².

Calculate the pressure on the roof when the men are on the crawler-board. Include the unit.

pressure = 9 60 N/m²

[Total: 7]

Select page

Your Mark

5(a)

Q5	Mark scheme
(a)	any two from: larger area (in contact with roof) weight OR force spread out lower pressure (on roof)
(b)	400 + 1600 seen OR 2000 (N) P = F/A stated 2000/0.8 2500 N/m ² OR Pa

5(b)

5 Fig. 5.1 shows two men repairing a weak roof using a crawler-board.

Fig. 5.1

(a) Explain why use of the crawler-board prevents the men from falling through the roof.

To reliable friction because that helps

him to belance thile bulking and

Not Stipping. And also to be able

to belance from falling through the roof.

(b) The crawler-board has a weight of 400 N. The total weight of the two men is 1600 N. The area of the crawler-board in contact with the roof is 0.8 m².

Calculate the pressure on the roof when the men are on the crawler-board. Include the unit.

[Total: 7]

Select page

Your Mark

5(a)

	Q5	Mark scheme
	(a)	any two from: larger area (in contact with roof) weight OR force spread out lower pressure (on roof)
	(b)	400 + 1600 seen OR 2000 (N) P = F/A stated 2000/0.8 2500 N/m ² OR Pa

5(b)

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 3 (May / June 2016), Question 6

Cambridge IGCSE[™] Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Fig. 6.1

Fig. 6.2

(a) (i) Fig. 6.2 shows the view through the microscope of one smoke particle, labelled P. On Fig. 6.2, draw 3 lines to show the movement of this particle.

(ii) Explain what causes the smoke particle to move.

gas	particles	MOVE	about	Freely	in W	natever	
.,			1. The	V			
	0		love enev				
the 1							[2]

(b) The air containing the smoke particles becomes warmer.

Suggest how this changes the movement of the smoke particles.

They	vnove	more V	ecause	eney	bave	md re
(Serenge)	energy.	mave	FOISTE	V		[1]
			1			

[Total: 5]

[2]

Select page

Your Mark

6(a)(i)

6(a)(ii)

Q6	Mark scheme
(a)(i)	three straight lines, joined end to end at least two changes of direction
(a)(ii)	collisions OR bumps OR bounces off (with moving) air molecules
(b)	more collisions OR changes of direction

Fig. 6.1

Fig. 6.2

(a) (i) Fig. 6.2 shows the view through the microscope of one smoke particle, labelled P. On Fig. 6.2, draw 3 lines to show the movement of this particle.

(ii) Explain what causes the smoke particle to move.

These particles contain energy which makes them more around and bounce of any objects

(b) The air containing the smoke particles becomes warmer.

Suggest how this changes the movement of the smoke particles.

The moneyes increase become more heat couse the particles to obtain more and]

energy
[flotal: 5] **Select** page

Your Mark

6(a)(i)

6(a)(ii)

[2]

Q6	Mark scheme
(a)(i)	three straight lines, joined end to end at least two changes of direction
(a)(ii)	collisions OR bumps OR bounces off (with moving) air molecules
(b)	more collisions OR changes of direction

6(b)

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 3 (May / June 2016), Question 7

Cambridge IGCSE[™] Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Fig. 7.1

(a) The copper rod is heated and expands. It turns the roller and moves the pointer.

On Fig. 7.1, draw the new position of the pointer.

[1]

(b) As the rod is heated, some of its properties change.

Identify how each property changes. Place one tick in each row of the table.

property of rod	decreases	increases	stays the
volume		/	
mass			
density			

[3]

(c) Suggest one disadvantage of thermal expansion.

Select page

Your Mark

7(a)

7(b)

Ω7	Mark scheme
(a)	to the left OR anticlockwise
(b)	row 1 – increases row 2 – stays the same row 3 – decreases
(c)	electric cables lower to ground OR telephone lines in summer OR buckling tracks

7(c)

7 Fig. 7.1 shows equipment used to demonstrate thermal expansion.

Fig. 7.1

(a) The copper rod is heated and expands. It turns the roller and moves the pointer.
On Fig. 7.1, draw the new position of the pointer.

[1]

(b) As the rod is heated, some of its properties change.

Identify how each property changes. Place one tick in each row of the table.

property of rod	decreases	increases	stays the same
volume		6	
mass			1
density			V

[3]

(c) Suggest one disadvantage of thermal expansion.

Because of themal expunsion metals can melt [1] and remove come out of the place that they're [Total: 5] fixed into. e.g. A fixed block.

Select page

Your Mark

7(a)

Ω7	Mark scheme
(a)	to the left OR anticlockwise
(b)	row 1 – increases row 2 – stays the same row 3 – decreases
(c)	electric cables lower to ground OR telephone lines in summer OR buckling tracks

7(c)

7(b)

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 3 (May / June 2016), Question 8

Cambridge IGCSE[™] Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

8 A student directs a ray of light towards a plane mirror, as shown in Fig. 8.1.

Fig. 8.1

(a)	(i)	Name the line labelled X	

Line of incidence reflection Symmetry [1]

(ii) When angle a is 45°, angle b is also 45°.

Angle a is changed to 20°.

What is the new value of angle b? Tick one box.

Select page

Your	
Mark	

8(a)(i)

8(a)(ii)

00	Made advance
Q8	Mark scheme
(a)(i)	normal
(a)(ii)	20°
(b)	d g f R OR S
(c)	any two rays correctly drawn from top of O: ray parallel to axis, through lens, and beyond F ray undeviated through centre of lens and beyond ray through F, through lens, then parallel to axis inverted image correctly drawn and positioned at intersection of two rays

8(c)

(b) The student now makes the ray of light from Fig. 8.1 pass into a glass block, as shown in Fig. 8.2.

Fig. 8.2

Complete the table, using the labels from Fig. 8.2. The first label is done for you.

description	label
an angle of incidence	а
an angle of refraction	d .
an internally reflected angle	9
a critical angle	ţ
a refracted ray	R

Select page

Your Mark	Q8	Mark scheme
8(a)(i)	(a)(i)	<u>normal</u>
8(a)(ii)	(a)(ii)	20°
	(b)	d g f R OR S
8(b)	(c)	any two rays correctly drawn from top of O: ray parallel to axis, through lens, and beyond F ray undeviated through centre of lens and beyond ray through F, through lens, then parallel to axis inverted image correctly drawn and positioned at intersection of two rays

8(c)

(c) The student uses a converging lens to produce an image of an object. Fig. 8.3 shows the arrangement.

Fig. 8.3

On Fig. 8.3, using a ruler, carefully draw two rays from the object O to locate the position of the image. Use an arrow to represent the image. [3]

[Total: 9]

Select page

Your		
Mark	Q8	Mark scheme
8(a)(i)	(a)(i)	normal
	(a)(ii)	20°
8(a)(ii)		
	(b)	d g f R OR S
8(b)	(c)	any two rays correctly drawn from top of O: ray parallel to axis, through lens, and beyond F ray undeviated through centre of lens and beyond ray through F, through lens, then parallel to axis inverted image correctly drawn and positioned at intersection of two rays

8 A student directs a ray of light towards a plane mirror, as shown in Fig. 8.1.

Fig. 8.1

(a) (i) Name the line labelled X.

(ii) When angle a is 45°, angle b is also 45°.

Angle a is changed to 20°.

What is the new value of angle b? Tick one box.

20°	1	25°		45°		65°		80°		· .	11
-----	---	-----	--	-----	--	-----	--	-----	--	-----	----

Select page

Your	
Mark	

8(a)(i)

8(a)(ii)

8(b)

Q8	Mark scheme
(a)(i)	<u>normal</u>
(a)(ii)	20°
(b)	d g f R OR S
(c)	any two rays correctly drawn from top of O: ray parallel to axis, through lens, and beyond F ray undeviated through centre of lens and beyond ray through F, through lens, then parallel to axis inverted image correctly drawn and positioned at intersection of two rays

8(c)

(b) The student now makes the ray of light from Fig. 8.1 pass into a glass block, as shown in Fig. 8.2.

Fig. 8.2

Complete the table, using the labels from Fig. 8.2. The first label is done for you.

label
а
C
e
& f.
a

Select page

Your Mark	Q8	Mark scheme
8(a)(i)	(a)(i)	normal
8(a)(ii)	(a)(ii)	20°
	(b)	d g f R OR S
8(b)	(c)	any two rays correctly drawn from top of O: ray parallel to axis, through lens, and beyond F ray undeviated through centre of lens and beyond ray through F, through lens, then parallel to axis inverted image correctly drawn and positioned at intersection of two rays

[4]

(c) The student uses a converging lens to produce an image of an object. Fig. 8.3 shows the arrangement.

Fig. 8.3

On Fig. 8.3, using a ruler, carefully draw two rays from the object O to locate the position of the image. Use an arrow to represent the image. [3]

[Total: 9]

Select page

Your		
Mark	Q8	Mark scheme
8(a)(i)	(a)(i)	<u>normal</u>
8(a)(ii)	(a)(ii)	20°
	(b)	d g f R OR S
8(b)	(c)	any two rays correctly drawn from top of O: ray parallel to axis, through lens, and beyond F ray undeviated through centre of lens and beyond ray through F, through lens, then parallel to axis inverted image correctly drawn and positioned at intersection of two rays

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 3 (May / June 2016), Question 9

Cambridge IGCSE[™] Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

radio	micro-	ontra_	visible	ultraviolet	V	gamm
waves	waves	red	light	waves	X-rays	rays

increasing ______ decreasing

		Fig. 9.1					
(a)	Con	nplete Fig. 9.1:					
	(i)	Add the label of the missing region.	[1]				
	(ii)	Complete the label under the arrow.	[1]				
(b)	(i)	State two uses of X-rays.					
		1. They are used to Will career cells.					
		2. They are used for scanning human body in hospitals.	[2]				
	(ii)	Describe two safety precautions taken by people using X-rays.					
		1. They should not be used for a long time.					
		2. People using X-rays should wear protective clothes	[2]				
	(iii)	X-rays and light waves can both travel through a vacuum.					
		Identify the correct statement. Tick one box.					
		X-rays travel at a slower speed than light waves.					
		X-rays travel at the same speed as light waves.					
		X-rays travel at a faster speed than light waves.	743				
			[1]				
		[Total:	: 7]				

Select page

9(a)(i)	Your Mark
9(a)(ii)	
9(b)(i)	
9(b)(ii)	

Q9	Mark scheme
(a)(i)	infra-red
(a)(ii)	frequency
(b)(i)	any two different applications from: • (medical) imaging OR detecting fractures in bone OR specific example e.g. CT scan/imaging teeth at dentist • detecting faults in metal • security imaging e.g. airport security checks of bags • cancer treatment
(b)(ii)	any two from: behind a screen OR lead apron large distance from X-ray beam monitoring of OR restricting exposure low dosage OR limit exposure time monitor frequency of x-ray sessions other people not allowed in room when X-ray being taken avoid when pregnant
(b)(iii)	same speed

9 Fig. 9.1 represents the regions of the electromagnetic spectrum.

radio	micro-	light	visible	ultraviolet	X-rays	gamma
waves	waves	waves	light	waves		rays

increasing Speed

Fig. 9.1

(a)	Con	mplete Fig. 9.1:	
	(i)	Add the label of the missing region.	[1]
	(ii)	Complete the label under the arrow.	[1]
(b)		State two uses of X-rays. 1. TO check your skele ton (Medicine Hospital us	e)
	(ii)	Describe two safety precautions taken by people using X-rays. 1. Sofehy Goggles	
		2. gloves	[2]
	(iii)	X-rays and light waves can both travel through a vacuum.	
		Identify the correct statement. Tick one box.	
		X-rays travel at a slower speed than light waves.	
		X-rays travel at the same speed as light waves.	
		X-rays travel at a faster speed than light waves.	[1]
		[Tota	l: 7]

Select page

9(a)(i)	Your Mark
9(a)(ii)	
9(b)(i)	
9(b)(ii)	

Q9	Mark scheme
(a)(i)	infra-red
(a)(ii)	frequency
(b)(i)	any two different applications from: • (medical) imaging OR detecting fractures in bone OR specific example e.g. CT scan/imaging teeth at dentist • detecting faults in metal • security imaging e.g. airport security checks of bags • cancer treatment
(b)(ii)	any two from: behind a screen OR lead apron large distance from X-ray beam monitoring of OR restricting exposure low dosage OR limit exposure time monitor frequency of x-ray sessions other people not allowed in room when X-ray being taken avoid when pregnant
(b)(iii)	same speed

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 3 (May / June 2016), Question 10

Cambridge IGCSE[™] Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Fig. 10.1

(a) Complete the sentences about the circuit. Use words from the box.

. fixed r	resistor	lamp	light-dependent resistor	parallel	series	thermistor	
(i)	Compo	nents X a	and Y are connected in	series			[1]
(ii)	The co	mponent'	yisa fioled	(Ubis	tor		[1]
						,	

(b) Fig. 10.2 shows how the resistance of Y varies with temperature.

Fig. 10.2

(i)

Describe how the resistance of Y varies with temperature.	
Describe how the resistance of Y varies with temperature. The lesser the resistance of Y varies with temperature.	
the highler the resistance	
·	[2]

Select page

You	r
Mar	k

10(a)(i)

10(a)(ii)

10(b)(i)

Q10	Mark scheme
(a)(i)	<u>series</u>
(a)(ii)	<u>thermistor</u>
(b)(i)	resistance decreases as temp increases at decreasing rate OR not proportional OR not linear
(b)(ii)	resistance of Y = 80Ω $R_t = R_1 + R_2$ in any form $100 (\Omega)$
(b)(iii)	V = IR in any form 12 ÷ 100 OR 12 ÷ candidates (b)(ii) 0.12 (A) OR ECF from (b)(ii)

10(b)(ii)

(ii)	The temperature	of Y	is 1	0°C.	The	resistance	of ?	(is	20Ω.
------	-----------------	------	------	------	-----	------------	------	------	------

Calculate the combined resistance of Y and X.

36 80f20=16

	200 Fra .		
esistance =	a loo	Ω	[3]

(iii) Calculate the current in the circuit.

	, 10 \	
\$20-0 ¹ 2 A [1407020 + 1000 + 700 + 20 + 20 + 20 + 20	·le
[Total: 10	1 0	

[=12	1 *		
			= 12
160+140+120	4100+80	+60+40+20	220

Your
Mark

10(a)(i)

10(a)(ii	i)	

10(b)(i)

Q10	Mark scheme
(a)(i)	<u>series</u>
(a)(ii)	thermistor
(b)(i)	resistance decreases as temp increases at decreasing rate OR not proportional OR not linear
(b)(ii)	resistance of Y = 80Ω $R_t = R_1 + R_2$ in any form $100 (\Omega)$
(b)(iii)	V = IR in any form 12 ÷ 100 OR 12 ÷ candidates (b)(ii) 0.12 (A) OR ECF from (b)(ii)

10(b)(ii)

Fig. 10.1

(a) Complete the sentences about the circuit. Use words from the box.

f	ixed r	esistor	lamp	light-dependent resistor	parallel	series	thermistor]
				and Y are connected in				
	(ii)	The cor	nponent \	risa fixed resista	ζί			[1]
(b)	Fig.	10.2 sho	ows how	the resistance of Y varies wit	h temperatu	re.		

Fig. 10.2

(i)	Describe how the resistance of Y varies with temperature.
	As the resistance of y decreases the
	temperature of y increases.
	103

Select	
page	

Your
Mark

10(a)(i)

10(a)(ii)

10(b)(i)

Q10	Mark scheme
(a)(i)	<u>series</u>
(a)(ii)	thermistor
(b)(i)	resistance decreases as temp increases at decreasing rate OR not proportional OR not linear
(b)(ii)	resistance of Y = 80Ω $R_t = R_1 + R_2$ in any form $100 (\Omega)$
(b)(iii)	V = IR in any form 12 ÷ 100 OR 12 ÷ candidates (b)(ii) 0.12 (A) OR ECF from (b)(ii)

10(b)(ii)

Calculate the combined resistance of Y and X.

resistance =
$$\frac{1}{2}$$
 $\frac{1}{2}$ \frac

(iii) Calculate the current in the circuit.

[Total: 10]

Select page

Your Mark

10(a)(i)

10(a)(ii)

10	(b)	(i)	
	(~)	1.1	

Q10	Mark scheme
(a)(i)	<u>series</u>
(a)(ii)	thermistor
(b)(i)	resistance decreases as temp increases at decreasing rate OR not proportional OR not linear
(b)(ii)	resistance of Y = 80Ω $R_t = R_1 + R_2$ in any form $100 (\Omega)$
(b)(iii)	V = IR in any form 12 ÷ 100 OR 12 ÷ candidates (b)(ii) 0.12 (A) OR ECF from (b)(ii)

10(b)(ii)

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 3 (May / June 2016), Question 11

Cambridge IGCSE[™] Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

aluminium copper (iron) mercury magnesium (stee) tin

(b) Fig. 11.1 and Fig. 11.2 show magnetic field patterns for bar magnets.

On each diagram, correctly label the poles. Write N or S.

Fig. 11.1

Fig. 11.2

Select page

	Your Mark
11(a)	

[2]

[2]

11(b)	

11(c)(i)	

11(c)(ii)	

Q11	Mark scheme
(a)	iron, steel
(b)	N and S correctly labelled on Fig. 11.1 N and S correctly labelled on Fig. 11.2
(c)(i)	repulsion
(c)(ii)	repulsion
(c)(iii)	no force

11	(c)	(iii)	

Repution No force

magnet S N

Repulsion

Fig. 11.3

[3]

[Total: 7]

11(c)(iii)

Select page

Your Mark

11(a)

11(b)

11(c)(i)

11(c)(ii)

Q11	Mark scheme
(a)	iron, steel
(b)	N and S correctly labelled on Fig. 11.1 N and S correctly labelled on Fig. 11.2
(c)(i)	repulsion
(c)(ii)	repulsion
(c)(iii)	no force

aluminium copper iron mercury magnesium steel tin

(b) Fig. 11.1 and Fig. 11.2 show magnetic field patterns for bar magnets.

On each diagram, correctly label the poles. Write ${\bf N}$ or ${\bf S}$.

Fig. 11.1

Fig. 11.2

[2]

[2]

Select page

V		
Your Mark	Q11	Mark scheme
11(a)	(a)	iron, steel
11(b)	(b)	N and S correctly labelled on Fig. 11.1 N and S correctly labelled on Fig. 11.2
	(c)(i)	repulsion
11(c)(i)	(c)(ii)	repulsion
44(-)(**)	(c)(iii)	no force
11(c)(ii)		

11(c)(iii)	

(c)	For each diagram in Fig.	11.3, describe	the force	acting, if a	any. Use the	words attraction,
	repulsion, or no force.					

		•
charged + +	+ + +	
charged + + +	(+ +)	
(+ . +	(÷ .*)	
+ + +	+ + +	
	3	Attaction.
[3]		
. 3	S. 1	
L		

magnet				
s	N	N	S	Repulsion.

		uncharged plastic strip	
S	N	. \.	no force-

Fig. 11.3

[Total: 7]

[3]

Your Mark

11(a)	

11(c)(i)	

11(c)(ii)	

Q11	Mark scheme
(a)	iron, steel
(b)	N and S correctly labelled on Fig. 11.1 N and S correctly labelled on Fig. 11.2
(c)(i)	repulsion
(c)(ii)	repulsion
(c)(iii)	no force

11(c)(iii)

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 3 (May / June 2016), Question 12

Cambridge IGCSE[™] Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

12		radioactive sources are used by a teacher. One source emits only alpha particles and the er source emits only beta particles.
	(a)	Suggest how the sources can be identified. By the Matrial which they can go through Africa Particles can in through Marc Matrices than Alpha Patricles, The one which cross through
	٠	the most is beta the least Alpha [2]
	(b)	The teacher also has a source that emits gamma rays.
		State two ways in which gamma rays are different from alpha particles. 1. Only to metals like lead can block gamma as a green. 2. Gamma is green.
		. [2]
	(c)	State an effect of ionising radiation on living things. Mula, thou of Cells. Cancer [1]
		[Total: 5]

Select page

Your		
Mark	Q12	Mark scheme
2(a)	(a)	idea of paper between source and detector OR measuring range (in air) OR pass through an electric or magnetic field
		alpha stopped by paper OR larger range in air for beta OR identify deflection when in field
2(b)	(b)	any two from: gamma travel at the speed of light gamma rays have no charge gamma rays have no mass gamma is a wave OR part of the electromagnetic spectrum gamma less ionising greater penetration not deflected by electric or magnetic fields
	(c)	damages cells/tissues/DNA OR causes (cell) mutations OR radiation sickness

12(c)

Two radioactive sources are used by a teacher. One source emits only alpha particles and the other source emits only beta particles.
(a) Suggest how the sources can be identified. The Sources can be identified by taking coch one of Tem and identifying which coolinactive source enuits Aph Alpha or beta particles but by identifying Tem one at a time.
(b) The teacher also has a source that emits gamma rays. State two ways in which gamma rays are different from alpha particles. 1. Stamma rays are neutral. 2. Jamma rays have a Charge of \$7000. [2]
(c) State an effect of ionising radiation on living things. It destroys living Things. [Total: 5]

12

Select page

Your Q12 Mark scheme Mark idea of paper between source and detector OR measuring (a) 12(a) range (in air) OR pass through an electric or magnetic field alpha stopped by paper OR larger range in air for beta OR identify deflection when in field (b) any two from: gamma travel at the speed of light gamma rays have no charge gamma rays have no mass gamma is a wave OR part of the electromagnetic spectrum gamma less ionising 12(b) greater penetration • not deflected by electric or magnetic fields damages cells/tissues/DNA OR causes (cell) mutations (c)

OR radiation sickness

12(c)

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 4 (May / June 2016), Question 1

Cambridge IGCSE[™] Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Fig. 1.1

- (a) The order to stop is given at time t = 0 s.
 - (i) State the speed of the car at t = 0 s.

(ii) Suggest why the car continues to travel at this speed for 0.9 s.

9t	takes	hue.	before	the	cae	decde	ales	after the
1.0								lissydtem[1]

- (b) Calculate
 - (i) the deceleration of the car between t = 0.9 s and t = 4.0 s,

the deceleration of the car between
$$t = 0.9s$$
 and $t = 4.0s$,

 $deceleration = Gradient = \frac{16000-18}{4-0.9}$

Gradient = $\frac{-18}{3.1} = -5.81 \text{ m/s}^2$
 $deceleration = \frac{-18}{3.1} = -5.81 \text{ m/s}^2$

(ii) the total distance travelled by the car from t = 0 s.

d: A und ex graph
$$= \frac{1}{2} (a+b)h$$

$$= \frac{1}{2} (0.9+4) 18$$

$$= 44.1 \text{ m}$$
distance = 44.1 m [3]

Select page

Your	
Mark	

1(a)(i)

1(a)(ii)

1(b)(i)

1(b)(ii)

Q1	Mark scheme
(a)(i)	18 m/s
(a)(ii)	(0.90 s is) the driver's time to react
(b)(i)	(a =) (v – u)/t OR Δv/t OR either in words OR (18 – 0)/3.1 OR 18/3.1 5.8 m/s² OR Values from any correct points on graph Answer dependent on accuracy of chosen points
(b)(ii)	Evidence of use of: (distance =) area under graph e.g. $1/2bh$ $(18 \times 0.9) + (0.5 \times 3.1 \times 18)$ 44 m
(c)	(Without seat belt, driver:) e.g. keeps moving (forwards)/does not stop/has inertia/has momentum (Driver) hits steering wheel/windscreen/dashboard

(c)	Describe and explain a danger to a driver of not wearing a safety belt during a sudden stop. Sudden de acase in The nush on of the can will cause the driver to be the first out of his seat and his the first again of the can if he is not wearing a seat belt.	ı
	[2]	
	[Total: 9]	
	·	
		1
		Н
	·	
		1
	•	

Select page

Your Mark
1(a)(i)
1(a)(ii)
1(b)(i)
1(0)(1)
1(b)(ii)

Q1	Mark scheme
(a)(i)	18 m/s
(a)(ii)	(0.90 s is) the driver's time to react
(b)(i)	(a =) (v – u)/t OR Δv/t OR either in words OR (18 – 0)/3.1 OR 18/3.1 5.8 m/s ² OR Values from any correct points on graph Answer dependent on accuracy of chosen points
(b)(ii)	Evidence of use of: (distance =) area under graph e.g. $1/2bh$ $(18 \times 0.9) + (0.5 \times 3.1 \times 18)$ 44 m
(c)	(Without seat belt, driver:) e.g. keeps moving (forwards)/does not stop/has inertia/has momentum (Driver) hits steering wheel/windscreen/dashboard

1 A driving instructor gives a student a sudden order to stop the car in the shortest possible time.

Fig. 1.1 shows the speed-time graph of the motion of the car from the moment the order is given.

Fig. 1.1

- (a) The order to stop is given at time t = 0 s.
 - (i) State the speed of the car at t = 0 s.

(ii) Suggest why the car continues to travel at this speed for 0.9 s.

	Due is a sudden	break the	cag travelle	d
	Due to a sudden for more 90.9 secon	becauteu	Stopped	
(JOY INDIE 9 U. I. SELEN	AUS ELS HELE TIE		[1
	~		accelerating	

(b) Calculate

(i) the deceleration of the car between $t = 0.9 \, \text{s}$ and $t = 4.0 \, \text{s}$, and the deceleration of the car between $t = 0.9 \, \text{s}$ and $t = 4.0 \, \text{s}$.

gradient = deceleration
$$\frac{78 - 1}{1} = 1$$

$$\frac{78 - 1}{3 \cdot 1} = 1$$

$$\frac{78 - 1}{3 \cdot 1} = 1$$

$$\frac{78 - 1}{3 \cdot 1} = 1$$

$$\frac{78 - 1}{4 - 0.9} = 1$$

$$\frac{78 - 1}{3 \cdot 1} = 1$$

$$\frac{78 - 1}{3 \cdot 1} = 1$$

$$\frac{78 - 1}{4 - 0.9} = 1$$

$$\frac{78 - 1}{3 \cdot 1} = 1$$

$$\frac{78 - 1$$

(ii) the total distance travelled by the car from t = 0 s.

$$\frac{1}{2} \times (1+4) \times 18 = 1$$

Select page

Your	
Mark	

1(a)(i)

1(a)(ii)

1(b)(i)

1(b)(ii)

01	Made askansa
Q1	Mark scheme
(a)(i)	18 m/s
(a)(ii)	(0.90 s is) the driver's time to react
(b)(i)	(a =) (v - u)/t OR Δv/t OR either in words OR (18 - 0)/3.1 OR 18/3.1 5.8 m/s² OR Values from any correct points on graph Answer dependent on accuracy of chosen points
(b)(ii)	Evidence of use of: (distance =) area under graph e.g. $1/2bh$ $(18 \times 0.9) + (0.5 \times 3.1 \times 18)$ 44 m
(c)	(Without seat belt, driver:) e.g. keeps moving (forwards)/does not stop/has inertia/has momentum (Driver) hits steering wheel/windscreen/dashboard

	٦,
Describe and explain a danger to a driver of not wearing a safety belt during a sudden stop. The Sudden SLEP caused the darveas body to lean forward: If no belt is worn, darvea can rack is jorehead on the stearing:	
[7] [7] [7] [7] [7] [7] [7] [7] [7] [7]	
[iotal. o]	

Select page

Your	
Mark	

1(a)(i)

a)(ii)

b)(i)

l(b)(ii)

01	Mark ashawa
Q1	Mark scheme
(a)(i)	18 m/s
(a)(ii)	(0.90 s is) the driver's time to react
(b)(i)	(a =) (v – u)/t OR Δv/t OR either in words OR (18 – 0)/3.1 OR 18/3.1 5.8 m/s² OR Values from any correct points on graph Answer dependent on accuracy of chosen points
(b)(ii)	Evidence of use of: (distance =) area under graph e.g. $1/2bh$ $(18 \times 0.9) + (0.5 \times 3.1 \times 18)$ 44 m
(c)	(Without seat belt, driver:) e.g. keeps moving (forwards)/does not stop/has inertia/has momentum (Driver) hits steering wheel/windscreen/dashboard

Fig. 1.1 shows the speed-time graph of the motion of the car from the moment the order is given.

Fig. 1.1

- (a) The order to stop is given at time t = 0 s.
 - (i) State the speed of the car at t = 0 s.

(ii) Suggest why the car continues to travel at this speed for 0.9 s.

The	Car	travels	at the	constant	speed.	
					1	

- (b) Calculate
 - (i) the deceleration of the car between t = 0.9 s and t = 4.0 s,

deceleration =
$$\frac{(v-v)}{t}$$
 = $\frac{20}{-3.1}$
 $\frac{0/4}{0.9-4.0}$ = $\frac{20}{0.9-4.0}$ = $\frac{-6.45}{0.95}$. [2]

(ii) the total distance travelled by the car from t = 0s.

$$16 \cdot 2 + 55 \cdot 8$$
 distance = $\frac{12}{12}$ m [3]

Select page

Your
Mark

1(a)(i)

1(a)(ii)

1(b)(i)

1(b)(ii)

	Q1	Mark scheme		
	(a)(i)	18 m/s		
	(a)(ii)	(0.90 s is) the driver's time to react		
	(b)(i)	(a =) (v - u)/t OR Δv/t OR either in words OR (18 - 0)/3.1 OR 18/3.1 5.8 m/s² OR Values from any correct points on graph Answer dependent on accuracy of chosen points		
	(b)(ii)	Evidence of use of: (distance =) area under graph e.g. $1/2bh$ $(18 \times 0.9) + (0.5 \times 3.1 \times 18)$ 44 m		
,	(c)	(Without seat belt, driver:) e.g. keeps moving (forwards)/does not stop/has inertia/has momentum (Driver) hits steering wheel/windscreen/dashboard		

Select page

	Your Mark
1(a)(i)	
1(a)(ii)	
1(b)(i)	
1(5)(1)	
1(b)(ii)	

Q1	Mark scheme		
(a)(i)	18 m/s		
(a)(ii)	(0.90 s is) the driver's time to react		
(b)(i)	 (a =) (v – u)/t OR Δv/t OR either in words OR (18 – 0)/3.1 OR 18/3.1 5.8 m/s² OR Values from any correct points on graph Answer dependent on accuracy of chosen points 		
(b)(ii)	Evidence of use of: (distance =) area under graph e.g. $1/2bh$ $(18 \times 0.9) + (0.5 \times 3.1 \times 18)$ 44 m		
(c)	(Without seat belt, driver:) e.g. keeps moving (forwards)/does not stop/has inertia/has momentum (Driver) hits steering wheel/windscreen/dashboard		

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 4 (May / June 2016), Question 2

Cambridge IGCSE[™] Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

2 Fig. 2.1 shows a hammer being used to drive a nail into a piece of wood.

Fig. 2.1

The mass of the hammer head is 0.15 kg. The speed of the hammer head when it hits the nail is 8.0 m/s. The time for which the hammer head is in contact with the nail is 0.0015s.

The hammer head stops after hitting the nail.

(a) Calculate the change in momentum of the hammer head.

(b) State the impulse given to the nail.

impulse =
$$1.2$$
 $\sqrt{2}$ \sqrt{N} s[1]

(c) Calculate the average force between the hammer and the nail.

Average force =
$$\frac{2 \times \text{mass} \times \text{speed}}{\text{time}}$$
 | = $\frac{2.4}{0.0015}$ | = 1600 N | 2 | average force = 1600 N | [2]

[Total: 5]

Select page

Your Mark

2(a)

Q2	Mark scheme
(a)	mv – mu OR m(v – u) OR mv OR 0.15 × 8.0 1.2 Ns or kg m/s
(b)	12Ns or kgm/s
(c)	F = (mv - mu)/t OR F = mv/t OR impulse/t OR 1.2/0.0015 800 N OR (F =) ma OR m[(v - u)/t] OR 0.15 × 8/0.0015 800 N

2 Fig. 2.1 shows a hammer being used to drive a nail into a piece of wood.

Fig. 2.1

The mass of the hammer head is 0.15kg.

The speed of the hammer head when it hits the nail is 8.0 m/s.

The time for which the hammer head is in contact with the nail is 0.0015s.

The hammer head stops after hitting the nail.

(a) Calculate the change in momentum of the hammer head.

kg m/s

(b) State the impulse given to the nail.

(c) Calculate the average force between the hammer and the nail.

Select page

Your Mark

2(a)

Q2	Mark scheme
(a)	mv – mu OR m(v – u) OR mv OR 0.15 × 8.0 1.2 Ns or kg m/s
(b)	12Ns or kgm/s
(c)	F = (mv - mu)/t OR F = mv/t OR impulse/t OR 1.2/0.0015 800 N OR (F =) ma OR m[(v - u)/t] OR 0.15 × 8/0.0015 800 N

2 Fig. 2.1 shows a hammer being used to drive a nail into a piece of wood.

Fig. 2.1

The mass of the hammer head is 0.15 kg.

The speed of the hammer head when it hits the nail is 8.0 m/s.

The time for which the hammer head is in contact with the nail is 0.0015s.

The hammer head stops after hitting the nail.

(a) Calculate the change in momentum of the hammer head.

(b) State the impulse given to the nail.

(c) Calculate the average force between the hammer and the nail.

[Total: 5]

Select page

Your Mark

2(a)

Q2	Mark scheme			
(a)	mv – mu OR m(v – u) OR mv OR 0.15 × 8.0 1.2 Ns or kg m/s			
(b)	12Ns or kgm/s			
(c)	$F = (mv - mu)/t \ OR \ F = mv/t \ OR \ impulse/t \ OR \ 1.2/0.0015 \\ 800 \ N \\ OR \\ (F =) \ ma \ OR \ m[(v - u)/t] \ OR \ 0.15 \times 8/0.0015$			

800 N

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 4 (May / June 2016), Question 3

Cambridge IGCSE[™] Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

3 (a) (i) On Fig. 3.1, draw a graph of extension against load for a spring which obeys Hooke's law.

Fig. 3.1

(ii) State the word used to describe the energy stored in a spring that has been stretched or compressed.

Strain edge et energy or elastic botentials energy [1]

(b) Fig. 3.2 shows a model train, travelling at speed v, approaching a buffer.

model train

Fig. 3.2

The train, of mass 2.5 kg, is stopped by compressing a spring in the buffer. After the train has stopped, the energy stored in the spring is 0.48 J.

Calculate the initial speed v of the train.

$$KE = \frac{1}{2} \times m \times v^{2}$$
 $V = \sqrt{0.384}$ $V = 0.62 \text{ m/s}$
 $V^{2} = 0.384$

$$v = \frac{0.62 \, \text{m/s}}{1.00 \, \text{m/s}}$$
 [4]

[Total: 6]

Select page

Your Mark

3(a)(i)

3(a)(ii)

Q3	Mark scheme
(a)(i)	Straight line through origin
(a)(ii)	Strain (energy) OR elastic (energy)
(b)	Use of $1/2\text{mv}^2$ $0.5 \times 2.5 \times \text{v}^2 = 0.48$ $\text{v}^2 = 0.48/(0.5 \times 2.5)$ OR $\text{v}^2 = 0.384$ $\text{v}^2 = 0.62\text{m/s}$

3(b)

Fig. 3.1

(ii) State the word used to describe the energy stored in a spring that has been stretched or compressed.

(b) Fig. 3.2 shows a model train, travelling at speed v, approaching a buffer.

model train

Fig. 3.2

The train, of mass 2.5 kg, is stopped by compressing a spring in the buffer. After the train has stopped, the energy stored in the spring is 0.48 J.

Select page

Your Mark

3(a)(i)

3(a)(ii)

Q3	Mark scheme
(a)(i)	Straight line through origin
(a)(ii)	Strain (energy) OR elastic (energy)
(b)	Use of $1/2\text{mv}^2$ $0.5 \times 2.5 \times \text{v}^2 = 0.48$ $\text{v}^2 = 0.48/(0.5 \times 2.5)$ OR $\text{v}^2 = 0.384$ $\text{v}^2 = 0.62\text{m/s}$

[Total: 6]

3 (a) (i) On Fig. 3.1, draw a graph of extension against load for a spring which obeys Hooke's law.

Fig. 3.1

(ii) State the word used to describe the energy stored in a spring that has been stretched or compressed.

(b) Fig. 3.2 shows a model train, travelling at speed v, approaching a buffer.

model train

buffer spring

Fig. 3.2

The train, of mass $2.5\,\mathrm{kg}$, is stopped by compressing a spring in the buffer. After the train has stopped, the energy stored in the spring is $0.48\,\mathrm{J}$.

Calculate the initial speed v of the train.

$$= \frac{1}{2} 2^{3} \times 0^{2}$$

$$= \frac{1}{2} 2^{3} \times 0^{2} \times 0^{2}$$

$$= 0.288$$

$$v = 0.288$$
[4]
[Total: 6]

Select page

Your Mark

3(a)(i)

3(a)(ii)

Q3	Mark scheme
(a)(i)	Straight line through origin
(a)(ii)	Strain (energy) OR elastic (energy)
(b)	Use of $1/2\text{mv}^2$ $0.5 \times 2.5 \times \text{v}^2 = 0.48$ $\text{v}^2 = 0.48/(0.5 \times 2.5)$ OR $\text{v}^2 = 0.384$ v = 0.62m/s

3(b)

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 4 (May / June 2016), Question 4

Cambridge IGCSE[™] Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Tick the box next to those resources for which the Sun is also the source of energy.

coal	•		,	٠.
geothermal				
hydroelectric				
nuclear				
wind		-		[2]

(b) Fig. 4.1 shows a solar water-heating panel on the roof of a house.

Fig. 4.1

Cold water flows into the copper tubes, which are heated by solar radiation. Hot water flows out of the tubes and is stored in a tank.

(i) Explain why the tubes are made of copper and are painted black.

The to be are me	ide et copper	because copper is a
good conductor of h	eat in it will be	hontod easily. It is
control black because	black abjects	or seed object book or
of heat.	org	re good absorbers [2]

(ii) In 5.0 s, 0.019 kg of water flows through the tubes. The temperature of the water increases from 20 °C to 72 °C. The specific heat capacity of water is 4200 J/(kg °C).

Calculate the thermal energy gained by the water in 5.0 s.

energy =
$$mC\Delta T$$

energy = $mC\Delta T$
energy = $0.019 \times 4200 \times (72^{\circ} - 20^{\circ})$
= 4149.67
thermal energy = 4149.67

Select page

04

Mark scheme

Power input = 1200W

Your
Mark

4(b)(i)

	(a)	Coal, hydroelectric and wind boxes ticked			
	(b)(i)	Copper is a good conductor of thermal energy/heat Black surface is a good/the best absorber of radiation/ infra-red			
	(b)(ii)	(Temp rise =) $72 - 20 = 52$ (°C) (Q =) $mc\Delta\theta$ OR $0.019 \times 4200 \times 52$ 4100 J			
(b)(iii) Efficiency = (power) output/(power) input (x 100) $OR \frac{\left(\frac{4100}{5}\right) \times 100}{power input} OR \frac{\left(4100 \times 100\right)}{power input} OR rearranged$					

>>	
A/I_\/::\	
4(0)(11)	
T(10/(11/	

Calculate the power of the solar radiation incident on the panel.

700%.
$$\rightarrow 4149.6$$

 $100\%. \rightarrow 4149.6$
 70

[Total: 9]

.

Select page

Your Mark

4(a)

4(b)(i)

Q4	Mark scheme		
(a)	Coal, hydroelectric and wind boxes ticked		
(b)(i) Copper is a good conductor of thermal energy/heat Black surface is a good/the best absorber of radiation/ infra-red			
(b)(ii)	(Temp rise =) $72 - 20 = 52$ (°C) (Q =) $mc\Delta\theta$ OR $0.019 \times 4200 \times 52$ 4100 J		
(b)(iii)	Efficiency = (power) output/(power) input (x 100)		
	OR $\frac{\left(\frac{4100}{5}\right) \times 100}{\text{power input}}$ OR $\frac{\left(4100 \times 100\right)}{\text{power input}}$ OR rearranged		
	Power input = 1200W		

4(b)(ii)

4(b)(iii)

Tick the box next to those resources for which the Sun is also the source of energy.

	coal
	geothermal
V	hydroelectric
	nuclear
\Box	

[2]

(b) Fig. 4.1 shows a solar water-heating panel on the roof of a house.

Fig. 4.1

Cold water flows into the copper tubes, which are heated by solar radiation. Hot water flows out of the tubes and is stored in a tank.

(i) Explain why the tubes are made of copper and are painted black.

· Copper tules conduct heat and can easily pass heat	
to the water flowing.	
· Black painted tules [2]	

(ii) In 5.0 s, 0.019 kg of water flows through the tubes. The temperature of the water increases from 20°C to 72°C. The specific heat capacity of water is 4200 J/(kg°C).

Calculate the thermal energy gained by the water in 5.0 s.

Select page

Your	
Mark	

4(a)

11 1/11	1
II b II i i	1
	1

Q4	Mark scheme		
(a)	Coal, hydroelectric and wind boxes ticked		
(b)(i)	b)(i) Copper is a good conductor of thermal energy/heat Black surface is a good/the best absorber of radiation/ infra-red		
(b)(ii)	(Temp rise =) $72 - 20 = 52$ (°C) (Q =) $mc\Delta\theta$ OR $0.019 \times 4200 \times 52$ 4100 J		
(b)(iii) Efficiency = (power) output/(power) input (x 100) $OR \frac{\left(\frac{4100}{5}\right) \times 100}{power input} OR \frac{\left(4100 \times 100\right)}{power input} OR rearranged$			
	Power input = 1200W		

4(b)	(ii)	

Calculate the power of the solar radiation incident on the panel.

$$\frac{4149.6\times100}{1\times70} = 5928$$

power =
$$\frac{5928W/8}{}$$
 [2]

[Total: 9]

Select page

Your Mark

4(a)

4(b)(i)

Q4	Mark scheme					
(a)	Coal, hydroelectric and wind boxes ticked					
(b)(i)	Copper is a good conductor of thermal energy/heat Black surface is a good/the best absorber of radiation/ infra-red					
(b)(ii)	(Temp rise =) $72 - 20 = 52$ (°C) (Q =) $mc\Delta\theta$ OR $0.019 \times 4200 \times 52$ 4100 J					
(b)(iii)	Efficiency = (power) output/(power) input (x 100) $OR \frac{\left(\frac{4100}{5}\right) \times 100}{power input} OR \frac{\left(4100 \times 100\right)}{power input} OR rearranged$					
	Power input = 1200W					

4(b)(ii)

4(b)(iii)

Tick the box next to those resources for which the Sun is also the source of energy.

[2]

(b) Fig. 4.1 shows a solar water-heating panel on the roof of a house.

Fig. 4.1

Cold water flows into the copper tubes, which are heated by solar radiation. Hot water flows out of the tubes and is stored in a tank.

(i) Explain why the tubes are made of copper and are painted black.

Copper is a good conductor of heat and	
colour black is a good absorber of heat.	
LOUGH SUMAND A GOOD ANSONDER OF DUTY.	•••••
. ,	[2]

(ii) In 5.0 s, 0.019 kg of water flows through the tubes. The temperature of the water increases from 20 °C to 72 °C. The specific heat capacity of water is 4200J/(kg °C).

Calculate the thermal energy gained by the water in 5.0 s.

$$Q = m \times \Delta 0 \times C$$

$$Q = 0.00 \times 52 \text{ A} \times 200 \text{ D} / 2g^{\circ} C$$

$$= 4149.6 \text{ T} \times 5 = 20.748 \text{ T}$$
thermal energy = $\frac{4154-6}{5} = 20.748 \text{ J}$ [3]

Select page

Your Mark

4(a)

4(b)(i)	
---------	--

Coal, hydroelectric and wind boxes ticked					
Copper is a good conductor of thermal energy/heat Black surface is a good/the best absorber of radiation/ infra-red					
(Temp rise =) $72 - 20 = 52$ (°C) (Q =) $mc\Delta\theta$ OR $0.019 \times 4200 \times 52$ 4100 J					
Efficiency = (power) output/(power) input (x 100) $OR \frac{\left(\frac{4100}{5}\right) \times 100}{power input} OR \frac{\left(4100 \times 100\right)}{power input} OR rearranged$ Power input = 1200W					

|--|

$$\frac{\chi}{1149.6}$$
 7100 = 70 = 2904.725
power = 2903.72 J

[Total: 9]

Select page

Your Mark

4(b)(i)

Q4	Mark scheme					
(a)	Coal, hydroelectric and wind boxes ticked					
(b)(i)	Copper is a good conductor of thermal energy/heat Black surface is a good/the best absorber of radiation/ infra-red					
(b)(ii)	(Temp rise =) $72 - 20 = 52$ (°C) (Q =) $mc\Delta\theta$ OR $0.019 \times 4200 \times 52$ 4100 J					
(b)(iii)	Efficiency = (power) output/(power) input (x 100) $OR \frac{\left(\frac{4100}{5}\right) \times 100}{\text{power input}} OR \frac{\left(4100 \times 100\right)}{\text{power input}} OR \text{ rearranged}$					
	Power input = 1200W					

4(b)(ii)

4(b)(iii)

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 4 (May / June 2016), Question 5

Cambridge IGCSE[™] Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

5 (a) A student carries out an experiment to find the relationship between the pressure *p* and the volume *V* of a fixed mass of gas. The table contains four of her sets of measurements.

p/kPa	250	500	750°	1000
V/cm ^{3.}	30.0	15.2	9.8	7.6

(i) Use the data in the table to suggest the relationship between the pressure and the volume in this experiment. Explain how you reach your conclusion.

as	the.	plassi	Dressu	a et	ecoesass in	sea	ses.
the	\ali	me	4 Oce	1808-	declares.	t	Lenebore
therefor	re	Dressure	21	invecsly	proportHonel	b	volume
				/	1 1-		[2]

(ii) State the property of the gas, apart from the mass, that remains constant during the experiment.

temperature [1

- (b) A lake is $5.0 \, \text{m}$ deep. The density of the water is $1000 \, \text{kg/m}^3$.
 - (i) Calculate the pressure at the bottom of the lake due to this depth of water.

$$p = pgh$$
 $p = 1000 \times 10 \times 5 = 50000$

pressure = 50000 Pa [2]

(ii) A bubble of gas escapes from the mud at the bottom of the lake and rises to the surface.

Place one tick in each row of the table to indicate what happens to the volume, the mass and the density of the gas in the bubble. Assume that no gas or water vapour enters or leaves the bubble.

	increases	stays the same .	decreases
volume of bubble			
mass of gas in bubble		1	
density of gas in bubble	V		

[2]

[Total: 7]

Select page

Your	•
Marl	ŀ

5(a)(i)

F-/1 \/-\	
SIDILLI	
O(10/(1/	

OF	Made askawa
Q5	Mark scheme
(a)(i)	P × V values are 7500 or about 7500
	OR If P/pressure doubles, V/volume halves OR vice versa
	(so) PV = constant OR P α 1/V OR either in words
(a)(ii)	temperature
(b)(i)	$P = hdg OR 5.0 \times 10 \times 1000$
	50 000 Pa or 50 kPa
(b)(ii)	Volume of bubble increases
	Mass of gas stays the same
	Density of gas <u>decreases</u>

5(b)(ii)

5 (a) A student carries out an experiment to find the relationship between the pressure p and the volume V of a fixed mass of gas. The table contains four of her sets of measurements.

p/kPa	250	500	750	1000
V/cm ³	30.0	15.2	9.8	7.6

(i) Use the data in the table to suggest the relationship between the pressure and the volume in this experiment. Explain how you reach your conclusion.

ressure is inversly propostional to volume.
his is because the when the volume decreases
re pressure increases.
[2]

(ii) State the property of the gas, apart from the mass, that remains constant during the experiment.

Energy	[*	1
	['

- (b) A lake is $5.0 \, \text{m}$ deep. The density of the water is $1000 \, \text{kg/m}^3$.
 - (i) Calculate the pressure at the bottom of the lake due to this depth of water.

(ii) A bubble of gas escapes from the mud at the bottom of the lake and rises to the surface.

Place one tick in each row of the table to indicate what happens to the volume, the mass and the density of the gas in the bubble. Assume that no gas or water vapour enters or leaves the bubble.

	increases	stays the same	decreases
volume of bubble	/		
mass of gas in bubble			/
density of gas in bubble	,		/

[2]

[Total: 7]

Select page

You	r
Mar	k

5(a)(i)

5(a)(ii)

_		

<u>u</u> 5	Width Scheme	
(a)(i)	P × V values are 7500 or about 7500	
	OR If P/pressure doubles, V/volume halves OR vice versa	
	(so) PV = constant OR P α 1/V OR either in words	
(a)(ii)	temperature	
(b)(i)	$P = hdg OR 5.0 \times 10 \times 1000$	
	50 000 Pa or 50 kPa	

Mark scheme

Volume of bubble increases

Mass of gas stays the same

Density of gas decreases

5(b)(i)

_

(b)(ii)

5(b)(ii)	
3(10)(11)	

5 (a) A student carries out an experiment to find the relationship between the pressure p and the volume V of a fixed mass of gas. The table contains four of her sets of measurements.

	1			Γ
PC p/kPa	250	500	750	1000
∂\ V/cm ³	30.0	15.2	9.8	7.6

(i) Use the data in the table to suggest the relationship between the pressure and the volume in this experiment. Explain how you reach your conclusion.

Pressure is	Inversely proportion to Valume	
	increases then Volume otto	
		[0]

Shape volung.

(ii) State the property of the gas, apart from the mass, that remains constant during the experiment.

Weight	Density	
	(

- (b) A lake is 5.0 m deep. The density of the water is 1000 kg/m3.
 - (i) Calculate the pressure at the bottom of the lake due to this depth of water.

	5000
pressure =	<u>6.665</u> [2]

(ii) A bubble of gas escapes from the mud at the bottom of the lake and rises to the surface.

Place one tick in each row of the table to indicate what happens to the volume, the mass and the density of the gas in the bubble. Assume that no gas or water vapour enters or leaves the bubble.

	increases	stays the same	decreases
volume of bubble	, , , , , , , , , , , , , , , , , , , ,	~	
mass of gas in bubble			\checkmark
density of gas in bubble			\checkmark

[2]

[Total: 7]

Select page

Your Mark

5(a)(i)

5(a)(ii)

Q5	Mark scheme				
(a)(i)	P × V values are 7500 or about 7500				
	OR If P/pressure doubles, V/volume halves OR vice versa				
	(so) PV = constant OR P α 1/V OR either in words				
(a)(ii)	temperature				
(b)(i)	$P = hdg OR 5.0 \times 10 \times 1000$				
	50 000 Pa or 50 kPa				

Volume of bubble increases

Mass of gas stays the same

Density of gas decreases

5(b)(i

١			
,			

(b)(ii)

5(b)(ii)

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 4 (May / June 2016), Question 6

Cambridge IGCSE™ Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

6 (a) Fig. 6.1 represents the waveform of a sound wave. The wave is travelling at constant speed.

Fig. 6.1

(i)	On	Fig.	6.1

1. label with the letter X the marked distance corresponding to the amplitude of the wave,

- 2. label with the letter Y the marked distance corresponding to the wavelength of the
- (ii) State what happens to the amplitude and the wavelength of the wave if
 - 1. the loudness of the sound is increased at constant pitch,

wavelength increases

2. the pitch of the sound is increased at constant loudness.

amplitude legreases wavelength __decreases_____

(b) A ship uses pulses of sound to measure the depth of the sea beneath the ship. A sound pulse is transmitted into the sea and the echo from the sea-bed is received after 54 ms. The speed of sound in seawater is 1500 m/s. 0.054 5

Calculate the depth of the sea beneath the ship.

1 S = 1000 mg = 36 N

Z=t*x The &

d=40.5

1500X 0.154 = 2d

no

[Total: 7]

Select page

Your Mark

6(a)(i)

6(a)(ii)

Q6	Mark scheme
(a)(i)	Mark amplitude with X Mark wavelength with Y
(a)(ii)	Amplitude increases <u>and</u> wavelength stays the same Amplitude stays the same <u>and</u> wavelength decreases
(b)	v = (total) distance/time OR d/t OR 2d/t in any form d = $1500 \times 0.054/2$ 40 m OR 41 m

6 (a) Fig. 6.1 represents the waveform of a sound wave. The wave is travelling at constant speed.

Fig. 6.1

- (i) On Fig. 6.1,
 - 1. label with the letter X the marked distance corresponding to the amplitude of the
 - 2. label with the letter Y the marked distance corresponding to the wavelength of the
- (ii) State what happens to the amplitude and the wavelength of the wave if
 - 1. the loudness of the sound is increased at constant pitch,

amplitudeDelo.mes	lader
wavelength belomes	Shorter
3	[1

2. the pitch of the sound is increased at constant loudness.

(b) A ship uses pulses of sound to measure the depth of the sea beneath the ship. A sound pulse is transmitted into the sea and the echo from the sea-bed is received after 54 ms. The speed of sound in seawater is 1500 m/s.

Calculate the depth of the sea beneath the ship.

of the sea beneath the ship.

$$0 = \frac{2d}{\pm}$$

$$\Rightarrow 81,000 = 2d$$

$$\Rightarrow 40,500 = d$$

$$depth = \frac{40.500 \text{ m}}{1000 \text{ m}}$$

[Total: 7]

Select page

Your Mark

6(a)(i)

6(a)(ii)

_
1
_

Q6	Mark scheme
(a)(i)	Mark amplitude with X Mark wavelength with Y
(a)(ii)	Amplitude increases <u>and</u> wavelength stays the same Amplitude stays the same <u>and</u> wavelength decreases
(b)	v = (total) distance/time OR d/t OR 2d/t in any form d = $1500 \times 0.054/2$ 40 m OR 41 m

6 (a) Fig. 6.1 represents the waveform of a sound wave. The wave is travelling at constant speed.

Fig. 6.1

- (i) On Fig. 6.1,
 - label with the letter X the marked distance corresponding to the amplitude of the wave,
 - label with the letter Y the marked distance corresponding to the wavelength of the wave.
- (ii) State what happens to the amplitude and the wavelength of the wave if
 - 1. the loudness of the sound is increased at constant pitch,

2. the pitch of the sound is increased at constant loudness.

(b) A ship uses pulses of sound to measure the depth of the sea beneath the ship. A sound pulse is transmitted into the sea and the echo from the sea-bed is received after 54ms. The speed of sound in seawater is 1500 m/s.

Calculate the depth of the sea beneath the ship.

$$S = \frac{D}{t}$$

$$\frac{54}{60} = 0.93333 S$$

$$= 1500 = \frac{D}{0.93}$$

$$= \frac{1395m}{2}$$

Select page

Your Mark

6(a)(i)

6(a)(ii)

Q6	Mark scheme
(a)(i)	Mark amplitude with X Mark wavelength with Y
(a)(ii)	Amplitude increases <u>and</u> wavelength stays the same Amplitude stays the same <u>and</u> wavelength decreases
(b)	v = (total) distance/time OR d/t OR 2d/t in any form d = $1500 \times 0.054/2$ 40 m OR 41 m

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 4 (May / June 2016), Question 7

Cambridge IGCSE[™] Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

All of the light P3 replected Enside the glaces prism/block without any (continue below)[1]
(ii) critical angle.

The angle at which the refracted ray is parallel to the Surface of the block

(b) Fig. 7.1 shows a ray of light, travelling in air, incident on a glass prism.

Fig. 7.1

(i) The speed of light in air is 3.0×10^8 m/s. Its speed in the glass is 2.0×10^8 m/s.

Calculate the refractive index of the glass.

Select page

Your	
Mark	

7(a)(i)

7(a)(ii)

7(b)(i)

7(b)(ii)

Q 7	Mark scheme
(a)(i)	Reflection in a more dense material where there is no refracted ray owtte OR All light in a more dense material is reflected owtte
(a)(ii)	e.g. The greatest angle of incidence (in the material) at which refraction occurs OR The angle of incidence (in the material) at which the refracted ray travels along the boundary/angle of refraction is 90° OR The angle of incidence/(in the material) above which total internal reflection occurs
(b)(i)	(refractive index =) speed of light in air/speed of light in glass OR $3.0 \times 10^8/2.0 \times 10^8$ = 1.5
(b)(ii)	$\sin c = 1/n \text{ OR } 1/1.5 \text{ seen}$ (c = 42°)
(b)(iii)	No change of direction at first face Total internal reflection at hypotenuse with i = r by eye Refraction with r greater than i at lower face

(iii) On Fig. 7.1, draw carefully, without calculation, the continuation of the ray through the prism and into the air.

[Total: 8]

Select page

Your
Mark

7(a)(i)

7(a)(ii)

7(b)(i)

7(b)(ii)

Q7	Mark scheme
(a)(i)	Reflection in a more dense material where there is no refracted ray owtte OR All light in a more dense material is reflected owtte
(a)(ii)	e.g. The greatest angle of incidence (in the material) at which refraction occurs OR The angle of incidence (in the material) at which the refracted ray travels along the boundary/angle of refraction is 90° OR The angle of incidence/(in the material) above which total internal reflection occurs
(b)(i)	(refractive index =) speed of light in air/speed of light in glass OR $3.0 \times 10^8/2.0 \times 10^8$ = 1.5
(b)(ii)	$\sin c = 1/n \text{ OR } 1/1.5 \text{ seen}$ (c = 42°)
(b)(iii)	No change of direction at first face Total internal reflection at hypotenuse with i = r by eye Refraction with r greater than i at lower face

(i) total internal reflection,

the angle of meident more than critical angle.

(ii) critical angle.

Angle of refraction equal to 90°.

(b) Fig. 7.1 shows a ray of light, travelling in air, incident on a glass prism.

Fig. 7.1

(i) The speed of light in air is 3.0×10^8 m/s. Its speed in the glass is 2.0×10^8 m/s. Calculate the refractive index of the glass.

= 1.5

refractive index = 1.5 [2]

Select page

Your
Mark

7(a)(i)

7(a)(ii)

7(b)(i)

7(b)(ii)

Q 7	Mark scheme
(a)(i)	Reflection in a more dense material where there is no refracted ray owtte OR All light in a more dense material is reflected owtte
(a)(ii)	e.g. The greatest angle of incidence (in the material) at which refraction occurs OR The angle of incidence (in the material) at which the refracted ray travels along the boundary/angle of refraction is 90° OR The angle of incidence/(in the material) above which total internal reflection occurs
(b)(i)	(refractive index =) speed of light in air/speed of light in glass OR $3.0 \times 10^8/2.0 \times 10^8$ = 1.5
(b)(ii)	sin c = 1/n OR 1/1.5 seen (c = 42°)
(b)(iii)	No change of direction at first face Total internal reflection at hypotenuse with i = r by eye Refraction with r greater than i at lower face

[1]

(iii) On Fig. 7.1, draw carefully, without calculation, the continuation of the ray through the prism and into the air. [3]

[Total: 8]

Select page

Your	
Mark	

7(a)(i)

7(a)(ii)

7(b)(i)

7(b)(ii)

Q7	Mark scheme
(a)(i)	Reflection in a more dense material where there is no refracted ray owtte OR All light in a more dense material is reflected owtte
(a)(ii)	e.g. The greatest angle of incidence (in the material) at which refraction occurs OR The angle of incidence (in the material) at which the refracted ray travels along the boundary/angle of refraction is 90° OR The angle of incidence/(in the material) above which total internal reflection occurs
(b)(i)	(refractive index =) speed of light in air/speed of light in glass OR $3.0 \times 10^8/2.0 \times 10^8$ = 1.5
(b)(ii)	$\sin c = 1/n \text{ OR } 1/1.5 \text{ seen}$ (c = 42°)
(b)(iii)	No change of direction at first face Total internal reflection at hypotenuse with i = r by eye Refraction with r greater than i at lower face

(i) total internal reflection,

When the insident ray from a dessey
medium reflects back into the medium itself [1]

(ii) critical angle.

When the incident ray travels exactly solar the

surface of the nedium [1]

(b) Fig. 7.1 shows a ray of light, travelling in air, incident on a glass prism.

Fig. 7.1

(i) The speed of light in air is 3.0×10^8 m/s. Its speed in the glass is 2.0×10^8 m/s. Calculate the refractive index of the glass.

Select page

You	ľ
Mar	I

7(a)(i)

7(a)(ii)

7(b)(i)

7(b)(ii)

Q7 Mark scheme				
	(a)(i)	Reflection in a more dense material where there is no refracted ray owtte OR All light in a more dense material is reflected owtte		
	(a)(ii)	e.g. The greatest angle of incidence (in the material) at which refraction occurs OR The angle of incidence (in the material) at which the refracted ray travels along the boundary/angle of refraction is 90° OR The angle of incidence/(in the material) above which total internal reflection occurs		
	(b)(i)	(refractive index =) speed of light in air/speed of light in glass OR $3.0 \times 10^8/2.0 \times 10^8$ = 1.5		
	(b)(ii)	$\sin c = 1/n \text{ OR } 1/1.5 \text{ seen}$ (c = 42°)		
	(b)(iii)	No change of direction at first face Total internal reflection at hypotenuse with i = r by eye Refraction with r greater than i at lower face		

	Show that the critical angle for the glass-air boundary is 42°.	(ii)
	·	
7(a)(i)	[1]	
		
	On Fig. 7.1, draw carefully, without calculation, the continuation of the ray through the prism and into the air. [3]	(iii)
	. [Total: 8]	
7 (a)(ii)	•	
7(b)(i)		
= (1.)(11)		
7(b)(ii)		
	·	
7(b)(iii)	,	

rk Q7	Mark scheme
(a)(i)	Reflection in a more dense material where there is no refracted ray owtte OR All light in a more dense material is reflected owtte
(a)(ii)	e.g. The greatest angle of incidence (in the material) at which refraction occurs OR The angle of incidence (in the material) at which the refracted ray travels along the boundary/angle of refraction is 90° OR The angle of incidence/(in the material) above which total internal reflection occurs
(b)(i)	(refractive index =) speed of light in air/speed of light in glass OR $3.0 \times 10^8/2.0 \times 10^8$ = 1.5
(b)(ii)	$\sin c = 1/n \text{ OR } 1/1.5 \text{ seen}$ $(c = 42^{\circ})$
(b)(iii)	No change of direction at first face Total internal reflection at hypotenuse with i = r by eye Refraction with r greater than i at lower face

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 4 (May / June 2016), Question 8

Cambridge IGCSE[™] Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Fig. 8.1

The e.m.f. of the supply is 220V. Each lamp is labelled 220V, 40W. The rating of the fuse is 2.0A.

Calculate

(ii) the current in the fuse,

Total current in circuit; 120 Fuse current = total / 10mps

(iii) the total number of lamps, all in parallel, that could be connected without blowing the fuse.

Total number of lamps = Parrent in Puse current of lamps = 20 = 11.11

number =[2]

Select page

Your Mark

8(a)(i)

8(a)(ii)

8(b)(i)

8(b)(ii)

Q8 Mark scheme				
(a)(i)	P = IV OR 40 = 220 × I OR (I =) P/V OR 40/220 0.18A			
(a)(ii)	$[3 \times 0.18(2)] = 0.54 \text{A OR } 0.55 \text{A}$			
(a)(iii)	2/0.182 = 10.99 OR 2/0.18 = 11.1 10 lamps OR 11 lamps			
(b)(i)	resistance <u>increases</u>			
(b)(ii)	Power (of lamp) decreases P = IV and current in lamp decreases. OR P = V ² /R			

(b) After a very long period of use, the wire filament of one of the lamps becomes thinner.

(i) Underline the effect of this change on the resistance of the filament.

resistance increases resistance remains the same resistance decreases [1]

(ii) State and explain the effect of this change on the power of the lamp.

The power of the lamp would decrease - This is

due to the increase in current the current is decreased.

Alle to the increase in resistance of the filament.

Select	
page	

Your	
Mark	

8(a)(i)

8(a)(ii)

8(b)(i)

8(b)(ii)

	Q8	Mark scheme
	(a)(i)	P = IV OR 40 = 220 × I OR (I =) P/V OR 40/220 0.18A
	(a)(ii)	$[3 \times 0.18(2)] = 0.54A \text{ OR } 0.55A$
	(a)(iii)	2/0.182 = 10.99 OR 2/0.18 = 11.1 10 lamps OR 11 lamps
	(b)(i)	resistance <u>increases</u>
	(b)(ii)	Power (of lamp) decreases P = IV and current in lamp decreases. OR P = V ² /R

Fig. 8.1

The e.m.f. of the supply is 220 V. Each lamp is labelled 220 V, 40 W. The rating of the fuse is 2.0 A.

Calculate

(i) the current in each lamp,

$$\frac{40}{220} = 0.18$$
 current = 0.18 A[2]

(ii) the current in the fuse,

(iii) the total number of lamps, all in parallel, that could be connected without blowing the fuse.

Select page

Your Mark

8(a)(i)

8(a)(ii)

8(b)(i)

8(b)(ii)

Q8	Mark scheme
(a)(i)	P = IV OR 40 = 220 × I OR (I =) P/V OR 40/220 0.18A
(a)(ii)	$[3 \times 0.18(2)] = 0.54A \text{ OR } 0.55A$
(a)(iii)	2/0.182 = 10.99 OR 2/0.18 = 11.1 10 lamps OR 11 lamps
(b)(i)	resistance <u>increases</u>
(b)(ii)	Power (of lamp) decreases P = IV and current in lamp decreases. OR P = V ² /R

ſħ١	After a very	Inna period of use	the wire filament of	one of the lamne	hecomes thinne

(i) Underline the effect of this change on the resistance of the filament.

resistance increases resistance remains the same resistance decreases [1]

(ii) State and explain the effect of this change on the power of the lamp.

P = V2	Thus	formula.	determin	es that
2		4		
power so	therefore	if power	8 doubled	than 121
& cica	Resis fo	nce is	halved.	[Total: 8]

Your	
Mark	

8(a)(i)

8(a)(ii)

8(b)(i)

8(b)(ii)

Q8	Mark scheme
(a)(i)	P = IV OR 40 = 220 × I OR (I =) P/V OR 40/220 0.18A
(a)(ii)	$[3 \times 0.18(2)] = 0.54 \text{A OR } 0.55 \text{A}$
(a)(iii)	2/0.182 = 10.99 OR 2/0.18 = 11.1 10 lamps OR 11 lamps
(b)(i)	resistance <u>increases</u>
(b)(ii)	Power (of lamp) decreases P = IV and current in lamp decreases. OR P = V ² /R

Fig. 8.1

The e.m.f. of the supply is 220V. Each lamp is labelled 220V, 40W. The rating of the fuse is 2.0A.

Calculate

(i) the current in each lamp,

$$\frac{..220}{40} = 5.5$$

current = 5.5

(ii) the current in the fuse,

279

current = _____[1

(iii) the total number of lamps, all in parallel, that could be connected without blowing the fuse.

number = 호

Select page

Your Mark

8(a)(i)

8(a)(ii)

8(b)(i)

8(b)(ii)

Q8	Mark scheme
(a)(i)	P = IV OR 40 = 220 × I OR (I =) P/V OR 40/220 0.18A
(a)(ii)	$[3 \times 0.18(2)] = 0.54A \text{ OR } 0.55A$
(a)(iii)	2/0.182 = 10.99 OR 2/0.18 = 11.1 10 lamps OR 11 lamps
(b)(i)	resistance <u>increases</u>
(b)(ii)	Power (of lamp) decreases P = IV and current in lamp decreases. OR P = V ² /R

(b) Afte	er a very long period of use, the wire filament of one of the lamps becomes thinner.
· (i)	Underline the effect of this change on the resistance of the filament.
	resistance increases resistance remains the same resistance decreases [1]
(ii)	State and explain the effect of this change on the power of the lamp.
	The inesistence increases to so the
	power of the damp will decrease.
	[2]
	[Total: 8]

Your
Mark

8(a)(i)

8(a)(ii)

8(b)(i)

8(b)(ii)

	Q8	Mark scheme
	(a)(i)	P = IV OR 40 = 220 × I OR (I =) P/V OR 40/220 0.18A
	(a)(ii)	[3 × 0.18(2)] = 0.54A OR 0.55A
	(a)(iii)	2/0.182 = 10.99 OR 2/0.18 = 11.1 10 lamps OR 11 lamps
	(b)(i)	resistance <u>increases</u>
	(b)(ii)	Power (of lamp) decreases P = IV and current in lamp decreases. OR P = V ² /R

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 4 (May / June 2016), Question 9

Cambridge IGCSE™ Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Your	
Mark	

9(a)(i)

9(a)(ii)

9(b)(i)

Q 9	Mark scheme
(a)(i)	direction of the force on a positive charge
(a)(ii)	Straight parallel lines from upper to lower plate At least 3 lines drawn. All lines drawn equally spaced, approximately symmetrical with respect to plates Arrows downwards
(b)(i)	Upward force (on drop) due to electric field/charge on plates = weight of drop Upward force on drop = downward force on drop OR no resultant/net force on drop OR forces are balanced
(b)(ii)	Drop moves upwards Weight/mass of drop decreases OR downward force decreases OR Upward force (due to electric field) > weight of drop

9	(a)	(i)	State what is meant by the <i>direction</i> of an electric field.
			The flow of current from positive
			to negative terminals. [1]
		(ii)	Fig. 9.1 shows a pair of oppositely-charged horizontal metal plates with the top plate positive.
			+++++++++++++++++++++++++++++++++++++++
			Fig. 9.1
			The electric field between the plates in Fig. 9.1 is uniform.
			Draw lines on Fig. 9.1 to represent this uniform field. Add arrows to these lines to show the direction of the field. [3]
	(b)		9.2 shows a very small negatively-charged oil drop in the air between a pair of oppositely rged horizontal metal plates. The oil drop does not move up or down. oil drop
			Fig. 9.2
		(i)	Suggest, in terms of forces, why the oil drop does not move up or down. As it is not affected by the forces of the plates. They are not very strang-[2]
		(ii)	Without losing any of its charge, the oil drop begins to evaporate.
			State and explain what happens to the oil drop. It moves towards the positively Charged plate. [2]
			[Total: 8]

Your
Mark

9(a)(i)

9(a)(ii)

Q9	Mark scheme
(a)(i)	direction of the force on a positive charge
(a)(ii)	Straight parallel lines from upper to lower plate At least 3 lines drawn. All lines drawn equally spaced, approximately symmetrical with respect to plates Arrows downwards
(b)(i)	Upward force (on drop) due to electric field/charge on plates = weight of drop Upward force on drop = downward force on drop OR no resultant/net force on drop OR forces are balanced
(b)(ii)	Drop moves upwards Weight/mass of drop decreases OR downward force decreases OR Upward force (due to electric field) > weight of drop

9(b)(ii)

9(b)(i)

Υ	′οι	ır
Ν	Лa	rk

9(a)(i)

9(a)(ii)

(a)(
(a)(
(b)(

Q9	Mark scheme
(a)(i)	direction of the force on a positive charge
(a)(ii)	Straight parallel lines from upper to lower plate At least 3 lines drawn. All lines drawn equally spaced, approximately symmetrical with respect to plates Arrows downwards
(b)(i)	Upward force (on drop) due to electric field/charge on plates = weight of drop Upward force on drop = downward force on drop OR no resultant/net force on drop OR forces are balanced
(b)(ii)	Drop moves upwards Weight/mass of drop decreases OR downward force decreases OR Upward force (due to electric field) > weight of drop

9(b)(ii)

9(b)(i)

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 4 (May / June 2016), Question 10

Cambridge IGCSE™ Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

(i)) State the number of each type of particle in a neutral atom of ¹³¹ ₅₃ I.			
	protons 53	neutrons 76	electrons 53	[2]

(ii) State the symbol, in nuclide notation, for the xenon nucleus. (3)

54 te

(b) The background count rate of radioactivity in a laboratory is 30 counts/min.

A radioactive sample has a half-life of 50 minutes. The sample is placed at a fixed distance from a detector. The detector measures an initial count rate from the sample, including background, of 310 counts/min.

On Fig. 10.1, plot suitable points and draw a graph of the count rate from the sample, corrected for background, as it changes with time.

Fig. 10.1

[3]

[Total: 7]

Select page

Your Mark

10(a)(i)

10(a)(ii)

	Q10	Mark scheme
	(a)(i)	Protons: 53 neutrons: 78 electrons: 53
	(a)(ii)	¹³¹ Xe
	(b)	Points plotted at 3 of: 0 s, 50 s, 100 s, 150 s 3 corrected counts/minute plotted at any from: • (0, 280) • (50, 140) • (100, 70) • (150, 35) Graph drawn as curve through correct points

(i) State the number of each type of particle in a neutral atom of $^{131}_{53}\mathrm{I}.$

protons 5.3 neutrons 7.8 electrons 5.3. [2]

(ii) State the symbol, in nuclide notation, for the xenon nucleus.

131 Xe.....[2]

(b) The background count rate of radioactivity in a laboratory is 30 counts/min.

A radioactive sample has a half-life of 50 minutes. The sample is placed at a fixed distance from a detector. The detector measures an initial count rate from the sample, including background, of 310 counts/min.

On Fig. 10.1, plot suitable points and draw a graph of the count rate from the sample, corrected for background, as it changes with time.

Fig. 10.1

[3]

[Total: 7]

Select page

Your Mark

10(a)(i)

10(a)(ii)

	Q10	Mark scheme
	(a)(i)	Protons: 53 neutrons: 78 electrons: 53
	(a)(ii)	¹³¹ Xe
	(b)	Points plotted at 3 of: 0 s, 50 s, 100 s, 150 s 3 corrected counts/minute plotted at any from: • (0, 280) • (50, 140) • (100, 70) • (150, 35) Graph drawn as curve through correct points

protons 78.53 neutrons 78 electrons 52 [2]

(ii) State the symbol, in nuclide notation, for the xenon nucleus.

131 52Xe [2]

(b) The background count rate of radioactivity in a laboratory is 30 counts/min.

A radioactive sample has a half-life of 50 minutes. The sample is placed at a fixed distance from a detector. The detector measures an initial count rate from the sample, including background, of 310 counts/min.

On Fig. 10.1, plot suitable points and draw a graph of the count rate from the sample, corrected for background, as it changes with time.

Fig. 10.1

[3]

[Total: 7]

Select page

Your Mark

10(a)(i)

10(a)(ii)

Q10	Mark scheme
(a)(i)	Protons: 53 neutrons: 78 electrons: 53
(a)(ii)	¹³¹ Xe
(b)	Points plotted at 3 of: 0 s, 50 s, 100 s, 150 s 3 corrected counts/minute plotted at any from: • (0, 280) • (50, 140) • (100, 70) • (150, 35) Graph drawn as curve through correct points

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 4 (May / June 2016), Question 11

Cambridge IGCSE™ Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

input A	input B	output
0	O.	. 0
. 1	0	0
0	1	0
. 1	. 1	1

Fig. 11.1

State the name of this logic gate.

AND Gate [1]

(ii) Complete the truth table for the logic gate shown in Fig. 11.2.

3 output
. 1
B
0
.0

Fig. 11.2

[2]

(b) Fig. 11.3 shows the system of logic gates used to ensure the security of the strongroom of a bank.

Fig. 11.3

The strongroom door will only open when the output F is logic 1.

Complete the table to show the logic states at A, B, C, D and E when the strongroom door can be opened.

input A	input B	input C	output D	output E	output F
1	1	1	1	1 .	1

[3]

[Total: 6]

Select page

Your Mark

11(a)(i)

11(a)(ii)

Q11	Mark sch	eme				
(a)(i)	AND (gate)				
(a)(ii)	001 100 010 110					
(b)	А	В	С	D	Е	F
	1	1	0	1	1	1

input A	input B	output
0	0	Ò
1 .	. 0	0
0	1	0
.1.	_, 1	. 1.

Fig. 11.1

State the name of this logic gate.

AND [1]

(ii) Complete the truth table for the logic gate shown in Fig. 11.2.

input A	input B:	
0 :	0.	0
1	0 .	<u> </u>
0.	1'	1
` 1 ·	1 .	

Fig. 11.2

[2]

(b) Fig. 11.3 shows the system of logic gates used to ensure the security of the strongroom of a bank.

Fig. 11.3

The strongroom door will only open when the output F is logic 1.

Complete the table to show the logic states at A, B, C, D and E when the strongroom door can be opened.

input A input B		input C	output D	output E	output F
t	((1	l	1

[3]

[Total: 6]

Select page

Your Mark

11(a)(i)

11(a)(ii)

Q11	Mark sch	eme				
(a)(i)	AND (gate	e)				
(a)(ii)	001 100 010 110					
(b)	А	В	С	D	Е	F
	1	1	0	1	1	1

input A	input B	output
0	0	0
1	.0	0
0	1	0
1	. 1	1

Fig. 11.1

State the name of this logic gate.

AND [1]

(ii) Complete the truth table for the logic gate shown in Fig. 11.2.

	input A	input B	output
	0	. 0	1
	1	0	. 1 .
,	. 0	1	1
	1	1	0,

Fig. 11.2

[2]

(b) Fig. 11.3 shows the system of logic gates used to ensure the security of the strongroom of a bank.

Fig. 11.3

The strongroom door will only open when the output F is logic 1.

Complete the table to show the logic states at A, B, C, D and E when the strongroom door can be opened.

input A	input B	input C	output D	output E	output F
· ·	\$1	ŀ	0	0	1

[3]

[Total: 6]

Select page

Your Mark

11(a)(i)

11(a)(ii)

Q11	Mark sch	eme				
(a)(i)	AND (gate)					
(a)(ii)	001 100 010 110					
(b)	А	В	С	D	Е	F
	1	1	0	1	1	1

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 5 (May / June 2016), Question 1

Cambridge IGCSE™ Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Fig. 1.1

Fig. 1.2

A pendulum has been set up for you as shown in Fig. 1.1.

(a) Adjust the pendulum until its length $l = 50.0 \, \mathrm{cm}$. The length l is measured to the centre of the bob.

Explain briefly how you avoided a parallax (line of sight) error when measuring the length *l*.

- (b) Displace the pendulum bob slightly and release it so that it swings. Fig. 1.2 shows one complete oscillation of the pendulum.
 - (i) Measure the time t for 20 complete oscillations.

(ii) Calculate the period ${\it T}$ of the pendulum. The period is the time for one complete oscillation.

$$\frac{28.3}{20} = 1.415$$

Select page

	Your Mark	
1(a)		
1(b)(i)		
1(b)(ii)		
l(b)(iii)		
1(c)(i)		
1(c)(ii)		

1(d)(i)

Q1	Mark scheme	
(a)	Either suitable use of a horizontal straight edge	
	Or holding rule close to pendulum Or line of sight perpendicular to rule	
(b)(i)	t = 27.8 - 29.0 (s)	
(b)(ii)	T correct Unit s	
(b)(iii)	More likely to miscount/pendulum may stop swinging	
(c)(i)	Correct calculation and unit s ²	
(c)(ii)	g between 9 and 11 from correct <i>T</i> and working 2 or 3 significant figures	
(d)(i)	Explanation of cause of inaccuracy in measurement of t or l . e.g. student did not react quickly enough when starting/stopping stopwatch OR difficulty in measuring accurately to centre of bob	
(d)(ii)	Any two from: Use different length(s) Repeat timing Use of a fiducial mark Increased number of oscillations Plot a graph using length and time or time ²	

. ,	Measuring the time for a large number of oscillations	s, rather than for 1	oscillation, gives a
	more accurate value for T.		

Suggest one practical reason why measuring the time for 200 oscillations, rather than 20 oscillations, may not be suitable.

The number of oscillation may be too large and the good may change after a while this the result may not be accurate for T.

$$T^2 = 2.0164 s^2$$
 [1]

(ii) Calculate the acceleration of free fall g using the equation $g=\frac{4\pi^2l}{T^2}$. Give your answer to a suitable number of significant figures for this experiment.

$$\frac{4\pi^2 \times 50}{2.0164} = 979 \text{ rem/s}^2$$
$$= 9.79 \text{ m/s}^2$$

 $g = \frac{9.79}{m/s^2}$ m/s²[2]

- (d) A student checks the value of the acceleration of free fall g in a text book. The value in the book is $9.8\,\mathrm{m/s^2}$.
 - (i) Suggest a practical reason why the result obtained from the experiment may be different.

Because we cannot exactly start and stop the timer during the oscillation period because of humans have a reaction rate of 10.04s.

(ii) Suggest two improvements to the experiment.

[Total: 11]

Select page

١	⁄ oui	r
ľ	Vlar	k

1(a)

1(b)(i)

1(b)(ii)

1(b)(iii)

1(c)(i)

1(c)(ii)

1(d)(i)

Q1	Mark scheme
(a)	Either suitable use of a horizontal straight edge
	Or holding rule close to pendulum Or line of sight perpendicular to rule
(b)(i)	t = 27.8 - 29.0 (s)
(b)(ii)	T correct Unit s
(b)(iii)	More likely to miscount/pendulum may stop swinging
(c)(i)	Correct calculation and unit s ²
(c)(ii)	g between 9 and 11 from correct T and working 2 or 3 significant figures
(d)(i)	Explanation of cause of inaccuracy in measurement of t or l . e.g. student did not react quickly enough when starting/ stopping stopwatch OR difficulty in measuring accurately to centre of bob
(d)(ii)	Any two from: Use different length(s) Repeat timing Use of a fiducial mark Increased number of oscillations Plot a graph using length and time or time ²

Fig. 1.1

Fig. 1.2

A pendulum has been set up for you as shown in Fig. 1.1.

(a) Adjust the pendulum until its length $l=50.0\,\mathrm{cm}$. The length l is measured to the centre of the bob.

Explain briefly how you avoided a parallax (line of sight) error when measuring the length 1.

View the ruler at right angles

- (b) Displace the pendulum bob slightly and release it so that it swings. Fig. 1.2 shows one complete oscillation of the pendulum.
 - (i) Measure the time t for 20 complete oscillations. $t = \frac{28}{500} \frac{1}{500} \frac{1}$
 - (ii) Calculate the period ${\it T}$ of the pendulum. The period is the time for one complete oscillation.

Select page

	Your Mark
1(a)	
1(b)(i)	
1(b)(ii)	
(b)(iii)	
1(c)(i)	
1(c)(ii)	

1(d)(i)

Q1	Mark scheme
(a)	Either suitable use of a horizontal straight edge
	Or holding rule close to pendulum Or line of sight perpendicular to rule
(b)(i)	t = 27.8 - 29.0 (s)
(b)(ii)	T correct Unit s
(b)(iii)	More likely to miscount/pendulum may stop swinging
(c)(i)	Correct calculation and unit s ²
(c)(ii)	g between 9 and 11 from correct T and working 2 or 3 significant figures
(d)(i)	Explanation of cause of inaccuracy in measurement of t or l . e.g. student did not react quickly enough when starting/stopping stopwatch OR difficulty in measuring accurately to centre of bob
(d)(ii)	Any two from: Use different length(s) Repeat timing Use of a fiducial mark Increased number of oscillations Plot a graph using length and time or time ²

	(iii)	Measuring the time for a large number of oscillations, rather than for 1 oscillation, gives a more accurate value for ${\it T.}$
		Suggest one practical reason why measuring the time for 200 oscillations, rather than 20 oscillations, may not be suitable.
		It will take too long and to measure the time
		for 200 oscillations [1]
(c)	(i)	Calculate T ² .
		: 06
		$T^2 = \frac{1.78}{1.78} = \frac{1}{1.78}$
	(ii)	Calculate the acceleration of free fall g using the equation $g = \frac{4\pi^2 l}{T^2}$. Give your answer to a suitable number of significant figures for this experiment. $\frac{4\times 77^2\times 255}{1.78^4} = \frac{4\pi^2 l}{10.335} = \frac{110.335}{10.0335} = \frac{110.335}{10.035} = $
		$g = \frac{10 \cdot 1}{10 \cdot 1} m/s^2 [2]$
(d)		tudent checks the value of the acceleration of free fall g in a text book. The value in the k is $9.8\mathrm{m/s^2}$.
	(i)	Suggest a practical reason why the result obtained from the experiment may be different.
		There was no air resistance accounted
		for in my results
		[1]
	(ii)	Suggest two improvements to the experiment.
		1 Repeat the experiment to get the average
		M
		2 Measure the length from centre of bob
		[2]

Select page

Your
Mark

1(a)

1(b)(i)

1(b)(ii)

1(b)(iii)

1(c)(i)

1(c)(ii)

1(d)(i)

1(d)(ii)

[Total: 11]

Q1	Mark scheme
(a) Either suitable use of a horizontal straight edge	
	Or holding rule close to pendulum Or line of sight perpendicular to rule
(b)(i)	t = 27.8 - 29.0 (s)
(b)(ii)	T correct Unit s
(b)(iii)	More likely to miscount/pendulum may stop swinging
(c)(i)	Correct calculation and unit s ²
(c)(ii)	g between 9 and 11 from correct T and working 2 or 3 significant figures
(d)(i)	Explanation of cause of inaccuracy in measurement of t or l . e.g. student did not react quickly enough when starting/stopping stopwatch OR difficulty in measuring accurately to centre of bob
(d)(ii)	Any two from: Use different length(s) Repeat timing Use of a fiducial mark Increased number of oscillations Plot a graph using length and time or time ²

Fig. 1.1

Fig. 1.2

A pendulum has been set up for you as shown in Fig. 1.1.

(a) Adjust the pendulum until its length $l=50.0\,\mathrm{cm}$. The length l is measured to the centre of the bob.

Explain briefly how you avoided a parallax (line of sight) error when measuring the length *l.*| used a ruler to align the middle of the too

to the rule of measurement as this would avoid

error: [1]

- (b) Displace the pendulum bob slightly and release it so that it swings. Fig. 1.2 shows one complete oscillation of the pendulum.
 - (i) Measure the time t for 20 complete oscillations.

$$t = .37.0$$
 seconds. [1]

(ii) Calculate the period T of the pendulum. The period is the time for one complete oscillation.

$$T = 1.85$$
 [2]

Select page

	Your Mark
1(a)	
1(b)(i)	
1(b)(ii)	
1(b)(iii)	
1(c)(i)	
1(c)(ii)	

1(d)(i)

Q1	Mark scheme
(a)	Either suitable use of a horizontal straight edge
	Or holding rule close to pendulum Or line of sight perpendicular to rule
(b)(i)	t = 27.8 - 29.0 (s)
(b)(ii)	T correct Unit s
(b)(iii)	More likely to miscount/pendulum may stop swinging
(c)(i)	Correct calculation and unit s ²
(c)(ii)	g between 9 and 11 from correct T and working 2 or 3 significant figures
(d)(i)	Explanation of cause of inaccuracy in measurement of t or l . e.g. student did not react quickly enough when starting/ stopping stopwatch OR difficulty in measuring accurately to centre of bob
(d)(ii)	Any two from: Use different length(s) Repeat timing Use of a fiducial mark Increased number of oscillations Plot a graph using length and time or time ²

(iii)	Measuring the time for a large number of oscillations, rather than for 1 oscillation, gives a more accurate value for \mathcal{T} .
	Suggest one practical reason why measuring the time for 200 oscillations, rather than 20 oscillations, may not be suitable.
	It would be more accurate as a persons time
	delay needs to be countered for and it is difficult to count for kep1] oscille
/i)	Calculate T2

(c) (i) Calculate T^2 .

$$(1.85)^2 = 3.4225$$

 $(35.F)$
 $T^2 = 3.4225$ [1]

(ii) Calculate the acceleration of free fall g using the equation $g=\frac{4\pi^2l}{T^2}$. Give your answer to a suitable number of significant figures for this experiment.

- (d) A student checks the value of the acceleration of free fall g in a text book. The value in the book is $9.8 \,\mathrm{m/s^2}$.
 - (i) Suggest a practical reason why the result obtained from the experiment may be different.

Because the value of accelaration of freefall may differ slightly from place.

10 place. [1]

(ii) Suggest two improvements to the experiment.

1. To get accurate results we could have made use of
a sensor which starts and end time on pendulum crossing it2. Du More number of oscillations should be taken.

[Total: 11]

Select page

١	⁄ oui	r
ľ	Vlar	k

1(a)

1(b)(i)

1(b)(ii)

1(b)(iii)

1(c)(i)

1(c)(ii)

1(d)(i)

Q1	Mark scheme
(a)	Either suitable use of a horizontal straight edge
	Or holding rule close to pendulum Or line of sight perpendicular to rule
(b)(i)	t = 27.8 - 29.0 (s)
(b)(ii)	T correct Unit s
(b)(iii)	More likely to miscount/pendulum may stop swinging
(c)(i)	Correct calculation and unit s ²
(c)(ii)	g between 9 and 11 from correct T and working 2 or 3 significant figures
(d)(i)	Explanation of cause of inaccuracy in measurement of t or l . e.g. student did not react quickly enough when starting/ stopping stopwatch OR difficulty in measuring accurately to centre of bob
(d)(ii)	Any two from: Use different length(s) Repeat timing Use of a fiducial mark Increased number of oscillations Plot a graph using length and time or time ²

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 5 (May / June 2016), Question 2

Cambridge IGCSE™ Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

2	In this	experiment,	you will	investigate	the	cooling	of	water.

- Pour 100 cm³ of the hot water provided into beaker A.
 - Measure the temperature θ_{H} of the water in beaker **A**.

- Pour 100 cm³ of the cold water provided into beaker B.
- Measure the temperature $\theta_{\rm C}$ of the water in beaker B.

• Calculate the average temperature $\theta_{\rm AV}$ using the equation $\theta_{\rm AV} = \frac{\theta_{\rm H} + \theta_{\rm C}}{2}$.

$$\theta_{AV} = \frac{58^{\circ}C}{131}$$

(b) Add the water from beaker B to the hot water in beaker A. Stir briefly.

Measure the temperature θ_{M} of the mixture.

$$\theta_{M} = 51^{\circ}$$

(c) State one precaution that you took to ensure that the temperature readings are as reliable as possible.

d vem l	Make	Sure	that	1 read	the re	ecidinas
	om eye 1					-

Υ	'οι	ır
Ν	/la	rk

2(a)

2(b)

2(c)

2(d)(i)

2(d)(ii)

2(d)(iii)

Q2	Mark scheme
(a)	$\theta_{\rm H}$ 60 – 100 $\theta_{\rm C}$ 10 – 40 and θ AV correct Unit °C
(b)	$\theta_{\scriptscriptstyle M}$ between $\theta_{\scriptscriptstyle H}$ and $\theta_{\scriptscriptstyle C}$
(c)	Perpendicular viewing of scale OR wait until temperature stops rising OR carry out without undue delay between parts
(d)(i)	Correct diagram with lid Insulation placed round beaker
(d)(ii)	Sensible series of values with $\boldsymbol{\theta}_{M}$ between $\boldsymbol{\theta}_{H}$ and $\boldsymbol{\theta}_{C}$
(d)(iii)	Statement and justification to match results
(d)(iv)	Two from: Room temperature (or other environmental condition) Temperature of cold water Temperature of hot water Volumes of water Size/shape/material/surface area of beaker

You are provided with

- · a lid, with a hole for the thermometer,
- · some insulating material,
- two elastic bands.
- (i) In the space below, draw a labelled diagram to show how you will use these items to reduce the loss of thermal energy when the procedure is repeated.

[2]

(ii) Using the improvements shown in your diagram, repeat the procedure in parts (a) and (b).

$\theta_{H} =$	62	73°C	
θ _C =	31	°C	
θω, =	5)°C	
)°C	
о _М –			[1]

(iii) Comment on whether the improvements made to the apparatus have significantly changed the value of the temperature $\theta_{\rm M}$. Use your results to justify your answer.

120	The value	of OM	has not	Significanty
	because th			
difference	between t	both exper	iments	[1

(iv) Suggest two conditions that should be kept constant for all parts of this experiment.

1. The amount of water wood	
2 The external environment must be maintained	
	21

[Total: 11]

Select page

Your
Mark

2(a)

2(b)

2(c)

2(d)(i)

2(d)(ii)

2(d)(iii)

Q2	Mark scheme
(a)	$\theta_{\rm H}$ 60 – 100 $\theta_{\rm C}$ 10 – 40 and θAV correct Unit °C
(b)	$\boldsymbol{\theta}_{\scriptscriptstyle M}$ between $\boldsymbol{\theta}_{\scriptscriptstyle H}$ and $\boldsymbol{\theta}_{\scriptscriptstyle C}$
(c)	Perpendicular viewing of scale OR wait until temperature stops rising OR carry out without undue delay between parts
(d)(i)	Correct diagram with lid Insulation placed round beaker
(d)(ii)	Sensible series of values with θ_{M} between θ_{H} and θ_{C}
(d)(iii)	Statement and justification to match results
(d)(iv)	Two from: Room temperature (or other environmental condition) Temperature of cold water Temperature of hot water Volumes of water Size/shape/material/surface area of beaker

2	In thin	ovnoriment	vou will	invoctionto	tho	apolina	of	wotor
2	in this	experiment,	you will	investigate	me	cooling	OI	water.

- (a) Pour 100 cm³ of the hot water provided into beaker A.
 - Measure the temperature θ_H of the water in beaker **A**.

- Pour 100 cm³ of the cold water provided into beaker B.
- Measure the temperature $\theta_{\rm C}$ of the water in beaker B.

 $\theta_{\rm C} = \frac{32}{32} = \frac{32}{2} = \frac{32}{2}.$ • Calculate the average temperature $\theta_{\rm AV}$ using the equation $\theta_{\rm AV} = \frac{\theta_{\rm H} + \theta_{\rm C}}{2}$.

(b) Add the water from beaker B to the hot water in beaker A. Stir briefly.

Measure the temperature $\theta_{\rm M}$ of the mixture.

(c) State one precaution that you took to ensure that the temperature readings are as reliable as possible.

I tried +	o avoid p	xiallex er	70.
	ting water	into tre	,[1
measuring	cyclinder	\checkmark	

Your Mark

2(a)

2(d)(i)

2(d)(ii)

2(d)(iii)

Q2	Mark scheme
(a)	$\theta_{\rm H}$ 60 – 100 $\theta_{\rm C}$ 10 – 40 and θAV correct Unit °C
(b)	$\theta_{\scriptscriptstyle M}$ between $\theta_{\scriptscriptstyle H}$ and $\theta_{\scriptscriptstyle C}$
(c)	Perpendicular viewing of scale OR wait until temperature stops rising OR carry out without undue delay between parts
(d)(i)	Correct diagram with lid Insulation placed round beaker
(d)(ii)	Sensible series of values with $\theta_{\rm M}$ between $\theta_{\rm H}$ and $\theta_{\rm C}$
(d)(iii)	Statement and justification to match results
(d)(iv)	Two from: Room temperature (or other environmental condition) Temperature of cold water Temperature of hot water Volumes of water Size/shape/material/surface area of beaker

You are provided with

- · a lid, with a hole for the thermometer,
- · some insulating material,
- two elastic bands.
- (i) In the space below, draw a labelled diagram to show how you will use these items to reduce the loss of thermal energy when the procedure is repeated.

(ii) Using the improvements shown in your diagram, repeat the procedure in parts (a) and (b).

$$\theta_{H} = \frac{69^{\circ} \text{C}}{33^{\circ} \text{C}}$$

$$\theta_{C} = \frac{33^{\circ} \text{C}}{90^{\circ} \text{C}}$$

$$\theta_{AV} = \frac{51^{\circ} \text{C}}{90^{\circ} \text{C}}$$

$$\theta_{M} = \frac{50^{\circ} \text{C}}{90^{\circ} \text{C}}$$
[1]

(iii) Comment on whether the improvements made to the apparatus have significantly changed the value of the temperature $\theta_{\rm M}$. Use your results to justify your answer.

Yes	+ heu h	ave OM	tuantia	noitralazion
				naitalus
LNOWS.		Heat lo	22 02	ciosolotip

(iv) Suggest two conditions that should be kept constant for all parts of this experiment.

1. The	initial.	100	T00M	temperature
2. The	volume	O.F.	water	

[Total: 11]

Select page

Your
Mark

2(a)

2(b)

2(c)

2(d)(i)

2(d)(ii)

2(d)(iii)

Q2	Mark scheme
(a)	$\theta_{\rm H}$ 60 – 100 $\theta_{\rm C}$ 10 – 40 and θ AV correct Unit °C
(b)	$\theta_{\scriptscriptstyle M}$ between $\theta_{\scriptscriptstyle H}$ and $\theta_{\scriptscriptstyle C}$
(c)	Perpendicular viewing of scale OR wait until temperature stops rising OR carry out without undue delay between parts
(d)(i)	Correct diagram with lid Insulation placed round beaker
(d)(ii)	Sensible series of values with $\theta_{_{M}}$ between $\theta_{_{H}}$ and $\theta_{_{C}}$
(d)(iii)	Statement and justification to match results
(d)(iv)	Two from: Room temperature (or other environmental condition) Temperature of cold water Temperature of hot water Volumes of water Size/shape/material/surface area of beaker

Select
page

2	In this	experiment,	vou will	investigate	the	cooling	of	water.

- (a) Pour 100 cm³ of the hot water provided into beaker A.
 - Measure the temperature θ_H of the water in beaker **A**.

- Pour 100 cm³ of the cold water provided into beaker B.
- Measure the temperature $\theta_{\rm C}$ of the water in beaker **B**.

• Calculate the average temperature $\theta_{\rm AV}$ using the equation $\theta_{\rm AV} = \frac{\theta_{\rm H} + \theta_{\rm C}}{2}$.

$$O_{AV} = 78 + 32$$

$$\Theta_{AV} = 55$$

$$\theta_{AV} = 55^{\circ}$$
[3]

(b) Add the water from beaker B to the hot water in beaker A. Stir briefly.

Measure the temperature $\theta_{\rm M}$ of the mixture.

$$\theta_{\rm M} = \dots 52^{\circ}$$
 [1]

(c) State one precaution that you took to ensure that the temperature readings are as reliable as possible.

k	eep roo	m te	mperat	vie cons	stant. L	be the	eame	# Volume
Qt.	water	for	both	huk an	d cold	water		[1]

Your Mark

2(d)(i)

2(d)(ii)

2(d)(iii)

Q2	Mark scheme
(a)	$\theta_{\rm H}$ 60 – 100 $\theta_{\rm C}$ 10 – 40 and θAV correct Unit °C
(b)	$\theta_{\scriptscriptstyle M}$ between $\theta_{\scriptscriptstyle H}$ and $\theta_{\scriptscriptstyle C}$
(c)	Perpendicular viewing of scale OR wait until temperature stops rising OR carry out without undue delay between parts
(d)(i)	Correct diagram with lid Insulation placed round beaker
(d)(ii)	Sensible series of values with $\boldsymbol{\theta}_{_{M}}$ between $\boldsymbol{\theta}_{_{H}}$ and $\boldsymbol{\theta}_{_{C}}$
(d)(iii)	Statement and justification to match results
(d)(iv)	Two from: Room temperature (or other environmental condition) Temperature of cold water Temperature of hot water Volumes of water Size/shape/material/surface area of beaker

You are provided with

- · a lid, with a hole for the thermometer,
- · some insulating material,
- two elastic bands.
- (i) In the space below, draw a labelled diagram to show how you will use these items to reduce the loss of thermal energy when the procedure is repeated.

(ii) Using the improvements shown in your diagram, repeat the procedure in parts (a) and (b).

$\theta_{\rm H} =$	77°
$\theta_{\rm C} =$	32°
$\theta_{AV} =$	54.5°
θ., =	56°
, IVI	[1]

(iii) Comment on whether the improvements made to the apparatus have significantly changed the value of the temperature $\theta_{\rm M}$. Use your results to justify your answer.

56-50	x 100 = 7	.14%	tee it has	No 12 has
56.	/			because 1/=
0.0	Voc 11 has	ahanaad	the value 1	rocanco 16
	160 IE 1)45	Criui ige ci	The value, i	recurbe in
	1	h	0.	- 6 0
ant shape	marcanad	hi H	Change S 2 La	66
FIELD CHAIR	ma cuseu	My 1	HC111 0 4 TO	56° [1

(iv) Suggest two conditions that should be kept constant for all parts of this experiment.

1. Initial temperature	
2 room temperature	

[2]

[Total: 11]

Select page

,	Your	
-	Marl	<

2(a)

2(b)

2(c)

2(d)(i)

2(d)(ii)

2(d)(iii)

Q2	Mark scheme
(a)	$\theta_{\rm H}$ 60 $-$ 100 $\theta_{\rm C}$ 10 $-$ 40 and θAV correct Unit °C
(b)	$\theta_{\scriptscriptstyle M}$ between $\theta_{\scriptscriptstyle H}$ and $\theta_{\scriptscriptstyle C}$
(c)	Perpendicular viewing of scale OR wait until temperature stops rising OR carry out without undue delay between parts
(d)(i)	Correct diagram with lid Insulation placed round beaker
(d)(ii)	Sensible series of values with $\theta_{\rm M}$ between $\theta_{\rm H}$ and $\theta_{\rm C}$
(d)(iii)	Statement and justification to match results
(d)(iv)	Two from: Room temperature (or other environmental condition) Temperature of cold water Temperature of hot water Volumes of water Size/shape/material/surface area of beaker

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 5 (May / June 2016), Question 3

Cambridge IGCSE™ Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

3 In this experiment, you will investigate refraction using a transparent block.

Carry out the following instructions, using the separate ray-trace sheet provided. You may refer to Fig. 3.1 for guidance.

Fig. 3.1

Select page

3(a)	Your Mark	
3(b)		

Q 3	Mark scheme
(a)	Ray trace: Correct normal and all lines in approximately the right places P at least 5 cm from AB Table: θ values within $\pm 2^{\circ}$ of ray trace values θ values within $\pm 1^{\circ}$ of 20, 30, 40, 50, 60
(b)	Graph: Axes correctly labelled and right way round Suitable scales All plots correct to ½ small square Good line judgement, thin, continuous line
(c)	Triangle method shown on graph and triangle using at least half of candidate's line G 0.9 – 1.1
(d)	Points close to/scattered from line (to match graph)/all on line.

3(d)	
------	--

3(c)

Your
Mark

3(a)

3(b)

3(c)

Q3	Mark scheme
(a)	Ray trace: Correct normal and all lines in approximately the right places P at least 5 cm from AB Table: θ values within $\pm 2^{\circ}$ of ray trace values θ values within $\pm 1^{\circ}$ of 20, 30, 40, 50, 60
(b)	Graph: Axes correctly labelled and right way round Suitable scales All plots correct to ½ small square Good line judgement, thin, continuous line
(c)	Triangle method shown on graph and triangle using at least half of candidate's line G 0.9 – 1.1
(d)	Points close to/scattered from line (to match graph)/all on line.

- (a) Place the transparent block, largest face down, on the ray-trace sheet supplied. The block should be approximately in the middle of the paper. Draw the outline of the block ABCD.
 - Remove the block and draw a normal at the centre of side AB. Label the point E where the normal crosses AB.
 - Draw a line **FE** to the left of the normal and at an angle $i = 20^{\circ}$ to the normal.
 - Place a pin P on the line FE, at a suitable distance from the block for producing an accurate ray trace.
 - There are vertical lines L₁ and L₂ drawn on the block. Replace the block so that line L₁ is at point E.
 - Observe the images of L₁ and P through side CD of the block. Carefully move the block, keeping line L₁ at point E, until the vertical line L₂ and the images of L₁ and P appear one behind the other. This is indicated by the dashed position of the block shown in Fig. 3.1.
 - Draw a line along side AB of the block to mark its new position.
 - · Remove the block.
 - Measure the angle θ between the original position of **AB** and the new position of **AB**, as indicated in Fig. 3.1.
 - Record $i = 20^{\circ}$ and θ in Table 3.1.
 - Repeat the procedure using values of $i = 30^{\circ}$, 40° , 50° and 60° .

Table 3.1

i/°	θ/°
20	15
30	17
40	23
50	25
60	37

Select page

	Mark		
3(a)			

Vour

Γ			٦

Q3	Mark scheme
(a)	Ray trace: Correct normal and all lines in approximately the right places P at least 5 cm from AB Table: θ values within $\pm 2^{\circ}$ of ray trace values θ values within $\pm 1^{\circ}$ of 20, 30, 40, 50, 60
(b)	Graph: Axes correctly labelled and right way round Suitable scales All plots correct to ½ small square Good line judgement, thin, continuous line
(c)	Triangle method shown on graph and triangle using at least half of candidate's line G 0.9 – 1.1
(d)	Points close to/scattered from line (to match graph)/all on line.

3(4)	
3(a)	

(b) Plot a graph of $\theta/^{\circ}$ (y-axis) against $i/^{\circ}$ (x-axis).

(c) Determine the gradient G of the graph. Show clearly on the graph how you obtained the necessary information.

$$g = \frac{V}{h} = 0.6666 - 7$$

$$= \frac{43.5 - 17.5}{70 - 31} \qquad G = 0.667$$
 [2]

(d) Referring to your graph, comment on the quality of your measurements.

Tie your ray-trace sheet into this Booklet between pages 8 and 9.

[Total: 11]

[4]

Select page

Your Mark

3(a)

Q3	Mark scheme
(a)	Ray trace: Correct normal and all lines in approximately the right places P at least 5 cm from AB Table: θ values within $\pm 2^{\circ}$ of ray trace values θ values within $\pm 1^{\circ}$ of 20, 30, 40, 50, 60
(b)	Graph: Axes correctly labelled and right way round Suitable scales All plots correct to ½ small square Good line judgement, thin, continuous line
(c)	Triangle method shown on graph and triangle using at least half of candidate's line G 0.9 – 1.1
(d)	Points close to/scattered from line (to match graph)/all on line.

3 In this experiment, you will investigate refraction using a transparent block.

Carry out the following instructions, using the separate ray-trace sheet provided. You may refer to Fig. 3.1 for guidance.

Fig. 3.1

Select page

V				
Your Mark	Q3	Mark sche		
(a)	(a)	Ray trace: Correct nor places P at least 5 Table: θ values wi θ values wi		
b)	(b)	Graph: Axes corres Suitable so All plots co Good line ju		
(2)	(c)	Triangle me half of cand G 0.9 – 1.1		
(c)	(d)	Points clos line.		

Q 3	Mark scheme
(a)	Ray trace: Correct normal and all lines in approximately the right places P at least 5 cm from AB Table: θ values within $\pm 2^{\circ}$ of ray trace values θ values within $\pm 1^{\circ}$ of 20, 30, 40, 50, 60
(b)	Graph: Axes correctly labelled and right way round Suitable scales All plots correct to ½ small square Good line judgement, thin, continuous line
(c)	Triangle method shown on graph and triangle using at least half of candidate's line G 0.9 – 1.1
(d)	Points close to/scattered from line (to match graph)/all on line.

- (a) Place the transparent block, largest face down, on the ray-trace sheet supplied. The block should be approximately in the middle of the paper. Draw the outline of the block ABCD.
 - Remove the block and draw a normal at the centre of side AB. Label the point E where the normal crosses AB.
 - Draw a line **FE** to the left of the normal and at an angle $i = 20^{\circ}$ to the normal.
 - Place a pin P on the line FE, at a suitable distance from the block for producing an
 accurate ray trace.
 - There are vertical lines L₁ and L₂ drawn on the block. Replace the block so that line L₁ is at point E.
 - Observe the images of L₁ and P through side CD of the block. Carefully move the block, keeping line L₁ at point E, until the vertical line L₂ and the images of L₁ and P appear one behind the other. This is indicated by the dashed position of the block shown in Fig. 3.1.
 - Draw a line along side AB of the block to mark its new position.
 - Remove the block.
 - Measure the angle θ between the original position of AB and the new position of AB, as indicated in Fig. 3.1.
 - Record $i = 20^{\circ}$ and θ in Table 3.1.
 - Repeat the procedure using values of $i = 30^{\circ}$, 40° , 50° and 60° .

Table 3.1

i/°	0/° W		
20	21		
.30	24		
40	40		
50	48		
60	55		

[4]

3(d)

Select page

Your Mark	Q3	Mark scheme
a)	(a)	Ray trace: Correct normal and all lines in approximately the right places P at least 5 cm from AB Table: 0 values within ±2° of ray trace values 0 values within ±1° of 20, 30, 40, 50, 60
b)	(b)	Graph: Axes correctly labelled and right way round Suitable scales All plots correct to ½ small square Good line judgement, thin, continuous line
	(c)	Triangle method shown on graph and triangle using at leas half of candidate's line G 0.9 – 1.1
(c)	(d)	Points close to/scattered from line (to match graph)/all on line.

Yc	ι	11	•	
М	а	r	k	

3(a)

3(b)

3(c)

Q3	Mark scheme
(a)	Ray trace: Correct normal and all lines in approximately the right places P at least 5 cm from AB Table: θ values within $\pm 2^{\circ}$ of ray trace values θ values within $\pm 1^{\circ}$ of 20, 30, 40, 50, 60
(b)	Graph: Axes correctly labelled and right way round Suitable scales All plots correct to ½ small square Good line judgement, thin, continuous line
(c)	Triangle method shown on graph and triangle using at least half of candidate's line G 0.9 – 1.1
(d)	Points close to/scattered from line (to match graph)/all on line.

(c) Determine the gradient G of the graph. Show clearly on the graph how you obtained the necessary information.

$$\frac{(31,30)}{(31,30)} \underbrace{(50,48)}_{x_1} \times \underbrace{(50,48)}_{x_2} \times \underbrace{(50,31)}_{x_2} = \underbrace{(50-31)}_{x_2} = \underbrace{(50-31)}_{x_3} = \underbrace{(50-31)}_{x_4} = \underbrace{(50-31)$$

(d) Referring to your graph, comment on the quality of your measurements.

Accurate, as they have a large difference in between the each other [1]

Tie your ray-trace sheet into this Booklet between pages 8 and 9.

[Total: 11]

[4]

Select page

Your Mark

3(a)

(b)

3(c)	

Q3	Mark scheme
(a)	Ray trace: Correct normal and all lines in approximately the right places P at least 5 cm from AB Table: θ values within $\pm 2^{\circ}$ of ray trace values θ values within $\pm 1^{\circ}$ of 20, 30, 40, 50, 60
(b)	Graph: Axes correctly labelled and right way round Suitable scales All plots correct to ½ small square Good line judgement, thin, continuous line
(c)	Triangle method shown on graph and triangle using at least half of candidate's line G 0.9 – 1.1
(d)	Points close to/scattered from line (to match graph)/all on line.

3 In this experiment, you will investigate refraction using a transparent block.

Carry out the following instructions, using the separate ray-trace sheet provided. You may refer to Fig. 3.1 for guidance.

Fig. 3.

Select page

Your				
Mark	Q3	Mark scheme		
(a)	(a)	Ray trace: Correct normal and all lines in approximately the right places P at least 5 cm from AB Table: 0 values within ±2° of ray trace values 0 values within ±1° of 20, 30, 40, 50, 60		
(b)	(b)	Graph: Axes correctly labelled and right way round Suitable scales All plots correct to ½ small square Good line judgement, thin, continuous line		
	(c)	Triangle method shown on graph and triangle using at least half of candidate's line G 0.9 – 1.1		
(c)	(d)	Points close to/scattered from line (to match graph)/all on line.		

3(d)	
------	--

- (a) Place the transparent block, largest face down, on the ray-trace sheet supplied. The block should be approximately in the middle of the paper. Draw the outline of the block ABCD.
 - Remove the block and draw a normal at the centre of side AB. Label the point E where the normal crosses AB.
 - Draw a line **FE** to the left of the normal and at an angle $i = 20^{\circ}$ to the normal.
 - Place a pin P on the line FE, at a suitable distance from the block for producing an accurate ray trace.
 - There are vertical lines L₁ and L₂ drawn on the block. Replace the block so that line L₁ is at point E.
 - Observe the images of L₁ and P through side CD of the block. Carefully move the block, keeping line L₁ at point E, until the vertical line L₂ and the images of L₁ and P appear one behind the other. This is indicated by the dashed position of the block shown in Fig. 3.1.
 - Draw a line along side AB of the block to mark its new position.
 - Remove the block.
 - Measure the angle θ between the original position of **AB** and the new position of **AB**, as indicated in Fig. 3.1.
 - Record $i = 20^{\circ}$ and θ in Table 3.1.
 - Repeat the procedure using values of $i = 30^{\circ}$, 40° , 50° and 60° .

Table 3.1

i/°	θ/°
20	SØ
30	See 52
40	sex 54
50	80 . 30
60	50 60

[4]

Select page

3(

ır rk	Q3	Mark scheme
	(a)	Ray trace: Correct normal and all lines in approximately the right places P at least 5 cm from AB Table: θ values within $\pm 2^{\circ}$ of ray trace values θ values within $\pm 1^{\circ}$ of 20, 30, 40, 50, 60
	(b)	Graph: Axes correctly labelled and right way round Suitable scales All plots correct to ½ small square Good line judgement, thin, continuous line
	(c)	Triangle method shown on graph and triangle using at least half of candidate's line G 0.9 – 1.1
	(d)	Points close to/scattered from line (to match graph)/all on line.

Yc	ι	11	•
М	а	r	k

3(a)

3(b)

3(c)

Q3	Mark scheme
(a)	Ray trace: Correct normal and all lines in approximately the right places P at least 5 cm from AB Table: θ values within $\pm 2^{\circ}$ of ray trace values θ values within $\pm 1^{\circ}$ of 20, 30, 40, 50, 60
(b)	Graph: Axes correctly labelled and right way round Suitable scales All plots correct to ½ small square Good line judgement, thin, continuous line
(c)	Triangle method shown on graph and triangle using at least half of candidate's line G 0.9 – 1.1
(d)	Points close to/scattered from line (to match graph)/all on line.

(b) Plot a graph of θ /° (*y*-axis) against *i*/° (*x*-axis).

(c) Determine the gradient G of the graph. Show clearly on the graph how you obtained the necessary information. $g = \frac{92 - 91}{22 - 21} = \frac{60 - 20}{60 - 50} = \frac{90}{10}$

(d) Referring to your graph, comment on the quality of your measurements.

As the angle increases so does the angle of pincidence [1]

Tie your ray-trace sheet into this Booklet between pages 8 and 9.

[Total: 11]

[4]

Select page

Your Mark

3(a)

3(c)

Q 3	Mark scheme
(a)	Ray trace: Correct normal and all lines in approximately the right places P at least 5 cm from AB Table: θ values within $\pm 2^{\circ}$ of ray trace values θ values within $\pm 1^{\circ}$ of 20, 30, 40, 50, 60
(b)	Graph: Axes correctly labelled and right way round Suitable scales All plots correct to ½ small square Good line judgement, thin, continuous line
(c)	Triangle method shown on graph and triangle using at least half of candidate's line G 0.9 – 1.1
(d)	Points close to/scattered from line (to match graph)/all on line.

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 5 (May / June 2016), Question 4

Cambridge IGCSE™ Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

4 A student is investigating resistors connected in parallel.

The following apparatus is available to the student:

ammeter

voltmeter

power supply

variable resistor

switch

connecting leads

a box of identical resistors.

Plan an experiment to investigate how the combined resistance of the resistors, connected in parallel, depends on the number of resistors. You are **not** required to carry out this investigation.

You should:

- draw a diagram of the circuit you could use to determine the resistance of resistors connected in parallel (show only two resistors in your diagram)
- · explain briefly how you would carry out the investigation
- draw a table or tables, with column headings, to show how you would display your readings.
 You are not required to enter any readings into the table.

Set the scircuit as above, with two resistors.
Close the switch and measure the cyrrent
and voltage. Repeat experiment by adding
an a resister every time . until a total of 6 resistors

Select page

Your Mark

Q4 Mark scheme

MP1 On circuit diagram: one voltmeter in parallel with any component

MP2 Circuit diagram correctly shows power supply, ammeter, unless in a branch, two or more resistors in parallel

MP3 Circuit diagram: Correct symbols for ammeter, voltmeter and fixed resistor

MP4 Repeat with a different number of resistors (in parallel)

MP5 Table that includes columns for number of resistors, voltage/V and current/A

MP6 and MP7 Then any two from:

Resistance calculated (may be shown in table)

Use low current (to stop resistors getting too hot)/switch off between readings

Use at least 5 different combinations

Repeat with different current or voltage or variable resistor setting

are adde	d.			
ļ			,	
Norof	Voltage	Current	Resistance	
tesistur	/٧	A: \	/52	
2				
· ·				
_				
6				
-After med	asuring the	voltage an	d occurrent	
	_		the formula	
	nce = Volt	298		
	CMI	rent		
Plot a g			goins d number of	
resistor	5			
Resternance 22				
ٽ د د				
25				
Ž				
				••••
	Number of Resi	/		••••
	K051	(2.101)		••••
				[7]
*				[/]

V=FR

Select page

Your Mark

[Total: 7]

Q4 Mark scheme

MP1 On circuit diagram: one voltmeter in parallel with any component

MP2 Circuit diagram correctly shows power supply, ammeter, unless in a branch, two or more resistors in parallel

MP3 Circuit diagram: Correct symbols for ammeter, voltmeter and fixed resistor

MP4 Repeat with a different number of resistors (in parallel)

MP5 Table that includes columns for number of resistors, voltage/V and current/A

MP6 and MP7 Then any two from:

Resistance calculated (may be shown in table)

Use low current (to stop resistors getting too hot)/switch off between readings

Use at least 5 different combinations

Repeat with different current or voltage or variable resistor setting

4 A student is investigating resistors connected in parallel.

The following apparatus is available to the student:

ammeter voltmeter voltmeter power supply variable resistor switch connecting leads

a box of identical resistors.

Plan an experiment to investigate how the combined resistance of the resistors, connected in parallel, depends on the number of resistors. You are **not** required to carry out this investigation.

You should:

- draw a diagram of the circuit you could use to determine the resistance of resistors connected in parallel (show only two resistors in your diagram)
- · explain briefly how you would carry out the investigation
- draw a table or tables, with column headings, to show how you would display your readings.
 You are not required to enter any readings into the table.

		apporatus		
Mety	scd		1 1 2 2 2 3 2 2 2 2	
1) 5 00	e the	variable	res	istor to
	t.to.l.t	neamoun	+o=	Stanzes

Select page

Your Mark

Q4 Mark scheme

MP1 On circuit diagram: one voltmeter in parallel with any component

MP2 Circuit diagram correctly shows power supply, ammeter, unless in a branch, two or more resistors in parallel

MP3 Circuit diagram: Correct symbols for ammeter, voltmeter and fixed resistor

MP4 Repeat with a different number of resistors (in parallel)

MP5 Table that includes columns for number of resistors, voltage/V and current/A

MP6 and MP7 Then any two from:

Resistance calculated (may be shown in table)

Use low current (to stop resistors getting too hot)/switch off between readings

Use at least 5 different combinations

Repeat with different current or voltage or variable resistor setting

MXXXX EXXX
2) Use a voltmeter to measure voltage
(_V_)
3) Switch on Use 2 resistors H) Switch on
4) Switch on
5) Measure the correst using the
armeter and voltage sing
voltmeter Record these values
6) Repeat Steps (3-5) using
3,4,5 and 5 resistors respective
7) M. Record your values and
use the equation R = V to
measure tre resistance
Plata graph OF Voltage, V(x-
axis) and correct, A (y-ascis)
V/V I/A R/2 E Table
Concusion
The highest resistance will
have the lowest corrent. The
and the highest voltage
[7]

Select page

Your Mark

[Total: 7]

Q4 Mark scheme

MP1 On circuit diagram: one voltmeter in parallel with any component

MP2 Circuit diagram correctly shows power supply, ammeter, unless in a branch, two or more resistors in parallel

MP3 Circuit diagram: Correct symbols for ammeter, voltmeter and fixed resistor

MP4 Repeat with a different number of resistors (in parallel)

MP5 Table that includes columns for number of resistors, voltage/V and current/A

MP6 and MP7 Then any two from:

Resistance calculated (may be shown in table)

Use low current (to stop resistors getting too hot)/switch off between readings

Use at least 5 different combinations

Repeat with different current or voltage or variable resistor setting

4 A student is investigating resistors connected in parallel.

The following apparatus is available to the student:

ammeter

voltmeter

power supply

variable resistor

switch

connecting leads

a box of identical resistors.

Plan an experiment to investigate how the combined resistance of the resistors, connected in parallel, depends on the number of resistors. You are **not** required to carry out this investigation.

You should:

- draw a diagram of the circuit you could use to determine the resistance of resistors connected in parallel (show only two resistors in your diagram)
- explain briefly how you would carry out the investigation
- draw a table or tables, with column headings, to show how you would display your readings.
 You are not required to enter any readings into the table.

Fig 1

We co	nnec	the	appare	tus	as ste	own abo	10
Fig 1	120	Gwaite	con t	he a	wer.		
We	COV	nect	a re	sister	(with	Known Res	isterce)
						resistor	

Select page

Your Mark

Q4 Mark scheme

MP1 On circuit diagram: one voltmeter in parallel with any component

MP2 Circuit diagram correctly shows power supply, ammeter, unless in a branch, two or more resistors in parallel

MP3 Circuit diagram: Correct symbols for ammeter, voltmeter and fixed resistor

MP4 Repeat with a different number of resistors (in parallel)

MP5 Table that includes columns for number of resistors, voltage/V and current/A

MP6 and MP7 Then any two from:

Resistance calculated (may be shown in table)

Use low current (to stop resistors getting too hot)/switch off between readings

Use at least 5 different combinations

Repeat with different current or voltage or variable resistor setting

in parallel and connect a voltmeter in
parallel as SLOON by Fig 1. We
record the & readings on the Ammeter
and Voltmeter in the table below and calculate resistence. Ammeter Votneter Registence
)
Then we calculate the combined resistence
using the formula Product of both restors
Sum of both Resistas
Then we repeat the experiment by
targing the Adding another registor
in parallel as Slown by Figure Fig. 2
Then we record the readings in the
Table and record the calculate He
combined resistence by formula
$\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$
R ₁ R ₂ F ₃

Select page

Your Mark

4

[Total: 7]

Q4 Mark scheme

MP1 On circuit diagram: one voltmeter in parallel with any component

MP2 Circuit diagram correctly shows power supply, ammeter, unless in a branch, two or more resistors in parallel

MP3 Circuit diagram: Correct symbols for ammeter, voltmeter and fixed resistor

MP4 Repeat with a different number of resistors (in parallel)

MP5 Table that includes columns for number of resistors, voltage/V and current/A

MP6 and MP7 Then any two from:

Resistance calculated (may be shown in table)

Use low current (to stop resistors getting too hot)/switch off between readings

Use at least 5 different combinations

Repeat with different current or voltage or variable resistor setting

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 6 (May / June 2016), Question 1

Cambridge IGCSE™ Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

1 A student is investigating the stretching of a spring.

The apparatus is shown in Fig. 1.1.

Fig. 1.1

- (a) On Fig. 1.1, measure the unstretched length l_0 of the spring. Record l_0 in the first row of Table 1.1. [1]
- (b) The student hangs a load L of 1.0 N on the spring and measures the new length l of the spring. She repeats the measurements using loads of 2.0 N, 3.0 N, 4.0 N and 5.0 N. The readings are shown in Table 1.1.
 - (i) For each set of readings, calculate the extension e of the spring using the equation $e = (l l_0)$. Record the values of e in the table.

Table 1.1

L/N	1/mm	e/mm
0.0	55	0
1.0	59	4
2.0	64	9
3.0	69	14
4.0	74	19
5.0	78	2.3

(ii) Explain briefly one precaution that you would take in order to obtain reliable readings.

t's original length	to it's	o back	to 90	.Spring	the	ait fo	W
[1							
		()		1		,	

Select page

Your
Mark

1(a)

1(b)(i)

1(b)(ii)

I(c)

1(d)(i)

1(d)(ii)

[1]

Q1	Mark scheme
(a)	$l_0 = 55 \text{ (mm) c.a.o.}$
(b)(i)	4, 9, 14, 19, 23 ecf (a)
(b)(ii)	Viewing scale at right angles or use of straight edge/set square/pointer between bottom of spring and scale/ruler
(c)	Graph: Axes correctly labelled with quantity and unit Suitable scales All plots correct to ½ small square Good line judgement, thin, continuous line, neat plots
(d)(i)	e = 17 (mm) ecf (a)
(d)(ii)	method clearly shown on graph W value 3.5–3.75 Unit N needed No ecf from (i)

(c) Plot a graph of e/mm (y-axis) against L/N (x-axis).

(d) The student removes the load from the spring and hangs an unknown load ${\bf X}$ on the spring. She measures the length ${\it l}$ of the spring.

l =72 mm

(i) Calculate the extension e of the spring.

(ii) Use the graph to determine the weight *W* of the load **X**. Show clearly on the graph how you obtained the necessary information.

$$W =3.6N$$
 [2]

[Total: 10]

[4]

Select page

Your
Mark

1(a)

1(b)(i)

1(b)(ii)

1(c)

1(d)(i)

1(d)(ii)

Q1	Mark scheme
(a)	$l_{\rm o}$ = 55 (mm) c.a.o.
(b)(i)	4, 9, 14, 19, 23 ecf (a)
(b)(ii)	Viewing scale at right angles or use of straight edge/set square/pointer between bottom of spring and scale/ruler
(c)	Graph: Axes correctly labelled with quantity and unit Suitable scales All plots correct to ½ small square Good line judgement, thin, continuous line, neat plots
(d)(i)	e = 17 (mm) ecf (a)
(d)(ii)	method clearly shown on graph W value 3.5–3.75 Unit N needed No ecf from (i)

1 A student is investigating the stretching of a spring.

The apparatus is shown in Fig. 1.1.

Fig. 1.1

- (a) On Fig. 1.1, measure the unstretched length l_0 of the spring. Record l_0 in the first row of Table 1.1. [1]
- (b) The student hangs a load L of 1.0N on the spring and measures the new length L of the spring. She repeats the measurements using loads of 2.0N, 3.0N, 4.0N and 5.0N. The readings are shown in Table 1.1.
 - (i) For each set of réadings, calculate the extension e of the spring using the equation $e = (l l_0)$. Record the values of e in the table.

Table 1.1

L/N	1/mm	e/mm
0.0	5 5.	0 ,
1.0	59	4.
2.0	64	. 9
3.0	69	14
4.0	74	19
5.0	78	23

(ii) Explain briefly one precaution that you would take in order to obtain reliable readings.

I won't put any enternal force on the load as the length of the spring will change. [1]

Select page

Your
Mark

1(a)

1(b)(i)

1(b)(ii)

I(c)

1(d)(i)

1(d)(ii)

[1]

Q1	Mark scheme
(a)	$l_0 = 55 \text{ (mm) c.a.o.}$
(b)(i)	4, 9, 14, 19, 23 ecf (a)
(b)(ii)	Viewing scale at right angles or use of straight edge/set square/pointer between bottom of spring and scale/ruler
(c)	Graph: Axes correctly labelled with quantity and unit Suitable scales All plots correct to ½ small square Good line judgement, thin, continuous line, neat plots
(d)(i)	e = 17 (mm) ecf (a)
(d)(ii)	method clearly shown on graph W value 3.5–3.75 Unit N needed No ecf from (i)

[4]

(d) The student removes the load from the spring and hangs an unknown load X on the spring. She measures the length *l* of the spring.

72 mm

(i) Calculate the extension e of the spring.

e=[1]

(ii) Use the graph to determine the weight W of the load X. Show clearly on the graph how you obtained the necessary information.

$$5 = \frac{72 - 15}{27 - 20}$$

you obtained the necessary information.

gradient:
$$\frac{y_2 - y_1}{n_2 - n}$$
, $\frac{16 - 10}{3^{\circ}2 - 2 \cdot 2}$ $W = \frac{14 \cdot 6 N}{14 \cdot 6 N}$ [2]

$$\frac{25}{30 \cdot 2 \cdot 2 \cdot 2}$$

$$\frac{5}{31 - 3^{\circ}2}$$

$$\frac{5}{31 - 3^{\circ}2}$$

$$\frac{5}{31 \cdot 2 \cdot 3}$$

$$\frac{5}{31 \cdot 2 \cdot 3}$$

$$\frac{7}{31 \cdot 2 \cdot 3}$$

$$\frac{7}{31 \cdot 2 \cdot 3}$$

Your Mark

1(a)

1(b)(i)

1(b)(ii)

1(c)

1(d)(i)

|--|

Q1	Mark scheme
(a)	$l_0 = 55 \text{ (mm) c.a.o.}$
(b)(i)	4, 9, 14, 19, 23 ecf (a)
(b)(ii)	Viewing scale at right angles or use of straight edge/set square/pointer between bottom of spring and scale/ruler
(c)	Graph: Axes correctly labelled with quantity and unit Suitable scales All plots correct to ½ small square Good line judgement, thin, continuous line, neat plots
(d)(i)	e = 17 (mm) ecf (a)
(d)(ii)	method clearly shown on graph W value 3.5–3.75 Unit N needed No ecf from (i)

The apparatus is shown in Fig. 1.1.

(a) On Fig. 1.1, measure the unstretched length l_0 of the spring. Record l_0 in the first row of Table 1.1. [1]

Fig. 1.1

- (b) The student hangs a load L of 1.0 N on the spring and measures the new length l of the spring. She repeats the measurements using loads of 2.0 N, 3.0 N, 4.0 N and 5.0 N. The readings are shown in Table 1.1.
 - (i) For each set of readings, calculate the extension e of the spring using the equation $e = (l l_0)$. Record the values of e in the table.

Table 1.1

L/N	l/mm	e/mm
0.0	55	0
1.0	59	4
2.0	64	5
3.0	69	5
4.0	. 74	5
5.0	78	4

[1]

(ii) Explain briefly one precaution that you would take in order to obtain reliable readings.

it was a spring law the spring law could happen
in this progress, when the weight was increase. [1]

may be the spring just decreasing it range from original
leaght when put on weight

Select page

Your
Mark

1(a)

1(b)(i)

1(b)(ii)

1(c)

1(d)(i)

1(d)(ii)

Q1	Mark scheme
(a)	$l_{\rm 0}$ = 55 (mm) c.a.o.
(b)(i)	4, 9, 14, 19, 23 ecf (a)
(b)(ii)	Viewing scale at right angles or use of straight edge/set square/pointer between bottom of spring and scale/ruler
(c)	Graph: Axes correctly labelled with quantity and unit Suitable scales All plots correct to ½ small square Good line judgement, thin, continuous line, neat plots
(d)(i)	e = 17 (mm) ecf (a)
(d)(ii)	method clearly shown on graph W value 3.5–3.75 Unit N needed No ecf from (i)

(c) Plot a graph of e/mm (y-axis) against L/N (x-axis).

(d) The student removes the load from the spring and hangs an unknown load ${\bf X}$ on the spring. She measures the length ${\it l}$ of the spring.

l = 72 mm

(i) Calculate the extension e of the spring.

(ii) Use the graph to determine the weight *W* of the load **X**. Show clearly on the graph how you obtained the necessary information.

$$W = \frac{3.7}{N}$$
 [2]

[Total: 10]

Select page

Your Mark

1(a)

1(b)(i)

1(b)(ii)

1(c)

1(d)(i)

1(d)(ii)

Q1	Mark scheme
(a)	$l_0 = 55 \text{ (mm) c.a.o.}$
(b)(i)	4, 9, 14, 19, 23 ecf (a)
(b)(ii)	Viewing scale at right angles or use of straight edge/set square/pointer between bottom of spring and scale/ruler
(c)	Graph: Axes correctly labelled with quantity and unit Suitable scales All plots correct to ½ small square Good line judgement, thin, continuous line, neat plots
(d)(i)	e = 17 (mm) ecf (a)
(d)(ii)	method clearly shown on graph W value 3.5–3.75 Unit N needed No ecf from (i)

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 6 (May / June 2016), Question 2

Cambridge IGCSE™ Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

2 A student is using a balancing method to determine the weight of a piece of soft modelling clay. The apparatus is shown in Fig. 2.1.

Fig. 2.1

P is a metal cube of weight $P = 1.0 \,\mathrm{N}$. **Q** is the piece of soft modelling clay.

The student places the cube \mathbf{P} so that its weight acts at a distance x from the pivot.

He adjusts the position of $\bf Q$ to balance the rule and measures the distance y from the centre of $\bf Q$ to the pivot. He calculates the weight W of $\bf Q$ using the equation $W = \frac{P\chi}{V}$.

(a) On Fig. 2.1, mark clearly the distance x. [1]

(b) Suggest a change to Q that would make it easier to find the value of y accurately.

(c) It is difficult to achieve an exact balance of the metre rule in this type of experiment. This can make the result unreliable.

Explain how you would reduce the effect of this problem to improve the reliability of the experiment.

+ 1)se a	solid o	bjed in	stea	2 of	·h	modelli	ne clay	y	
		_sune						•	_	us
		ers of t								[1]

	Your				
	Mark	Q2	Mark scheme		
2(a)		(a)	x shown clearly from centre of P to pivot		
?(b)		(b)	Make Q into a cube/regular shape/small contact area wit rule		
2(c)		(c)	Move Q or P slowly one way until it just tips, then back other way until it tips back and take middle reading OR repeat procedure/experiment AND take average		
?(d)		(d)	Measure width w of cube Place w/2 either side of desired position OR draw centre line on cube/find centre of mass of cube and mark side of rule in desired position OR take readings on both sides of the cube and find the mean		
		(e)	Place rule on pivot (without P and Q) and record/find balance point		
2(e)					

(d) The metal cube P is larger than the width of the metre rule. Explain briefly how you would determine the reading of the metre rule scale at the position of the centre of mass of P. You may draw a diagram. Step) you will determin the two points. Beginning of the cube and the back. the center who we need the center who we are going to add both values (e.g.: 11+3) and then divide by 2.

(e.g.: 24:2=11) Step) hence you will Find the conter of the cube in the most accurate way possible. (e) Before starting the experiment, the student determines the position of the centre of mass of the metre rule. Explain briefly how you would do this. + By balancing the rules on the Pivot. a line, wherethe plumb falls. wherethe two lines [Total: 6] ser each side

Your		
Mark	Q2	Mark scheme
a)	(a)	x shown clearly from centre of P to pivot
b)	(b)	Make Q into a cube/regular shape/small contact area wit rule
c)	(c)	Move Q or P slowly one way until it just tips, then back other way until it tips back and take middle reading OR repeat procedure/experiment AND take average
d)	(d)	Measure width w of cube Place w/2 either side of desired position OR draw centre line on cube/find centre of mass of cube and mark side of rule in desired position OR take readings on both sides of the cube and find the mean
e)	(e)	Place rule on pivot (without P and Q) and record/find balance point

2 A student is using a balancing method to determine the weight of a piece of soft modelling clay. The apparatus is shown in Fig. 2.1.

Fig. 2.1

P is a metal cube of weight P = 1.0 N. **Q** is the piece of soft modelling clay.

The student places the cube $\bf P$ so that its weight acts at a distance x from the pivot.

He adjusts the position of **Q** to balance the rule and measures the distance y from the centre of **Q** to the pivot. He calculates the weight W of **Q** using the equation $W = \frac{PX}{V}$.

(a) On Fig. 2.1, mark clearly the distance x. [1]

(b) Suggest a change to Q that would make it easier to find the value of y accurately.

Give an appropriate measured shape to the modelline clay

(c) It is difficult to achieve an exact balance of the metre rule in this type of experiment. This can make the result unreliable.

Explain how you would reduce the effect of this problem to improve the reliability of the experiment.

Reporting By repeating the experiment
Several times and taking average
[1]

	Your		
	Mark	Q2	Mark scheme
2(a)		(a)	x shown clearly from centre of P to pivot
2(b)		(b)	Make Q into a cube/regular shape/small contact area with rule
2(c)		(c)	Move Q or P slowly one way until it just tips, then back other way until it tips back and take middle reading OR repeat procedure/experiment AND take average
2(d)		(d)	Measure width w of cube Place w/2 either side of desired position OR draw centre line on cube/find centre of mass of cube and mark side of rule in desired position OR take readings on both sides of the cube and find the mean
		(e)	Place rule on pivot (without P and Q) and record/find balance point
۱۵۱			

(d) The metal cube P is larger than the width of the metre rule.

Explain briefly how you would determine the reading of the metre rule scale at the position of the centre of mass of **P**. You may draw a diagram.

By dividing the	moss 6qua	llyon!	voth sides
at the vag	minect bos	Hion	
0	,		21

(e) Before starting the experiment, the student determines the position of the centre of mass of the metre rule.

Explain briefly how you would do this.

Explain briefly now you would do this.	1 tha
By blacing the motie	vule on bivot and
See socing the point wh	rene it balances agrally [1]
	7 3

[Total: 6]

Your Mark	Q2	Mark scheme
2(a)	(a)	x shown clearly from centre of P to pivot
2(b)	(b)	Make Q into a cube/regular shape/small contact area with rule
2(c)	(c)	Move Q or P slowly one way until it just tips, then back other way until it tips back and take middle reading OR repeat procedure/experiment AND take average
2(d)	(d)	Measure width w of cube Place w/2 either side of desired position OR draw centre line on cube/find centre of mass of cube and mark side of rule in desired position OR take readings on both sides of the cube and find the mean
2(e)	(e)	Place rule on pivot (without P and Q) and record/find balance point

2 A student is using a balancing method to determine the weight of a piece of soft modelling clay. The apparatus is shown in Fig. 2.1.

Fig. 2.1

P is a metal cube of weight P = 1.0 N. **Q** is the piece of soft modelling clay.

The student places the cube $\bf P$ so that its weight acts at a distance x from the pivot.

He adjusts the position of $\bf Q$ to balance the rule and measures the distance y from the centre of $\bf Q$ to the pivot. He calculates the weight W of $\bf Q$ using the equation $W = \frac{Px}{V}$.

(a)	On Fig. 2.1, mark clearly the distance x.	[1]
(h)	Suggest a change to Q that would make it easier to find the value of viaccurately	

 Weigh	nio	Place	1+	on	145	
 cen he	0.Y	mass.				[1]

(c) It is difficult to achieve an exact balance of the metre rule in this type of experiment. This can make the result unreliable.

Explain how you would reduce the effect of this problem to improve the reliability of the experiment.

experime	ent.			1		
	Repeat	M	experiment	and	find	
	Me	averdo	fe.			
			1			
						[1]

Select page

2(e)

Your Mark	02	Mark scheme
a)	(a)	x shown clearly from centre of P to pivot
b)	(b)	Make Q into a cube/regular shape/small contact area with rule
(c)	(c)	Move Q or P slowly one way until it just tips, then back other way until it tips back and take middle reading OR repeat procedure/experiment AND take average
d)	(d)	Measure width w of cube Place w/2 either side of desired position OR draw centre line on cube/find centre of mass of cube and mark side of rule in desired position OR take readings on both sides of the cube and find the mean
	(e)	Place rule on pivot (without P and Q) and record/find balance point

(d)	The metal cube P is larger than the width of the metre rule.				
	Explain briefly how you would determine the reading of the metre rule scale at the position of the centre of mass of P . You may draw a diagram.				
	the control of mass of F. For may draw a diagram.				
	you would measure the reading				
	you would measure the reading and subtrate it from 50.0 cm				
	[2]				
(e)	Before starting the experiment, the student determines the position of the centre of mass of				
(0)	the metre rule.				
	Explain briefly how you would do this.				
	by placing on the pivot so it doesn't tilt				
	doesn's fult [1]				
	[Total: 6]				

Your		
your Mark	Q2	Mark scheme
2(a)	(a)	x shown clearly from centre of P to pivot
2(b)	(b)	Make Q into a cube/regular shape/small contact area with rule
2(c)	(c)	Move Q or P slowly one way until it just tips, then back other way until it tips back and take middle reading OR repeat procedure/experiment AND take average
2(d)	(d)	Measure width w of cube Place w/2 either side of desired position OR draw centre line on cube/find centre of mass of cube and mark side of rule in desired position OR take readings on both sides of the cube and find the mean
	(e)	Place rule on pivot (without P and Ω) and record/find balance point

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 6 (May / June 2016), Question 3

Cambridge IGCSE™ Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

3 A student is investigating the magnification of images produced by a lens.

The apparatus is shown in Fig. 3.1.

Fig. 3.1

The student places a screen at a distance $D = 80.0 \,\mathrm{cm}$ from an illuminated object. The screen and the illuminated object remain in the same positions throughout the experiment.

(a) She places the lens close to the illuminated object. She moves the lens until she sees a sharply focused, enlarged image of the object on the screen.

She measures the distance a from the illuminated object to the centre of the lens.

She measures the distance b from the centre of the lens to the screen.

Calculate the magnification m_1 of the image, using the equation $m_1 = \frac{b}{a}$.

$$m_1 = \frac{2.94}{100}$$

Select page

3(a)	You Mai
3(b)	
3(c)	
3(d)	

3(e)

Q3	Mark scheme		
(a)	$m_1 = 2.94$		
(b)	$(m_2 = 0.329 \text{ OR } 0.33) \text{ m}_1 \text{ and } \text{m}_2 \text{ to 2 or 3 significant}$ figures only AND both m with no unit (accept \times)		
(c)	Statement, expect YES. Must match results. e.c.f .allowed Justification to include idea of within (or beyond) limits of (experimental) accuracy		
(d)	 Any two from: Use of darkened room/brighter lamp/no other lights Mark position of centre of lens on holder Place metre rule on bench (or clamp in position) Ensure object and centre of lens are same height from the bench Move lens slowly/to and fro (when focusing) Lens, object, screen vertical/perpendicular to bench Repeat with different D Use of graph paper/cm scale on screen to measure image 		
(e)	image appears well focused over a (small) range of lens positions/not all of image focused at same time/relevant reference to chromatic aberration		

(b)	The student then moves the lens towards the screen until a smaller , sharply focused image of the object is seen on the screen.		
	She measures the distance x from the illuminated object to the centre of the lens.		
	x=60.2 cm		
	She measures the distance y from the centre of the lens to the screen.		
	y=19.8cm		
	Calculate the magnification m_2 of the image, using the equation $m_2 = \frac{y}{x}$.		
	$m_2 = \frac{0.329}{11}$		
(c)	A student suggests that $m_1 \times m_2$ should equal 1.		
	State whether the results support this suggestion. Justify your answer by reference to the results.		
	statement Yes justification $M_1 \times M_2 = 0.967 < 1$, but the result is within the a limit of experimental accuracy. [2]		
(d)	(d) State two precautions that you would take in this experiment to obtain reliable results. Keep the object, lens and screen at the same height. 1.		
	2. Do the experiment in a dark room.		
	. [2]		
(e)			
	image because of the small difference between images. [1]		
	[Total: 7]		

Select page

3(

Your				
Mark	Q 3	Mark scheme		
3(a)	(a)	$m_1 = 2.94$		
3(b)	(b)	$(m_2 = 0.329 \text{ OR } 0.33) \text{ m}_1 \text{ and } \text{m}_2 \text{ to 2 or 3 significant}$ figures only AND both m with no unit (accept \times)		
	(c)	Statement, expect YES. Must match results. e.c.f .allowed Justification to include idea of within (or beyond) limits of (experimental) accuracy		
3(c)	(d)	Any two from: Use of darkened room/brighter lamp/no other lights Mark position of centre of lens on holder Place metre rule on bench (or clamp in position) Ensure object and centre of lens are same height from the bench		
3(d)		 Move lens slowly/to and fro (when focusing) Lens, object, screen vertical/perpendicular to bench Repeat with different D Use of graph paper/cm scale on screen to measure image 		
3(e)	(e)	image appears well focused over a (small) range of lens positions/not all of image focused at same time/relevant reference to chromatic aberration		

3 A student is investigating the magnification of images produced by a lens.

The apparatus is shown in Fig. 3.1.

Fig. 3.1

The student places a screen at a distance D = 80.0 cm from an illuminated object. The screen and the illuminated object remain in the same positions throughout the experiment.

(a) She places the lens close to the illuminated object. She moves the lens until she sees a sharply focused, enlarged image of the object on the screen.

She measures the distance a from the illuminated object to the centre of the lens.

She measures the distance b from the centre of the lens to the screen.

Calculate the magnification m_1 of the image, using the equation $m_1 = \frac{b}{a}$.

$$m_1 = \frac{2.94}{100}$$
 [1]

Select page

3(

3(1

3(

3(

Your Mark	Q3	Mark scheme
	(a)	$m_1 = 2.94$
	(b)	$(m_2 = 0.329 \text{ OR } 0.33) \text{ m}_1 \text{ and } \text{m}_2 \text{ to 2 or 3 significant}$ figures only AND both m with no unit (accept \times)
	(c)	Statement, expect YES. Must match results. e.c.f .allowed Justification to include idea of within (or beyond) limits of (experimental) accuracy
	(d)	Any two from: Use of darkened room/brighter lamp/no other lights Mark position of centre of lens on holder Place metre rule on bench (or clamp in position) Ensure object and centre of lens are same height from the bench
		 Move lens slowly/to and fro (when focusing) Lens, object, screen vertical/perpendicular to bench Repeat with different D Use of graph paper/cm scale on screen to measure image
	(e)	image appears well focused over a (small) range of lens positions/not all of image focused at same time/relevant reference to chromatic aberration

(b)	The student then moves the lens towards the screen until a $\mathbf{smaller}$, sharply focused image of the object is seen on the screen.
	She measures the distance x from the illuminated object to the centre of the lens.
	x =60.2cm
	She measures the distance <i>y</i> from the centre of the lens to the screen.
	y =19.8cm
	Calculate the magnification m_2 of the image, using the equation $m_2 = \frac{y}{x}$.
	m ₂ =[1]
(c)	A student suggests that $m_1 \times m_2$ should equal 1.
	State whether the results support this suggestion. Justify your answer by reference to the results.
(d)	statement the magnification of the image is the same not the same justification. The magnification mouldn't be the same so matter where the lens is placed bracke it can change according to where the lens is placed 2.94 x 0.33 = 0.97 [2] State two precautions that you would take in this experiment to obtain reliable results. 1. adjust the lens back and forth until it show clear and sharp image
	2 make the experiment in a dark room.
	. [2]
(e)	Suggest one reason why it is difficult, in this type of experiment, to decide on the best position of the lens to obtain a sharply focused image on the screen.
	Becayo the sine of the object also make the experiment
	difficult [1]
	[Total: 7]

	v		
	Your Mark	Q3	Mark scheme
8(a)		(a)	$m_1 = 2.94$
(b)		(b)	$(m_2 = 0.329 \text{ OR } 0.33) \text{ m}_1 \text{ and } \text{m}_2 \text{ to 2 or 3 significant}$ figures only AND both m with no unit (accept \times)
		(c)	Statement, expect YES. Must match results. e.c.f .allowed Justification to include idea of within (or beyond) limits of (experimental) accuracy
B(c)		(d)	Any two from: Use of darkened room/brighter lamp/no other lights Mark position of centre of lens on holder Place metre rule on bench (or clamp in position) Ensure object and centre of lens are same height
(d)			from the bench Move lens slowly/to and fro (when focusing) Lens, object, screen vertical/perpendicular to bench Repeat with different D Use of graph paper/cm scale on screen to measure image
8(e)		(e)	image appears well focused over a (small) range of lens positions/not all of image focused at same time/relevant reference to chromatic aberration

A student is investigating the magnification of images produced by a lens.

The apparatus is shown in Fig. 3.1.

Fig. 3.1

The student places a screen at a distance $D = 80.0 \,\mathrm{cm}$ from an illuminated object. The screen and the illuminated object remain in the same positions throughout the experiment.

(a) She places the lens close to the illuminated object. She moves the lens until she sees a sharply focused, enlarged image of the object on the screen.

She measures the distance a from the illuminated object to the centre of the lens.

She measures the distance b from the centre of the lens to the screen.

Calculate the magnification m_1 of the image, using the equation $m_1 = \frac{b}{a}$.

$$m_1 = \frac{\times 1.94}{}$$
 [1]

v		
Your Mark	Q3	Mark scheme
3(a)	(a)	m ₁ = 2.94
3(b)	(b)	(m ₂ = 0.329 OR 0.33) figures only AND both
	(c)	Statement, expect YE Justification to include of (experimental) accu
3(c)	(d)	Any two from: Use of darker lights Mark position Place metre in Ensure object
3(d)		from the ben Move lens sle Lens, object, bench Repeat with Use of graph measure ima
3(e)	(e)	image appears well for positions/not all of im reference to chromati

Q3	Mark scheme		
(a)	$m_1 = 2.94$		
(b)	$(m_2 = 0.329 \text{ OR } 0.33) \text{ m}_1 \text{ and } m_2 \text{ to 2 or 3 significant}$ figures only AND both m with no unit (accept \times)		
(c)	Statement, expect YES. Must match results. e.c.f .allowed Justification to include idea of within (or beyond) limits of (experimental) accuracy		
(d)	Any two from: Use of darkened room/brighter lamp/no other lights Mark position of centre of lens on holder Place metre rule on bench (or clamp in position) Ensure object and centre of lens are same height from the bench Move lens slowly/to and fro (when focusing) Lens, object, screen vertical/perpendicular to bench Repeat with different D Use of graph paper/cm scale on screen to measure image		
(e)	image appears well focused over a (small) range of lens positions/not all of image focused at same time/relevant reference to chromatic aberration		

(b)	The student then moves the lens towards the screen until a smaller , sharply focused image of the object is seen on the screen.
	She measures the distance x from the illuminated object to the centre of the lens.
	x =60.2 cm
	She measures the distance y from the centre of the lens to the screen.
	y =19.8 cm
	Calculate the magnification m_2 of the image, using the equation $m_2 = \frac{y}{x}$.
	$m_2 = \frac{\text{X } 0.3}{\text{11}}$
(c)	A student suggests that $m_1 \times m_2$ should equal 1.
	State whether the results support this suggestion. Justify your answer by reference to the results.
	statementNU
	justification IL DUDULL INC AUTOMINI TOWN THE TOWN THE WORL WAS THE WORL WAS THE WORLD THE W
(d)	State two precautions that you would take in this experiment to obtain reliable results.
	1. LUC O DYIGHT HIGH BUIL SO THAT IMAGE FORMED SAN HE LUOYEE.
	s Carlifort nyt extriming in a gone woom min on other plant.
	[2]
(e)	
(0)	of the lens to obtain a sharply focused image on the screen.
	The become the lens to adjusted by hand
	[1]
	[Total: 7]

	Your Mark	Q3	Mark scheme
8(a)		(a)	$m_1 = 2.94$
(b)		(b)	$(m_2 = 0.329 \text{ OR } 0.33) \text{ m}_1 \text{ and } \text{m}_2 \text{ to 2 or 3 significant}$ figures only AND both m with no unit (accept \times)
		(c)	Statement, expect YES. Must match results. e.c.f .allowed Justification to include idea of within (or beyond) limits of (experimental) accuracy
B(c)		(d)	Any two from: Use of darkened room/brighter lamp/no other lights Mark position of centre of lens on holder Place metre rule on bench (or clamp in position) Ensure object and centre of lens are same height from the bench
(d)			 Move lens slowly/to and fro (when focusing) Lens, object, screen vertical/perpendicular to bench Repeat with different D Use of graph paper/cm scale on screen to measure image
8(e)		(e)	image appears well focused over a (small) range of lens positions/not all of image focused at same time/relevant reference to chromatic aberration

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 6 (May / June 2016), Question 4

Cambridge IGCSE™ Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

4 A student is investigating how the resistance of a wire depends on the length of the wire. The student aims to plot a graph.

The following apparatus is available to the student:

ammeter

voltmeter

power supply

variable resistor

switch

connecting leads

resistance wires of different lengths

metre rule.

Plan an experiment to investigate how the resistance of a wire depends on the length of the wire.

You should

- · draw a diagram of the circuit you could use to determine the resistance of each wire
- · explain briefly how you would carry out the investigation
- · suggest suitable lengths of wire
- state the key variables that you would control
- draw a table, or tables, with column headings to show how you would display your readings.
 You are not required to enter any readings in the table.

Select page

Your Mark

Q4 Mark scheme

Circuit diagram:

MP1 Sample of wire must be clearly identifiable by a label on the diagram or by letters on the diagram with an explanation

in the text

MP2 All circuit symbols correct (even if circuit is incorrect)

Method:

MP3 Take readings of V and I

MP4 For 5 or more lengths

MP5 Range of lengths must be between 5 cm and 2 m with the largest length at least twice the smallest

Table drawn with headings:

MP6 l/m, V/V, I/A, R/Ω

Key variables to control:

- Material/resistivity/conductivity/type of wire
- Diameter/radius/thickness/cross sectional area
- Temperature of wire

Steps: O. Acco	rding.to.th	e diagramc	onnect the	circuit with the
oppar	atusand	connect a	Fich resi	measured stanceutve, llength by metr nule)
(D. Clos	e the swi-	tch. read.	the curren-	t on the ammeter. I
and	the poten	tial difference	2. on the	dtmeter, Vand
·····reco	ord them I	into the tal	ale	
3 U4	2 the form	nula. resis	$tance = \frac{P}{c}$	d urrent
			(A.S. K.	tecord the data
٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠	2: Parant	measure V	wed by meter n	use the wires
750	1ONTEARERS	LKNYTVIS.;	Late II.	M Down, Your, Your,
				resistance and record
(Keep -	the purer	supplycons	tout)	
20 stand		,		
length of resistance wire/cm	I/A	V / V	R/a	
				[7]

[Total: 7]

Select page

Your Mark

Q4

Mark scheme

MP1 Sample of wire must be clearly identifiable by a label on the diagram or by letters on the diagram with an explanation

in the text

MP2 All circuit symbols correct (even if circuit is incorrect)

Method:

MP3 Take readings of V and ${f I}$

MP4 For 5 or more lengths

MP5 Range of lengths must be between 5 cm and 2 m with the largest length at least twice the smallest

Table drawn with headings:

MP6 l/m, V/V, I/A, R/Ω

Key variables to control:

- Material/resistivity/conductivity/type of wire
- Diameter/radius/thickness/cross sectional area
- Temperature of wire

A student is investigating how the resistance of a wire depends on the length of the wire. The student aims to plot a graph.

The following apparatus is available to the student:

ammeter

voltmeter

power supply

variable resistor

switch

connecting leads

resistance wires of different lengths

metre rule.

Plan an experiment to investigate how the resistance of a wire depends on the length of the wire.

You should

- · draw a diagram of the circuit you could use to determine the resistance of each wire
- · explain briefly how you would carry out the investigation
- · suggest suitable lengths of wire
- state the key variables that you would control
- draw a table, or tables, with column headings to show how you would display your readings.
 You are not required to enter any readings in the table.

Select page

Your Mark

Q4 Mark scheme

Circuit diagram:

MP1 Sample of wire must be clearly identifiable by a label on the diagram or by letters on the diagram with an explanation

in the text

MP2 All circuit symbols correct (even if circuit is incorrect)

Method:

MP3 Take readings of V and I

MP4 For 5 or more lengths

MP5 Range of lengths must be between 5 cm and 2 m with the largest length at least twice the smallest

Table drawn with headings:

MP6 l/m, V/V, I/A, R/Ω

Key variables to control:

- Material/resistivity/conductivity/type of wire
- Diameter/radius/thickness/cross sectional area
- Temperature of wire

그렇게 보고 그는 그는 그들은 그들은 그들은 그는 그 집에 들어 가게 하고 하게 하고 있었다. 그런 맛이 되는 원리에게 되어 되었다면 하지 않아 보다 아니다 아니다 되었다.
First connect the lixunt
The length of wive should be 50 cm
First, connect the connecting lead
on the wire and connect the circuit.
x Record the length of the wife which
is connect into the cirruit and the
woltage and the current. Use & to
get the resistance of the wire
Then change the position of the connects
lead and repeat the experiment,
In the experiment, you should not
Mange the the and the sectional
area of the wire and the voltage
of the battery
[7]

Select page

Your Mark

[Total: 7]

Q4 Mark scheme

Circuit diagram:

MP1 Sample of wire must be clearly identifiable by a label on the diagram or by letters on the diagram with an explanation

in the text

MP2 All circuit symbols correct (even if circuit is incorrect)

Method:

MP3 Take readings of V and ${f I}$

MP4 For 5 or more lengths

MP5 Range of lengths must be between 5 cm and 2 m with the largest length at least twice the smallest

Table drawn with headings:

MP6 l/m, V/V, I/A, R/Ω

Key variables to control:

- Material/resistivity/conductivity/type of wire
- Diameter/radius/thickness/cross sectional area
- Temperature of wire

4 A student is investigating how the resistance of a wire depends on the length of the wire. The student aims to plot a graph.

The following apparatus is available to the student:

ammeter

voltmeter

power supply

variable resistor

switch

connecting leads

resistance wires of different lengths

metre rule.

Plan an experiment to investigate how the resistance of a wire depends on the length of the wire.

You should

- . draw a diagram of the circuit you could use to determine the resistance of each wire
- · explain briefly how you would carry out the investigation
- suggest suitable lengths of wire
- · state the key variables that you would control
- draw a table, or tables, with column headings to show how you would display your readings.
 You are not required to enter any readings in the table.

Select page

Your Mark

Q4 Mark scheme

Circuit diagram:

MP1 Sample of wire must be clearly identifiable by a label on the diagram or by letters on the diagram with an explanation

in the text

MP2 All circuit symbols correct (even if circuit is incorrect)

Method:

MP3 Take readings of V and I

MP4 For 5 or more lengths

MP5 Range of lengths must be between 5 cm and 2 m with the largest length at least twice the smallest

Table drawn with headings:

MP6 l/m, V/V, I/A, R/Ω

Key variables to control:

- Material/resistivity/conductivity/type of wire
- Diameter/radius/thickness/cross sectional area
- Temperature of wire

Build a circuit like the diagram as shown, place different length of
wire at the cornecting leads peach one test for twice by change the resistance.
s. Variable resistor), record the ammeter and valtmeter reading., measure its
length after testing in the circuit.
During the experiment, make sure each wire only need to test for twice,
but different considerable resistance, the other one still need to test at these
tina resistance.
Then caculate.
[7]

Select page

Your Mark

[Total: 7]

Q4 Mark scheme

Circuit diagram:

MP1 Sample of wire must be clearly identifiable by a label on the diagram or by letters on the diagram with an explanation

in the text

MP2 All circuit symbols correct (even if circuit is incorrect)

Method:

MP3 Take readings of V and ${f I}$

MP4 For 5 or more lengths

MP5 Range of lengths must be between 5 cm and 2 m with the largest length at least twice the smallest

Table drawn with headings:

MP6 l/m, V/V, I/A, R/Ω

Key variables to control:

- Material/resistivity/conductivity/type of wire
- Diameter/radius/thickness/cross sectional area
- Temperature of wire

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 6 (May / June 2016), Question 5

Cambridge IGCSE™ Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

5 A student is investigating the cooling of water.

Some of the apparatus is shown in Fig. 5.1.

Fig. 5.1

(a) The student pours 200 cm³ of hot water into a 250 cm³ insulated beaker labelled **A.** He covers the top of the beaker with a lid.

The student takes a temperature reading every 30s as the water cools. The readings are shown in Table 5.1.

(i) Complete the column headings in the table.

(ii) The starting temperature θ of the hot water in beaker **A** is shown on Fig. 5.1.

Record this temperature in the table at time t = 0 s. [1]

Table 5.1

	. beaker A insulation and lid	beaker B insulation, no lid	beaker C lid, no insulation
: t/s	θ/°c .	. θ/ ° Ç	θ/ °C
0	83	85	78
30	80	79	74
60	77	74	71
90	75	70	68
120	73	67	66
150	71	64	64

Select page

	Your Mark
5(a)(i)	
5(a)(ii)	
5(b)(i)	
5(b)(ii)	
5(c)	
5(d)	

[1]

Q5	Mark scheme
(a)(i)	s, °C, °C, °C
(a)(ii)	83(°C)
(b)(i)	First box/sentence indicated
(b)(ii)	Clear reference to readings with examples of temperature differences
(c)	Any two from: Room temperature (or suitable reference to draughts or similar) Starting temperature (of water) Density of packing/amount/type of insulation Thickness of lids/identical lids
(d)	Card or any suitable insulating material Should be a good insulator/poor conductor
(e)	Perpendicular viewing/view at right angles/eye level Reading to bottom of meniscus

b)	The student repeats the procedure using a 250 cm ³ beaker labelled B . This beaker is insulated but has no lid.			
	He repeats the procedure again using a 250 ${\rm cm}^3$ beaker labelled ${\bf C}.$ This beaker has a lid but no insulation.			
	All the readings are shown in Table 5.1.			
	(i) Tick the statement that best describes the results of the investigation.			
	Removing the lid speeds up the rate of cooling significantly more than removing the insulation.			
	Removing the insulation speeds up the rate of cooling significantly more than removing the lid.			
	There is no significant difference between removing the lid and removing the insulation.			
	(ii) Justify your answer by reference to the readings.			
	Low difference of drawing in temperature			
	85°C-79°C-6°C-70°C-70°C-74°C-3°C-4°C-3°C-4°C-3°C-4°C-3°C-4°C-3°C-76°C-70°C-68°C-3°C (So the low difference shadow	8		
c)	State two of the conditions that should be kept the same in this experiment in order for the comparison to be fair.			
	1. Juitia Got temporatine of water			
	2. Regent the efficience humidity			
	[2].			
d)	Suggest a suitable material for the lid. Give a reason for your choice of material.			
	material word.			
	reason Bessell It is a marketer and can keep heat made.			
	we bester efficiently [2]			
	r-1	1		

Select page

	Your Mark
5(a)(i)	
5(a)(ii)	
5(b)(i)	
5(b)(ii)	
5(c)	
5(d)	

Q5	Mark scheme
(a)(i)	s, °C, °C, °C
(a)(ii)	83(°C)
(b)(i)	First box/sentence indicated
(b)(ii)	Clear reference to readings with examples of temperature differences
(c)	Any two from: Room temperature (or suitable reference to draughts or similar) Starting temperature (of water) Density of packing/amount/type of insulation Thickness of lids/identical lids
(d)	Card or any suitable insulating material Should be a good insulator/poor conductor
(e)	Perpendicular viewing/view at right angles/eye level Reading to bottom of meniscus

(e) Describe briefly how a measuring cylinder is read in order to obtain a reliable value for the volume of water. You may draw a diagram.

Eyes should perpendicular to the measuring eyrander's scal	e of
level of water and	
•	
	ro1
	[2]
[To	tal: 10]

Select page

	Your Mark
5(a)(i)	
5(a)(ii)	
5(b)(i)	
5(b)(ii)	
3(b)(ii)	
5(c)	
5(d)	

Q5	Mark scheme
(a)(i)	s, °C, °C, °C
(a)(ii)	83(°C)
(b)(i)	First box/sentence indicated
(b)(ii)	Clear reference to readings with examples of temperature differences
(c)	Any two from: Room temperature (or suitable reference to draughts or similar) Starting temperature (of water) Density of packing/amount/type of insulation Thickness of lids/identical lids
(d)	Card or any suitable insulating material Should be a good insulator/poor conductor
(e)	Perpendicular viewing/view at right angles/eye level Reading to bottom of meniscus

5 A student is investigating the cooling of water.

Some of the apparatus is shown in Fig. 5.1.

Fig. 5.1

(a) The student pours 200 cm³ of hot water into a 250 cm³ insulated beaker labelled **A.** He covers the top of the beaker with a lid.

The student takes a temperature reading every 30s as the water cools. The readings are shown in Table 5.1.

(i) Complete the column headings in the table.

[1]

(ii) The starting temperature θ of the hot water in beaker **A** is shown on Fig. 5.1.

Record this temperature in the table at time t = 0s.

[1]

Table 5.1

	beaker A insulation and lid	beaker B insulation, no lid	beaker C lid, no insulation
t/S	θ/ ' C	θ/ ° C	. θ/ ℃
0	\$3	85	78
30	80	79	74
. 60	77	74	71
90	75	70	68
120	73	67	66
150	71	64	64

Select page

	Your Mark
5(a)(i)	
5(a)(ii)	
5(b)(i)	
5(b)(ii)	
5(c)	
5(d)	

Q5	Mark scheme
(a)(i)	s, °C, °C, °C
(a)(ii)	83(°C)
(b)(i)	First box/sentence indicated
(b)(ii)	Clear reference to readings with examples of temperature differences
(c)	Any two from: Room temperature (or suitable reference to draughts or similar) Starting temperature (of water) Density of packing/amount/type of insulation Thickness of lids/identical lids
(d)	Card or any suitable insulating material Should be a good insulator/poor conductor
(e)	Perpendicular viewing/view at right angles/eye level Reading to bottom of meniscus

(b)	The student repeats the procedure using a $250\mathrm{cm^3}$ beaker labelled B. This beaker is insulated but has no lid.
	He repeats the procedure again using a $250\mathrm{cm^3}$ beaker labelled ${\bf C}$. This beaker has a lid but no insulation.
	All the readings are shown in Table 5.1.
	(i) Tick the statement that best describes the results of the investigation.
	Removing the lid speeds up the rate of cooling significantly more than removing the insulation.
	Removing the insulation speeds up the rate of cooling significantly more than removing the lid.
	There is no significant difference between removing the lid and removing the insulation.
	[1]
	(ii) Justify your answer by reference to the readings. Beaker B and C are have different rates of adding at the start but then Beaker B's rate agets faster and the become almost same [1]
(c)	State two of the conditions that should be kept the same in this experiment in order for the comparison to be fair. 1. Volume of water
	2 Initial temperature of water
	[2]
(d)	Suggest a suitable material for the lid. Give a reason for your choice of material. material Rubber reason Good insulator
	[2]

Select page

Your Mark	Q5	Mark scheme
5(a)(i)	(a)(i)	s, °C, °C, °C
5(a)(ii)	(a)(ii)	83(°C)
	(b)(i)	First box/sentence indicated
5(b)(i)	(b)(ii)	Clear reference to readings with examples of temperature differences
5(b)(ii)	(c)	Any two from: Room temperature (or suitable reference to draughts or similar) Starting temperature (of water) Density of packing/amount/type of insulation Thickness of lids/identical lids
5(c)	(d)	Card or any suitable insulating material Should be a good insulator/poor conductor
5(d)	(e)	Perpendicular viewing/view at right angles/eye level Reading to bottom of meniscus

(e) Describe briefly how a measuring cylinder is read in order to obtain a reliable value for the volume of water. You may draw a diagram.

The	point	at	which	the	top o	F 14	wate	r is	
					provide				
					vater				
									[2]
									[-]
								[Total	: 10]

Select	
page	

	Your Mark
5(a)(i)	
5(a)(ii)	
5(b)(i)	
5(b)(ii)	
5(c)	
5(d)	

	** * *
Q5	Mark scheme
(a)(i)	s, °C, °C, °C
(a)(ii)	83(°C)
(b)(i)	First box/sentence indicated
(b)(ii)	Clear reference to readings with examples of temperature differences
(c)	Any two from: Room temperature (or suitable reference to draughts or similar) Starting temperature (of water) Density of packing/amount/type of insulation Thickness of lids/identical lids
(d)	Card or any suitable insulating material Should be a good insulator/poor conductor
(e)	Perpendicular viewing/view at right angles/eye level Reading to bottom of meniscus

5 A student is investigating the cooling of water.

Some of the apparatus is shown in Fig. 5.1.

Fig. 5.1

(a) The student pours 200 cm³ of hot water into a 250 cm³ insulated beaker labelled A. He covers the top of the beaker with a lid.

The student takes a temperature reading every 30s as the water cools. The readings are shown in Table 5.1.

- (i) Complete the column headings in the table, [1]
- (ii) The starting temperature θ of the hot water in beaker **A** is shown on Fig. 5.1.

Record this temperature in the table at time t = 0 s. [1]

Table 5.1

	beaker A insulation and lid-	beaker B insulation, no lid	beaker C lid, no insulation
t/S	·0/ cm	θ/ cm	θ/ cm
0	83	85	78 .
30	80 -	79	74
60	77	74	71
90	75	70	68
120	· 73	67	66
150	71	64	·64

Select page

	Your Mark
5(a)(i)	
5(a)(ii)	
5(b)(i)	
5(b)(ii)	
5(c)	
5(d)	

Q5	Mark scheme
(a)(i)	s, °C, °C, °C
(a)(ii)	83(°C)
(b)(i)	First box/sentence indicated
(b)(ii)	Clear reference to readings with examples of temperature differences
(c)	Any two from: Room temperature (or suitable reference to draughts or similar) Starting temperature (of water) Density of packing/amount/type of insulation Thickness of lids/identical lids
(d)	Card or any suitable insulating material Should be a good insulator/poor conductor
(e)	Perpendicular viewing/view at right angles/eye level Reading to bottom of meniscus

b)	The student repeats the procedure using a $250\mathrm{cm^3}$ beaker labelled B. This beaker is insulated but has no lid.
	He repeats the procedure again using a $250\mathrm{cm}^3$ beaker labelled C . This beaker has a lid but no insulation.
	All the readings are shown in Table 5.1.
	(i) Tick the statement that best describes the results of the investigation.
	Removing the lid speeds up the rate of cooling significantly more than removing the insulation.
	Removing the insulation speeds up the rate of cooling significantly more than removing the lid.
	There is no significant difference between removing the lid and removing the insulation.
	[1]
	(ii) Justify your answer by reference to the readings. Because in beaker C, wyou can see
	the results and temperature going down
	Because in beaker C, wyou can see the result and temperature going down much faster than Beaker B. [1]
c)	State two of the conditions that should be kept the same in this experiment in order for the comparison to be fair.
	1. I Surrounding temperature should be kept
	same Inormal at all times.
	2. Size of the beaber that
	is used.
	[2]
d)	Suggest a suitable material for the lid. Give a reason for your choice of material.
	material Glass.
	material Glass. reason An-expensive and it also catches
	water droplets.
	[2]

Select page

	Your Mark
5(a)(i)	
(a)(ii)	
i(b)(i)	
(b)(ii)	
5(c)	
5(d)	

Q5	Mark scheme
(a)(i)	s, °C, °C, °C
(a)(ii)	83(°C)
(b)(i)	First box/sentence indicated
(b)(ii)	Clear reference to readings with examples of temperature differences
(c)	Any two from: Room temperature (or suitable reference to draughts or similar) Starting temperature (of water) Density of packing/amount/type of insulation Thickness of lids/identical lids
(d)	Card or any suitable insulating material Should be a good insulator/poor conductor
(e)	Perpendicular viewing/view at right angles/eye level Reading to bottom of meniscus

water is filled inside measuring
cylinder. The readings will be given
and there are proper divisions in the cylinder
you you to obtain a much more accurate reading
[Total: 10]

Select page

You	r
Mar	k

5(a)(i)

5(a)(ii)

5(b)(i)

5(b)(ii)

5(c)

5(d)

Q5	Mark scheme
(a)(i)	s, °C, °C, °C
(a)(ii)	83(°C)
(b)(i)	First box/sentence indicated
(b)(ii)	Clear reference to readings with examples of temperature differences
(c)	Any two from: Room temperature (or suitable reference to draughts or similar) Starting temperature (of water) Density of packing/amount/type of insulation Thickness of lids/identical lids
(d)	Card or any suitable insulating material Should be a good insulator/poor conductor
(e)	Perpendicular viewing/view at right angles/eye level Reading to bottom of meniscus

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

Copyright © UCLES September 2017