Interactive Example Candidate Responses

Paper 3 (May / June 2016), Question 1
Cambridge IGCSE ${ }^{\text {TM }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

1 Fig. 1.1 shows part of the speed-time graphs for a cyclist and for a runner.

Fig. 1.1
(a) Compare the motion of the cyclist and the runner during the first 6 seconds. Explain your answer.

(b) Describe the motion of the cyclist between time $t=6.0 \mathrm{~s}$ and time $t=12.0 \mathrm{~s}$
....its..........onstant
(c) Calculate the total distance travelled by the cyclist between $t=0$ and $t=12.0 \mathrm{~s}$.
$D=S \times T$

$$
\begin{aligned}
1 / 2+6 \times 9 & =29 \\
6 \times 9 & =\frac{54}{83}
\end{aligned}
$$

nea =

1(c) \square 2/4 The graph gives an indication of the areas of a triangle and a rectangle. The candidate has calculated the area of the triangle incorrectly. The final mark is a quality mark awarded to candidates who obtain the value of 81 m having completed correctly all parts of the calculation.
1(d) \square

2/2 The graph is completed correctly.
\square

Mark Comment
1/3 This response indicates that the cyclist is gaining speed but does not give details of the motion of the runner. A mark is scored for identifying correctly the faster speed of the cyclist.

1/1 Constant speed is the required answer.
Examiner marks and comments

1(b) \square
(d) After the first 6.0 seconds, the runner moves at constant speed for 4.0 seconds. He then slows down uniformly and stops in a further 2.0 seconds.

Mark Comment
$\mathbf{1 / 3}$ This response indicates that the cyclist is gaining speed but does not give details of the motion of the runner. A mark is scored for identifying correctly the faster speed of the cyclist.

1(b) \square 1/1
1 Constant speed is the required answer.

2/4 The graph gives an indication of the areas of a triangle and a rectangle. The candidate has calculated the area of the triangle incorrectly. The final mark is a quality mark awarded to candidates who obtain the value of 81 m having completed correctly all parts of the calculation.
\square
1(d)
2/2 The graph is completed correctly.

1 Fig. 1.1 shows part of the speed-time graphs for a cyclist and for a runner.

Fig. 1.1
(a) Compare the motion of the cyclist and the runner during the first 6 seconds. Explain your answer.
During. the first 6 second the cyclist was having moe e speed than the runner and that is
because 0 cyclist is machine and the

(b) Describe the motion of the cyclist between time $t=6.0 \mathrm{~s}$ and time $t=12.0 \mathrm{~s}$.
(c) Calculate the total distance travelled by the cyclist between $t=0$ and $t=12.0 \mathrm{~s}$

Total distance $=$ Total sped \times rot al time.

$$
=9 \times 12=108 \mathrm{~m}
$$

$9 \mathrm{~m} / \mathrm{s}$...nd it mover inomstent shes \qquad1]

1(b) \square

01 Mark scheme

(a) cyclist accelerating OR moving faster OR cyclist has higher
(a) $\begin{aligned} & \text { cyclist accelerating OR moving faster } \\ & \text { speed } \\ & \text { both (cyclist and runner) accelerating }\end{aligned}$
(a) $\begin{aligned} & \text { cyclist accelerating OR moving faster } \\ & \text { speed } \\ & \text { both (cyclist and runner) accelerating }\end{aligned}$
cyclists gradient steeper OR acceleration values calculated
(b) Constant OR steady OR uniform (speed or motion)

1(c)

1(d) \square
(d) After the first 6.0 seconds, the runner moves at constant speed for 4.0 seconds. He then slows down uniformly and stops in a further 2.0 seconds.

On Fig. 1.1, complete the graph for the runner's motion. (decelerateg $\underset{[\text { Total: 10] }}{[2]}$

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org
Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 3 (May / June 2016), Question 2
Cambridge IGCSE ${ }^{\text {m }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

2 A boy steps off a high board into a swimming pool.
Fig. 2.1 shows the forces acting on the boy at one point in his fall.

Fig. 2.1
(a) The 540 N force is caused by gravitational attraction.

State the cause of the 100 N force.
..............
air \qquad resistance
\qquad

$$
\begin{align*}
& \text { (b) Calculate the mass of the boy. } \tag{1}\\
& \qquad m= \\
& 540 \div 10=54
\end{align*}
$$

mass of boy =

$$
54
$$

(c) Calculate the resultant force on the boy. State its direction.
$100 \div 10 \quad 540 \div 100=5.4$

[Total: 5]

Fig. 2.1 shows the forces acting on the boy at one point in his fall.

Fig. 2.1
(a) The 540 N force is caused by gravitational attraction.

State the cause of the 100 N force.
I Energy force
(b) Calculate the mass of the boy.

$$
\begin{gathered}
540-100 \\
\frac{440}{10}
\end{gathered}
$$

mass of boy = \qquad 44
(c) Calculate the resultant force on the boy. State its direction.

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org
Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 3 (May / June 2016), Question 3
Cambridge IGCSE ${ }^{\text {m }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

3 Fig. 3.1 shows a metal plate-warmer.

Fig. 3.1
The plate-warmer contains two small candle heaters. Plates of food are placed on top of the warming-tray.
(a) (i) State the name of a process by which the thermal energy from the candles passes to the warming-tray.
radiation \qquad
(ii) State the name of the process by which thermal energy moves through the warming-tray.
\qquad Coniveetion
\qquad [1]
(b) The outside of the plate-warmer is shiny.

Suggest how this helps the plate-warmer to stay hot.
It conduatg heat and preuentg heat frem [1] being cost
(c) The handles of the plate-warmer are made from metal.

Identify a problem with this, and suggest how the problem could be solved.

does net conduet ur* of heat,

3 Fig. 3.1 shows a metal plate-warmer.

Fig. 3.1
The plate-warmer contains two small candle heaters. Plates of food are placed on top of the warming-tray.
(a) (i) State the name of a process by which the thermal energy from the candles passes to the warming-tray.

.. [1]
(ii) State the name of the process by which thermal energy moves through the warming-tray.

(b) The outside of the plate-warmer is shiny.

Suggest how this helps the plate-warmer to stay hot.
.....................................reflection....
(c) The handles of the plate-warmer are made from metal.

Identify a problem with this, and suggest how the problem could be solved.
problem: Ine handle could be.... beated and difficult to touch. action: us.ing a product thet is ggainst heat or use gloves

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 3 (May / June 2016), Question 4
Cambridge IGCSE ${ }^{\text {m }}$ Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

4 Fig. 4.1 is a simplified diagram of a geothermal power station.

Fig. 4.1
(a) Describe the energy resource labelled X in Fig. 4.1.
.................enewable
.[1]
(b) Identify the useful energy transformation that takes place in the geothermal power station. Tick one box in each column.

input energy		output energy	
chemical	\square		\square
chemical	\square		
electrical	\square		electrical
gravitational	\square		
sound	\square	gravitational	\square
thermal	\square	sound	\square
		thermal	\square

(c) State two disadvantages of obtaining energy from fossil fuels.

2. it is non-nenewable. \qquad
\qquad

4 Fig. 4.1 is a simplified diagram of a geothermal power station.

Fig. 4.1
(a) Describe the energy resource labelled X in Fig. 4.1.
..[1]
(b) Identify the useful energy transformation that takes place in the geothermal power station. Tick one box in each column

(c) State two disadvantages of obtaining energy from fossil fuels.

1. air follintion from the power slotion

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 3 (May / June 2016), Question 5
Cambridge IGCSE ${ }^{\text {m }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Fig. 5.1
(a) Explain why use of the crawler-board prevents the men from falling. through the roof:
 . Which watll prevent the roo fo ta \qquad
collopse when............presture rs........andend... \qquad
(b) The crawler-board has a weight of 400 N . The total weight of the two men is 1600 N . The area of the crawier-board in contact with the roof is $0: 8 \mathrm{~m}^{2}$.

Calculate the pressure on the roof when the men are on the crawler-board. Include the unit:

$$
\begin{gathered}
1600-400=1200 \\
1200 \cdot \frac{\pi}{1} 08
\end{gathered}
$$

5(b) \square

Q.5	Mark scheme
(a)	any two from: larger area (in contact with roof) weight OR force spread out lower pressure (on roof)
(b)	$400+1600$ seen OR 2000 (N) P = F/A stated $2000 / 0.8$ 2500 $\mathrm{~N} / \mathrm{m}^{2}$ OR Pa

Fig. 5.1
(a) Explain why use of the crawler-board prevents the men from falling through the roof.

(b) The crawler-board has a weight of 400 N . The total weight of the two men is 1600 N . The area of the crawler-board in contact with the roof is $0.8 \mathrm{~m}^{2}$.

Calculate the pressure on the roof when the men are on the crawler-board. Include the unit.

$$
\frac{400}{1600} \times 0.64
$$

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 3 (May / June 2016), Question 6
Cambridge IGCSE ${ }^{\text {m }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

6 Fig. 6.1 shows an experiment to observe the motion of smoke particles in air.

moke partic
in air
Fig. 6.1

Fig. 6.2
(a) (i) Fig. 6.2 shows the view through the microscope of one smoke particle, labelled P. On Fig. 6.2, draw 3 lines to show the movement of this particle.
(ii) Explain what causes the smoke particle to move.

$$
\begin{aligned}
& \text { the more it moves. } \\
& \text {. } 2]
\end{aligned}
$$

(b) The air containing the smoke particles becomes warmer.

Suggest how this changes the movement of the smoke particles.
...They move....... more berause kney have have mare \qquad

Fig. 6.1

Fig. 6.2
(a) (i) Fig. 6.2 shows the view through the microscope of one smoke particle, labelled P.

On Fig. 6.2, draw 3 lines to show the movement of this particle.
(ii) Explain what causes the smoke particle to move.
 makes them mane around and paunce....
..of ony abjects \qquad
(b) The air containing the smoke particles becomes warmer.

Suggest how this changes the movement of the smoke particles.
 heat couse the perticles to obitoin nerne on erergoptotal: 5]

Q6	Mark scheme
(a)(i)	three straight lines, joined end to end at least two changes of direction
(a)(ii)	collisions OR bumps OR bounces off (with moving) air molecules
(b)	more collisions OR changes of direction

6(b) \square

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 3 (May / June 2016), Question 7
Cambridge IGCSE ${ }^{\text {m }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

7 Fig. 7.1 shows equipment used to demonstrate thermal expansion.

Fig. 7.1
(a) The copper rod is heated and expands. It turns the roller and moves the pointer. On Fig. 7.1, draw the new position of the pointer.
(b) As the rod is heated, some of its properties change.

Identify how each property changes. Place one tick in each row of the table.

property of rod	decreases	increases	stays the same
volume			
mass			
density			

(c) Suggest one disadvantage of thermal expansion.

$$
\text { It is dangeraus becouse it takes long } 10
$$

7(c) \square

7 Fig. 7.1 shows equipment used to demonstrate thermal expansion.

Fig. 7.1
(a) The copper rod is heated and expands. It turns the roller and moves the pointer.

The copper rod is heated and expands. It turns th
On Fig. 7.1, draw the new position of the pointer.
(b) As the rod is heated, some of its properties change.

Identify how each property changes. Place one tick in each row of the table.

property of rod	decreases	increases	stays the same
volume			
mass			
density			

(c) Suggest one disadvantage of thermal expansion.

Becaus of thema expunsion mefals son melt [1] and come out of Tu place Thaf they're [Total: 5] fixed into. e.g A fixed block.

-
[1]
[3]

7(b) \square

Q7	Mark scheme
(a)	to the left OR anticlockwise
(b)	row 1 - increases row 2 - stays the same row 3- decreases
(c)	electric cables lower to ground OR telephone lines in summer OR buckling tracks

7(c) \square

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 3 (May / June 2016), Question 8
Cambridge IGCSE ${ }^{\text {m }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Fig. 8.1
(a) (i) Name the line labelled X .

(ii) When angle a is 45°, angle b is also 45°.

Angle a is changed to 20°.
What is the new value of angle b ? Tick one box.
20° \square 25° \square 45° \square 65° \square 80°

(b) The student now makes the ray of light from: Fig. 8.1 pass into a glass block, as shown in Fig. 8.2.

Fig. 8.2
Complete the table, using the labels from Fig. 8.2. The first label is done for you.

description	label
an angle of incidence	a
an angle of refraction	d
an internally reflected angle	g
a critical angle	f
a refracted ray	R

(c) The student uses a converging lens to produce an image of an object. Fig. 8.3 shows the arrangement.

On Fig. 8.3, using a ruler, carefully draw two rays from the object O to locate the position of the image. Use an arrow to represent the image.

Fig. 8.3
,
$\mathrm{F}=$ principal focus
$\mathrm{O}=$ object

Fig. 8.1
(a) (i) Name the line labelled X .

Angreflection \qquad
(ii) When angle a is 45°, angle b is also 45°.

Angle a is changed to 20°.
What is the new value of angle b ? Tick one box.
20°
 25° \square 45° \square 65° \qquad 80°

(b) The student now makes the ray of light from Fig. 8.1 pass into a glass block, as shown in Fig. 8.2.

Fig. 8.2
Complete the table, using the labels from Fig. 8.2. The first label is done for you.

description	label
an angle of incidence	a
an angle of refraction	c
an internally reflected angle	e
a critical angle	区 f.
a refracted ray	g

Select
page
(c) The student uses a converging lens to produce an image of an object. Fig. 8.3 shows the arrangement.

Fig. 8.3
On Fig. 8.3, using a ruler, carefully draw two rays from the object O to locate the position of the image. Use an arrow to represent the image.

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 3 (May / June 2016), Question 9
Cambridge IGCSE ${ }^{\text {TM }}$ Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

9 Fig. 9.1 represents the regions of the electromagnetic spectrum.

Fig. 9.1

(a) Complete Fig. 9.1:
(i) Add the label of the missing region.
(ii) Complete the label under the arrow.
(b) (i) State two uses of X -rays.

1.7ey. \qquadsised foi!l.................ells \qquad
2. ...Thex.............used for.....sconning....hunan body...in.........................
(ii) Describe two safety precautions taken by people using X -rays.

3. Prople using....x-rays...............upar protectius clothes.
(iii) X -rays and light waves can both travel through a vacuum.

Identify the correct statement. Tick one boxX-rays travel at a slower speed than light waves.
X-rays travel at the same speed as light waves.
X-rays travel at a faster speed than light waves.

0.9	Mark scheme
(a)(i)	infra-red
(a)(ii)	frequency
(b)(i)	any two different applications from:

- (medical) imaging OR detecting fractures in bone OR specific example e.g. CT scan/imaging teeth at dentist
- detecting faults in metal
- security imaging e.g. airport security checks of bags
- cancer treatment

9(b)(i)

9(b)(ii)

9(b)(iii) \square

9 Fig. 9.1 represents the regions of the electromagnetic spectrum.

| radio
 waves | micro-
 waves | Light | vaves | light | ultraviolet | waves |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | X-rays | gamma |
| :---: |
| rays |

increasing Speed

Fig. 9.1

(a) Complete Fig. 9.1:
(i) Add the label of the missing region.
(ii) Complete the label under the arrow.
(b) (i) State two uses of X -rays.

2.
(ii) Describe two safety precautions taken by people using X-rays.

1. Safety goggales.
2. ...glous.
(iii) X -rays and light waves can both travel through a vacuum.

Identify the correct statement. Tick one boxX-rays travel at a slower speed than light waves.
X-rays travel at the same speed as light waves
X-rays travel at a faster speed than light waves.

9(a)(ii)

-
9(b)(i)

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 3 (May / June 2016), Question 10
Cambridge IGCSE ${ }^{\text {m }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Fig. 10.1
(a) Complete the sentences about the circuit. Use words from the box.
. fixed resistor lamp light-dependent resistor parallel
(i) Components X and Y are connected inseries
(ii). The component Y is a \qquad Frod resistor
(b) Fig. 10.2 shows how the resistance of Y varies with temperature.

Fig. 10.2
(i) Describe how the resistance of Y varies with temperature. The lesser the resternataterte the the nigher the res is tance \qquad
\qquad
(ii) The temperature of Y is $10^{\circ} \mathrm{C}$. The resistance of X is 20Ω.

Calculate the combined resistance of Y and X

$2080+20=16$

resistance $=$
 2100 \qquad Ω [3]
(iii) Calculate the current in the circuit.
正 $=\frac{y}{\text { 娄 }}$
$100+140702+100+702160+20420$
 A. [3] [Total: 10]

$$
I=12
$$

$$
160+140+120+100+80+60+40+20=\frac{12}{220}
$$

\square

Q10	Mark scheme
(a)(i)	series (a)(ii)
thermistor	
(b)(i)	resistance decreases as temp increases at decreasing rate OR not proportional OR not linear
(b)(ii)	resistance of $Y=80 \Omega$ $R_{t}=R_{1}+R_{2}$ in any form 100 (Ω)
(b)(iii)	$V=I R$ in any form $12 \div 100$ OR 12 \div candidates (b)(ii) 0.12 (A) OR ECF from (b)(ii)

10(b)(ii) \square
\square

Fig. 10.1
(a) Complete the sentences about the circuit. Use words from the box.

fixed resistor	lamp	light-dependent resistor	parallel	series	thermistor

(i) Components X and Y are connected in ...paralle i
(ii) The component Y is afixed....irsistron..
(b) Fig. 10.2 shows how the resistance of Y varies with temperature.

Fig. 10.2
(i) Describe how the resistance of Y varies with temperature.

As the resistance of y decrases the
A...mperatare o.... of........increases.: \qquad

(ii) The temperature of Y is $10^{\circ} \mathrm{C}$. The resistance of X is 20Ω.

Calculate the combined resistance of Y and X .

$r=y \times \times \Omega$

$r=80 \Omega \times 20 \Omega=1600 \Omega$
resistance $=\ldots 16.00$.
(iii) Calculate the current in the circuit.

Current $=\frac{r}{N V}=\frac{1600 \Omega}{12 Y}=133.3 \mathrm{~A}$

$$
\begin{aligned}
& \text { [Total: 1.0]. }
\end{aligned}
$$

10(a)(ii)

Q.10	Mark scheme
(a)(i)	series (a)(ii)
thermistor	
(b)(i)	resistance decreases as temp increases at decreasing rate OR not proportional OR not linear
(b)(ii)	resistance of $Y=80 \Omega$ $R_{t}=R_{1}+R_{2}$ in any form 100 (Ω)
(b)(iii)	$V=I R$ in any form $12 \div 100$ OR 12 \div candidates (b)(ii) 0.12 (A) OR ECF from (b)(ii)

10(b)(ii) \square
\square

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 3 (May / June 2016), Question 11
Cambridge IGCSE ${ }^{\text {TM }}$ Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

11 (a) Put a ring around the names of the metals which are attracted to magnets.
aluminium \qquad mercury magnesium (stee) tin
(b) Fig. 11.1 and Fig. 11.2 show magnetic field patterns for bar magnets.

On each diagram, correctly label the poles. Write \mathbf{N} or \mathbf{S}.

Fig. 11.1

Fig. 11.2

(c) For each diagram in Fig. 11.3, describe the force acting, if any. Use the words attraction, repulsion, or no force.

Fig. 11.3
11(c)(ii) \square

11 (a) Put a ring around the names of the metals which are attracted to magnets.
aluminium \qquad magnesium steel tin
(b) Fig. 11.1 and Fig. 11.2 show magnetic field patterns for bar magnets.

On each diagram, correctly label the poles. Write \mathbf{N} or \mathbf{S}.

Fig. 11.2
(c) For each diagram in Fig. 11.3, describe the force acting, if any. Use the words attraction, repulsion, or no force.

Fig. 11.3

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 3 (May / June 2016), Question 12
Cambridge IGCSE ${ }^{\text {m }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

12 Two radioactive sources are used by a teacher. One source emits only alpha particles and the other source emits only beta particles.
(a) Suggest how the sources can be identified.
(b) The teacher also has a source that emits gamma rays.

State two ways in which gamma rays are different from alpha particles.

2. gamma'..'s.......Gnesn
(c) State an effect of ionising radiation on -living things.

Mutation of Cells. Espies [1]
 Maria zeta Wive they can
pardsolos can \qquad

$$
\frac{1}{90}
$$

\qquad

12(b)

012 Mark scheme

(a) idea of paper between source and detector OR measuring range (in air) OR pass through an electric or magnetic field
alpha stopped by paper OR larger range in air for beta OR identify deflection when in field
(b) any two from:

- gamma travel at the speed of light
- gamma rays have no charge
- gamma rays have no mass
- gamma is a wave OR part of the electromagnetic spectrum
- gamma less ionising
- greater penetration
- not deflected by electric or magnetic fields
(c) damages cells/tissues/DNA OR causes (cell) mutations OR radiation sickness

12 Two radioactive sources are used by a teacher. One source emits only alpha particles and the other source emits only beta particles.
(a) Suggest how the sources can be identified.

$$
\begin{aligned}
& \text {...rodioactive source......enits Aphe......Alpho.... or }
\end{aligned}
$$

$$
\begin{aligned}
& \text {...a. a a.........tone }
\end{aligned}
$$

(b) The teacher also has a source that emits gamma rays.

State two ways in which gamma rays are different from alpha particles.

2. Tamma raus have a chacrae Of.............................
(c) State an effect of ionising radiation on living things.

It....destroys.... living........ng.

Your Mark
 12(a)
 \square

\square

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 4 (May / June 2016), Question 1
Cambridge IGCSE ${ }^{\text {m }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Fig. 1.1 shows the speed-time graph of the motion of the car from the moment the order is given.

Fig. 1.1
(a) The order to stop is given at time $t=0 \mathrm{~s}$.
(i) State the speed of the car at $t=0 \mathrm{~s}$.
speed $=\ldots \ldots . .18 \mathrm{~m} . . \mathrm{m} / \mathrm{s}$. \qquad
(ii) Suggest why the car continues to travel at this speed for 0.9 s .

(b) Calculate
(i) the deceleration of the car between $t=0.9 \mathrm{~s}$ and $t=4.0 \mathrm{~s}$,
(ii) the total distance travelled by the car from $t=0 \mathrm{~s}$.

$$
\begin{aligned}
d & =A \text { und er graph } \\
& =\frac{1}{2}(a+b) h \\
& =\frac{1}{2}(0.9+4) 18 \\
& =44.1 \mathrm{~m}
\end{aligned}
$$

$$
\text { distance }=\ldots 4 . \ldots \ldots \ldots
$$

\qquad

$$
\begin{align*}
& \text { deceleration }=\text { Gradient } P=10000-18 \quad \text { deceleration }=5.8 \\
& \text { Gradicut }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{18000-18}{4-0.9} \\
& =\frac{-18}{3.1}=-5.81 \mathrm{~m} / \mathrm{s}^{2} \theta \\
& \text { deceleration }=\ldots \ldots \ldots . .5 .8 .81 \mathrm{~cm} / \mathrm{s}^{2} \tag{2}
\end{align*}
$$

(c) Describe and explain a danger to a driver of:not wearing a safety belt during:a sudden:stop.

1 A driving instructor gives a student a sudden order to stop the car in the shortest possible time.
Select
page
page

Fig. 1.1 shows the speed-time graph of the motion of the car from the moment the order is given.

Fig. 1.1
(a) The order to stop is given at time $t=0 \mathrm{~s}$.
(i) State the speed of the car at $t=0 \mathrm{~s}$.
speed $=\ldots \ldots .18 \mathrm{~m} / \mathrm{s}$ \qquad
(ii) Suggest why the car continues to travel at this speed for 0.9 s .
 berateu siopped ofratitu tife its spepet hems.
(b) Calculate
accelerating
(i) the deceleration of the car between $t=0.9 \mathrm{~s}$ and $t=4.0 \mathrm{~s}$,
gradient $=$ deceleration

$$
\begin{align*}
& \frac{x_{2}-x_{1}}{x_{2}-x_{1}}=x \tag{2}\\
& \frac{0-18}{4-0 \cdot 9}=x \\
& \text { (ii) the total distance }
\end{align*}
$$

$$
=x \quad \frac{-18}{3 \cdot 1}=x
$$

$$
\left.\begin{aligned}
& x_{2}-x 1 \\
& \frac{0-18}{4-0.9}
\end{aligned}=x \quad \right\rvert\, \begin{aligned}
& -5.806=x \\
& -5.81=x
\end{aligned}
$$

(ii) the total distance travelled by the car from $t=0 \mathrm{~s}$.
distamce $=$ A under graph
1(c) \qquad

0.1	Mark scheme
(a)(i)	$18 \mathrm{~m} / \mathrm{s}$
(a)(ii)	(0.90 s is) the driver's time to react
(b)(i)	$(\mathrm{a}=)(\mathrm{v}-\mathrm{u}) / \mathrm{t}$ OR $\Delta \mathrm{v} / \mathrm{t}$ OR either in words OR $(18-0) / 3.1$ OR 18/3.1 $5.8 \mathrm{~m} / \mathrm{s}^{2}$ OR Values from any correct points on graph Answer dependent on accuracy of chosen points
(b)(ii)	Evidence of use of: (distance =) area under graph e.g. $\begin{aligned} & 1 / 2 \mathrm{bh} \\ & (18 \times 0.9)+(0.5 \times 3.1 \times 18) \\ & 44 \mathrm{~m} \end{aligned}$
(c)	(Without seat belt, driver:) e.g. keeps moving (forwards)/ does not stop/has inertia/has momentum (Driver) hits steering wheel/windscreen/dashboard

(c) Describe and explain a danger to a driver of not wearing a safety belt during a sudden stop. The sudelen stop caused the dafreas body to lean foruound. If no bett is uamn, daluea can cal....s. is forrehead ou the ste...............ing.......................

Fig. 1.1 shows the speed-time graph of the motion of the car from the moment the order is given.

Fig. 1.1
(a) The order to stop is given at time $t=0 \mathrm{~s}$.
(i) State the speed of the car at $t=0 \mathrm{~s}$.

$$
\begin{equation*}
\text { speed }=\ldots \ldots \mathrm{m} / \mathrm{s} \tag{1}
\end{equation*}
$$

(ii) Suggest why the car continues to travel at this speed for 0.9 s .
... The car travels at the constant speed \qquad
(b) Calculate
(i) the deceleration of the car between $t=0.9 \mathrm{~s}$ and $t=4.0 \mathrm{~s}$,

$$
\begin{align*}
& \text { deceleration } \frac{(v-v)}{t}=\frac{20}{-3.1} \\
& \left.\begin{array}{rl}
0 / P x+20-0 \\
& =-6.45 \\
0.9-40 & \text { deceleration }=\ldots . .
\end{array}\right)=6.45 .
\end{align*}
$$

(ii) the total distance travelled by the car from $t=0 \mathrm{~s}$.

$$
\begin{aligned}
& \text { (1) } 18 \times 0.9=16.2 \\
& \text { (2) } 18 \times 3 \pm=55.8
\end{aligned}
$$

$16.2+55.8$.
distance $=\ldots 72 \mathrm{~m}$ \qquad

	01	Mark scheme
	(a)(i)	$18 \mathrm{~m} / \mathrm{s}$
	(a)(ii)	(0.90 s is) the driver's time to react
1(b)(i)	(b) (i)	$(\mathrm{a}=)(\mathrm{v}-\mathrm{u}) / \mathrm{t}$ OR $\Delta \mathrm{v} / \mathrm{t}$ OR either in words OR $(18-0) / 3.1$ OR 18/3.1 $5.8 \mathrm{~m} / \mathrm{s}^{2}$ OR Values from any correct points on graph Answer dependent on accuracy of chosen points
	(b)(ii)	Evidence of use of: (distance $=$) area under graph e.g. 1/2bh $(18 \times 0.9)+(0.5 \times 3.1 \times 18)$ $44 \mathrm{~m}$
	(c)	(Without seat belt, driver:) e.g. keeps moving (forwards)/ does not stop/has inertia/has momentum (Driver) hits steering wheel/windscreen/dashboard

(c) Describe and explain a danger to a driver of not wearing a safety belt during a sudden stop. The driver may injour himself because he is not wearing ate saletybelt. When the car suddenly stop, 梅等.... driver may get a jerk or the body may come forward ..-very rapidy and hit -the stering. As the break is [2] Pressed hardly so the car has to stop immedictely. [rotal: 9]

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 4 (May / June 2016), Question 2
Cambridge IGCSE ${ }^{\text {m }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

2 Fig: 2.1 shows a hammer being used to drive a nail into a piece of wood.

Fig. 2.1

The mass of the hammer head is 0.15 kg .
The speed of the hammer head when it hits the nail is $8.0 \mathrm{~m} / \mathrm{s}$.
The time for which the hammer head is in contact with the nail is 0.0015 s .
The hammer head stops after hitting the nail.
(a) Calculate the change in momentum of the hammer head.

$$
\begin{array}{r}
\text { moss } \times \text { velocity }- \text { mass } \times \text { velocity } \\
0.15 \times 8 \\
1.2 \mathrm{~kg} \mathrm{~m} / \mathrm{s} \quad 0.15 \times 0 \\
1.2-0=1.2 \mathrm{~kg} \mathrm{~m} / \mathrm{s} \mathrm{~m}
\end{array}
$$

$$
\begin{equation*}
\text { change in momentum }= \tag{2}
\end{equation*}
$$

$1.2 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(b) State the impulse given to the nail.
impulse $=\ldots . . .2 \mathrm{Ns}$
(c) Calculate the average force between the hammer and the nail.
average
$\begin{aligned} & \text { force }=\frac{2 \times \text { mass } \times \text { speed }}{\text { time }}: \\ &=\frac{2 \times 0.15 \times 8}{0.0015} \quad \\ & \text { average force }=\ldots .\end{aligned}$
$=\frac{2.4}{0.0015}$
$=1600 \mathrm{~N}$
1600 N
page

O2	Mark scheme
(a)	$\mathrm{mv}-\mathrm{mu}$ OR $\mathrm{m}(\mathrm{v}-\mathrm{u}) \mathrm{OR} \mathrm{mv}$ OR 0.15×8.0 1.2 Ns or $\mathrm{kgm} / \mathrm{s}$
(b)	12 Ns or $\mathrm{kgm} / \mathrm{s}$
(c)	$\mathrm{F}=(\mathrm{mv}-\mathrm{mu}) / \mathrm{t} \mathrm{OR} \mathrm{F}=\mathrm{mv} / \mathrm{t}$ OR impulse/t OR 1.2/0.0015 800 N OR (F =) ma OR m[(v-u)/t] OR $0.15 \times 8 / 0.0015$ 800 N

2(c) \square

Fig. 2.1
The mass of the hammer head is 0.15 kg .
The speed of the hammer head when it hits the nail is $8.0 \mathrm{~m} / \mathrm{s}$.
The time for which the hammer head is in contact with the nail is 0.0015 s ,
The hammer head stops after hitting the nail.
(a) Calculate the change in momentum of the hammer head.

$$
\begin{aligned}
\text { momentum } & =1 \text { mass } \times \text { speed } \\
& =0.15 \times 8=1.2 \text { N } / \mathrm{s}
\end{aligned}
$$

$\mathrm{kgm} / \mathrm{s}$

$$
\text { change in momentum }=\ldots
$$

(b) State the impulse given to the nail.
impulse =
impuise $=$ \qquad 0.0015 s \qquad
(c) Calculate the average force between the hammer and the nail.

$$
\begin{align*}
F & =m a \tag{1}\\
& =0.15 \times 10 \\
& =1.5 \mathrm{~N} \tag{2}
\end{align*}
$$

\qquad 1.5 N
[Total: 5]

Fig. 2.1

The mass of the hammer head is 0.15 kg .
The speed of the hammer head when it hits the nail is $8.0 \mathrm{~m} / \mathrm{s}$.
The time for which the hammer head is in contact with the nail is 0.0015 s .
The hammer head stops after hitting the nail.
(a) Calculate the change in momentum of the hammer head.

$$
\begin{aligned}
\text { Momenturn } & =\text { Mars } \times \text { Velocily. } \\
& =0.15 \times 8.0
\end{aligned}
$$

$$
=1.2
$$

change in momentum $=\ldots . .1 . . .2$
(b) State the impulse given to the nail.
impulse $=\ldots . . .0 .00018$
(c) Calculate the average force between the hammer and the nail.

Fore $=$ Mas \times auleration.
\qquad

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 4 (May / June 2016), Question 3
Cambridge IGCSE ${ }^{\text {m }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Fig. 3.1
(ii) State the word used to describe the energy stored in a spring that has been stretched or compressed.
Strain ed enes energy or elostic botential energy...[1]
(b) Fig. 3.2 shows a model train, travelling at speed v, approaching a buffer.

Fig. 3.2
The train, of mass 2.5 kg , is stopped by compressing a spring in the buffer. After the train has stopped, the energy stored in the spring is 0.48 J .

Calculate the initial speed v of the train.

$$
\begin{array}{rlr}
K E & =\frac{1}{2} \times m \times v^{2} & v \\
0.48 & =\frac{1}{2} \times 2.5 \times v^{2} & v \\
& & \\
v^{2} & =0.384 &
\end{array}
$$

$$
v=. .0 .62 \mathrm{~m} / \mathrm{s}
$$

\qquad

3 (a) (i) On Fig. 3.1, draw a graph of extension against load for a spring which obeys Hooke's law.

(ii) State the word used to describe the energy stored in a spring that has been stretched or compressed.
Static energy
(b) Fig. 3.2 shows a model train, travelling at speed v, approaching a buffer.

Fig. 3.2
The train, of mass 2.5 kg , is stopped by compressing a spring in the buffer. After the train has stopped, the energy stored in the spring is 0.48 J .

Calculate the initial speed v of the train.
Mass $=m=2.5 \mathrm{~kg}$
Eneray
Stored in spoing: 0.485 potentiol energy: kinetic enexgly

$$
\begin{array}{ll}
\text { iol energy: kinetic enex94 } & \frac{0.96}{0.48}=\frac{1}{2} \mathrm{mv} \\
0.48 & v^{2} \\
0.48=\frac{1}{2} \times 0.48 \times v^{2} & v^{2}=2 \\
& v=\sqrt{2}
\end{array}
$$

$0.96=0.48 \times v^{2} \quad v=1.4 \mathrm{~m} / \mathrm{s}$
\qquad
$0.96=0.48 \times v^{2} \quad v=\ldots \quad 1.4 \mathrm{~m} / \mathrm{s}$. \qquad $\mathrm{V}=1,4 \mathrm{~m} / \mathrm{s}$

Fig. 3.1
(ii) State the word used to describe the energy stored in a spring that has been stretched or compressed.
Alostic energy
(b) Fig. 3.2 shows a model train, travelling at speed v, approaching a buffer.

Fig. 3.2
The train, of mass 2.5 kg , is stopped by compressing a spring in the buffer. After the train has stopped, the energy stored in the spring is 0.48 J .

Calculate the initial speed v of the train.

$$
\begin{align*}
& =\frac{1}{2} m v^{2} \\
& =\frac{1}{2} 2.5 \times 0048^{2} \\
& =0.288 \tag{4}
\end{align*}
$$

$$
v=\ldots \quad 0.288
$$

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 4 (May / June 2016), Question 4
Cambridge IGCSE ${ }^{\text {m }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

4 (a) The source of solar energy is the Sun.
Tick the box next to those resources for which the Sun is also the source of energy.
neo al
(b) Fig. 4.1 shows a solar water-heating panel on the roof of a house.
(b) Fig. 4.1 show

Cold water flows into the copper tubes, which are heated by solar radiation. Hot water flows out of the tubes and is stored in a tank.
(i) Explain why the tubes are made of copper and are painted black.

The tubes are made of copper because copper is a good conductri of heat, to it will be hacatid easily, It is pointed black because black abject are good absorbers. $[$ [2]
(ii) In $5.0 \mathrm{~s}, 0.019 \mathrm{~kg}$ of water flows through the tubes. The temperature of the water increases from $20^{\circ} \mathrm{C}$ to $72^{\circ} \mathrm{C}$. The specific heat capacity of water is $\overline{4200 ~} 5 /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)$.

Calculate the thermal energy gained by the water in 5.0 s .

$$
\begin{aligned}
\text { energy } & =m c \Delta T \\
\text { energy } & =0.019 \times 4200 \times\left(72^{\circ}-20^{\circ}\right) \\
& =79.8 \times 52 \\
& =4149.6 \mathrm{~J}
\end{aligned}
$$

thermal energy $=.4149 .6 \mathrm{~J}$

$$
\text { thermal energy }=.4149 .6 \mathrm{~J}
$$

Fig. 4.1

4(b)(iii) \square
(iii) The efficiency of the solar panel is 70%.

Calculate the power of the solar radiation incident on the panel.
$700 \% \rightarrow 4149.6$
$100 \% \rightarrow \frac{4149.6}{70} \times 100=5828$

$$
\begin{equation*}
\ldots, \text { power }=, \ldots, ., 5928 \mathrm{~W} \tag{an}
\end{equation*}
$$

.
i

4 (a) The source of solar energy is the Sun.
Tick the box next to those resources for which the Sun is also the source of energy.

(b) Fig. 4.1 shows a solar water-heating panel on the roof of a house.

Fig. 4.1
Cold water flows into the copper tubes, which are heated by solar radiation. Hot water flows out of the tubes and is stored in a tank.
(i) Explain why the túbes are made of copper and are painted black.

- CApper tuless cusduct heat and ran exsily fass hent ts the matere floweing.
- Blarknintel tule
(ii) In $5.0 \mathrm{~s}, 0.019 \mathrm{~kg}$ of water flows through the tubes. The temperature of the water increases from $20^{\circ} \mathrm{C}$ to $72^{\circ} \mathrm{C}$. The specific heat capacity of water is $4200 \mathrm{~J} /\left(\mathrm{kg} .{ }^{\circ} \mathrm{C}\right)$.

Calculate the thermal energy gained by the water in 5.0 s .

$$
\begin{aligned}
& H=m C \Delta t \\
& H=0.019 \times 4.200 \times 52=4149.6 \times 5=20748
\end{aligned}
$$

\qquad
\qquad
ex

$$
5-2
$$

Select
page
(iii). The efficiency of the solar panel is 70%.

Calculate the power of the solar radiation incident on the panel.

$$
\Leftrightarrow \quad \frac{4149.6 \times 100}{1 \times 70}=5928
$$

$$
\begin{equation*}
\text { power }=5928 \mathrm{~W} / 8 \tag{2}
\end{equation*}
$$

[Total: 9]

	04	Mark scheme
	(a)	Coal, hydroelectric and wind boxes ticked
4(b)(i)	(b)(i)	Copper is a good conductor of thermal energy/heat Black surface is a good/the best absorber of radiation/ infra-red
	(b)(ii)	(Temp rise $=$) $72-20=52\left({ }^{\circ} \mathrm{C}\right.$) $(\mathrm{Q}=) \mathrm{mc} \Delta \theta$ OR $0.019 \times 4200 \times 52$ 4100J
	(b)(iii)	$\begin{aligned} & \text { Efficiency }=(\text { power) output/(power) input }(\times 100) \\ & \text { OR } \frac{\left(\frac{4100}{5}\right) \times 100}{\text { power input }} \text { OR } \frac{(4100 \times 100)}{\text { power input }} \text { OR rearranged } \\ & \text { Power input }=1200 \mathrm{~W} \end{aligned}$

4(b)(iii) \square

4 (a) The source of solar energy is the Sun.
Tick the box next to those resources for which the Sun is also the source of energy.

(b) Fig. 4.1 shows a solar water-heating panel on the roof of a house.

Fig. 4.1

Cold water flows into the copper tubes, which are heated by solar radiation. Hot water flows out of the tubes and is stored in a tank.
(i) Explain why the tubes are made of copper and are painted black.

(ii) $\operatorname{In} 5.0 \mathrm{~s}, 0.019 \mathrm{~kg}$ of water flows through the tubes. The temperature of the water increases from $20^{\circ} \mathrm{C}$ to $72^{\circ} \mathrm{C}$. The specific heat capacity of water is $4200 \mathrm{~J} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right)$.

Calculate the thermal energy gained by the water in 5.0 s .

$$
\begin{aligned}
& Q=m \times \Delta O \times C \\
& Q=0.01452 \text { 人42005/ kg }{ }^{\circ} \mathrm{C} \\
& =4149.6 \mathrm{~J} \times 5=20.748 \mathrm{~J} \\
& \text { thermal energy }=\ldots 15 \mathrm{~F}=20748 \mathrm{~J}
\end{aligned}
$$

QU 4	Mark scheme
(a)	Coal, hydroelectric and wind boxes ticked
(b)(i)	Copper is a good conductor of thermal energy/heat Black surface is a good/the best absorber of radiation/ infra-red
(b)(ii)	(Temp rise $=) 72-20=52\left({ }^{\circ} \mathrm{C}\right)$ $(Q=)$ mc $\Delta \theta$ OR $0.019 \times 4200 \times 52$ $4100 J$
(b)(iii)	Efficiency $=($ power) output/(power) input $(\times 100)$ OR $\frac{\left(\frac{4100}{5}\right) \times 100}{\text { power input }}$ OR $\frac{(4100 \times 100)}{\text { power input }}$ OR rearranged

4(b)(iii) \square
(iii) The efficiency of the solar panel is 70%.

Calculate the power of the solar radiation incident on the panel.

$$
\frac{x}{4149.6} \times 100=70=2904.725
$$

$$
\text { power }=29 \cdot .2 \zeta \cdot 72 \vec{J}
$$

Q4	Mark scheme
(a)	Coal, hydroelectric and wind boxes ticked
(b)(i)	Copper is a good conductor of thermal energy/heat Black surface is a good/the best absorber of radiation $/$ infra-red
(b)(ii)	(Temp rise $=) 72-20=52\left({ }^{\circ} \mathrm{C}\right)$ $(\mathrm{Q}=)$ mc $\Delta \theta$ OR $0.019 \times 4200 \times 52$ 4100 J
(b)(iii)	Efficiency $=($ power) output//power) input $(\times 100)$ OR $\frac{\left(\frac{4100}{5}\right) \times 100}{\text { power input }}$ OR $\frac{(4100 \times 100)}{\text { power input }}$ OR rearranged
Power input $=1200 \mathrm{~W}$	

4(b)(ii) \square

4(b)(iii) \square

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 4 (May / June 2016), Question 5
Cambridge IGCSE ${ }^{\text {m }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

5 (a). A student carries out an experiment to find the relationship between the pressure p and the volume V of a fixed mass of gas. The table contains four of her sets of measurements.

\dot{p} / kPa	2.50	500	750	1000
$\mathrm{~V} / \mathrm{cm}^{3}$	30.0	15.2	9.8	7.6

(i) Use the data in the table to suggest the relationship between the pressure and the volume in this experiment. Explain how you reach your conclusion.

(ii) State the property of the gas, apart from the mass, that remains constant during the experiment.
experiment.
temperat........................... \qquad
(b) A lake is 5.0 m deep. The density of the water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
(i) Calculate the pressure at the bottom of the lake due to this depth of water.

$$
\begin{aligned}
& P=p g h \\
& P=1000 \times 10 \times 5=50000
\end{aligned}
$$

(ii) A bubble of gas escapes from the mud at the bottom of the lake and rises to the surface.

Place one tick in each row of the table to incicate what happens to the volume, the mass and the density of the gas in the bubble. Assume that no gas or water vapour enters or leaves the bubble.

	increases	stays the same:	decreases
volume of bubble	$\sqrt{2}$		
mass of gas in bubble			
density of gas in bubble	$\sqrt{2}$		

$$
\text { pressure }=. .50000 P_{a}
$$

Select

(a) A student carries out an experiment to find the relationship between the pressure p and the volume V of a fixed mass of gas. The table contains four of her sets of measurements.

p / kPa	250	500	750	1000
$\mathrm{~V} / \mathrm{cm}^{3}$	30.0	15.2	9.8	7.6

(i) Use the data in the table to suggest the relationship between the pressure and the volume in this experiment. Explain how you reach your conclusion.

Pressure is inversly proportional to volume. ... This is beccuse when the volume decreases the pressure increases. \qquad
\qquad
(ii) State the property of the gas, apart from the-mass, that remains constant during the experiment.
\qquad gy
(b) A lake is 5.0 m deep. The density of the water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
(i) Calculate the pressure at the bottom of the lake due to this depth of water.

$$
\begin{aligned}
p & =\rho g h \\
& =1000 \times 10 \times 5 \\
& =50,000
\end{aligned}
$$

$$
\begin{equation*}
\text { pressure }=\ldots .50,000 \mathrm{~Pa} \tag{1}
\end{equation*}
$$

(ii) A bubble of gas escapes from the mud at the bottom of the lake and rises to the surface. Place one tick in each row of the table to indicate what happens to the volume, the mass and the density of the gas in the bubble. Assume that no gas or water vapour enters or leaves the bubble.

	increases	stays the same	decreases
volume of bubble			
mass of gas in bubble			
density of gas in bubble			

\qquad Place one tick in each row of the table to indicate what happens to the volume, the mass

$$
P-\frac{m=}{v_{8} \lim _{8}}
$$

5
(a) A student carries out an experiment to find the relationship between the pressure p and the volume V of a fixed mass of gas. The table contains four of her sets of measurements.

ㅈp/kPa	250	500	750	1000
ol $\mathrm{V} / \mathrm{cm}^{3}$	30.0	15.2	9.8	7.6

(i) Use the data in the table to suggest the relationship between the pressure and the volume in this experiment. Explain how you reach your conclusion. Pressure is inversely proportion to Volume \qquad As Pressure increases then Volume to \qquad decrreasel \qquad ...[2]
Shape
volune.
(ii) State the property of the gas, apart from the mass, that remains constant during the experiment.
 \qquad
(b) A lake is 5.0 m deep. The density of the water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
(i) Calculate the pressure at the bottom of the lake due to this depth of water.

$$
\begin{align*}
& \text { pressure }=\frac{8}{1060} 5 \times 1000 \\
& \text { pressure = } \tag{2}\\
& 5000 \\
& \text { a } 25
\end{align*}
$$

(ii) A bubble of gas escapes from the mud at the bottom of the lake and rises to the surface. Place one tick in each row of the table to indicate what happens to the volume, the mass and the density of the gas in the bubble. Assume that no gas or water vapour enters or leaves the bubble.

		increases	stays the same	decreases
	volume of bubble			
	mass of gas in bubble			\checkmark

Select
page
5(a)(ii) \square

Your

0.5	Mark scheme
(a)(i)	$P \times V$ values are 7500 or about 7500 OR If $\mathrm{P} /$ pressure doubles, $\mathrm{V} /$ volume halves OR vice versa (so) PV = constant OR P $\alpha 1 / \mathrm{NOR}$ either in words
(a)(ii)	temperature
(b)(i)	$\begin{equation*} P=\text { hdg OR } 5.0 \times 10 \times 1000 \tag{1} \end{equation*}$ 50000 Pa or 50 kPa
(b)(ii)	Volume of bubble increases Mass of gas stays the same Density of gas decreases

5(b)(ii) \square

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 4 (May / June 2016), Question 6
Cambridge IGCSE ${ }^{\text {TM }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Fig. 6.1

(i) On Fig. 6.1,

 n1. label with the letter X the marked distance corresponding to the amplitude of the wave,
2. label with the letter Y the marked distance corresponding to the wavelength of the wave.
(ii) State what happens to the amplitude and the wavelength of the wave if
3. the loudness of the sound is increased at constant pitch,
amplitudeincreases. \qquad
4. the pitch of the sound is increased at constant loudness.
amplitudeclecroas Q \qquad
wavelengthdecreases
(b) A ship uses pulses of sound to measure the depth of the sea beneath the ship. A sound pulse is transmitted into the sea and the echo from the sea-bed is received after 54 ms . The speed of sound in seawater is $1500 \mathrm{~m} / \mathrm{s}$. 0.054 s

Calculate the depth of the sea beneath the ship.

$$
1 \mathrm{~s}=1000 \mathrm{~ms}
$$

$S=f_{x} x$
te $\frac{q}{f}$

$$
\begin{array}{ll}
S=\frac{2 d}{t} & d=40.5 \\
1500 \times 0.54=2 d &
\end{array}
$$

$$
\frac{81}{2}=d
$$

$$
\begin{equation*}
\text { depth }=\ldots . \ldots . .40,5 \mathrm{~m} \tag{3}
\end{equation*}
$$

\qquad

$$
\begin{aligned}
& \text { [Total: 7] }
\end{aligned}
$$

0.6	Mark scheme
(a)(i)	1. Mark amplitude with X 2. Mark wavelength with Y

6(a)(ii) \square
(b) $\quad v=$ (total) distance/time $O R \mathrm{~d} / \mathrm{t}$ OR $2 \mathrm{~d} / \mathrm{t}$ in any form
$d=1500 \times 0.054 / 2$
40 m OR 41 m

6(b) \square

Fig. 6.1
(i) On Fig. 6.1

1. label with the letter X the marked distance corresponding to the amplitude of the wave,
2. label with the letter Y the marked distance corresponding to the wavelength of the wave.
(ii) State what happens to the amplitude and the wavelength of the wave if
3. the loudness of the sound is increased at constant pitch,
amplitudebelomes.....larger..... \qquad
wavelength \qquad becomes shorter
4. the pitch of the sound is increased at constant loudness.
amplitude \qquad Stays the same \qquad
wavelength \qquad betomes shorter \qquad
(b) A ship uses pulses of sound to measure the depth of the sea beneath the ship. A sound pulse is transmitted into the sea and the echo from the sea-bed is received after 54 ms . The speed of sound in seawater is $1500 \mathrm{~m} / \mathrm{s}$.

Calculate the depth of the sea beneath the ship.

$$
\begin{array}{ll}
& v=\frac{2 d}{t} \\
& \Rightarrow 81,000=2 d \\
\Rightarrow 1500 & \Rightarrow \frac{2 \times d}{54}
\end{array}
$$

depth $=$ \qquad 40.500 m \qquad ...[3]

Fig. 6.1
(i) On Fig. 6.1,

1. label with the letter X the marked distance corresponding to the amplitude of the wave,
2. label with the letter Y the marked distance corresponding to the wavelength of the wave.
(ii) State what happens to the amplitude and the wavelength of the wave if
3. the loudness of the sound is increased at constant pitch,
 \qquad
wavelength \qquad i.ncrease. \qquad
4. the pitch of the sound is increased at constant loudness,

(b) A ship uses pulses of sound to measure the depth of the sea beneath the ship. A sound pulse is transmitted into the sea and the echo from the sea-bed is received after 54 ms . The speed of sound in seawater is $1500 \mathrm{~m} / \mathrm{s}$.

Calculate the depth of the sea beneath the ship.

$$
\begin{array}{ll}
S=\frac{D}{t} & \frac{54}{60}=0.93333 \mathrm{~S} \\
=1500=\frac{D}{0_{0}-54+} & D=1500 \times 90.93 \\
0.93 & =\frac{1395 \mathrm{~m}}{2} \quad \text { depth }=\ldots . .97 .5 \mathrm{~m}
\end{array}
$$

$$
=D^{2}=697.5 \mathrm{~m}
$$

\qquad

6(a)(ii) \square

0.6	Mark scheme
(a)(i)	1. Mark amplitude with X 2. Mark wavelength with Y

6(b) \square

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 4 (May / June 2016), Question 7
Cambridge IGCSE ${ }^{\text {m }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.
(i) total internal reflection,

All of the light is reflected inside the

(ii) critical angle.
..The angl at which the refracted ray is porpendicular.....ta.the....notmal.......nnel....(continus below.).1] parallel to the surface of the block (b) Fig. 7.1 shows a ray of light, travelling in air, incident on a glass prism.

Fig. 7.1

(i) The speed of light in air is $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Its speed in the glass is $2.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

Calculate the refractive index of the glass.
refractive index $=\frac{\text { speed of light in air }}{\text { Spled of light in object }}$

$$
=\frac{3 \times 10^{8}}{2 \times 10^{8}}=1-5
$$

\qquad $1-5$

0.7	Mark scheme
(a)(i)	Reflection in a more dense material where there is no refracted ray owtte OR All light in a more dense material is reflected owtte
(a)(ii)	e.g. The greatest angle of incidence (in the material) at which refraction occurs OR The angle of incidence (in the material) at which the refracted ray travels along the boundary/angle of refraction is 90° OR The angle of incidence/(in the material) above which total internal reflection occurs
(b)(i)	(refractive index =) speed of light in air/speed of light in glass $\begin{aligned} & \text { OR } 3.0 \times 10^{8} / 2.0 \times 10^{8} \\ & =1.5 \end{aligned}$
(b)(ii)	$\sin c=1 / n$ OR 1/1.5 seen ($c=42^{\circ}$)
(b)(iii)	No change of direction at first face Total internal reflection at hypotenuse with $i=r$ by eye Refraction with r greater than i at lower face

7(b) (iii) \square
(ii) Show that the critical angle for the glass-air boundaryis. -2°.
$\begin{aligned} & \text { Refractive index }=\frac{1}{1.5}+\left(\frac{1}{3}\right. \\ & 1.5=\sin ^{-1}\left(\frac{1}{1.5}\right) \\ &=41.8\end{aligned}$

$$
1.5=1 \quad=41.8
$$

$$
\begin{equation*}
\sin c=\frac{1}{1.5} \tag{1}
\end{equation*}
$$

$$
F
$$

(iii) On Fig. 7.1, draw carefully, without calculation, the continuation of the ray through the prism and into the air.

0.7	Mark scheme
(a)(i)	Reflection in a more dense material where there is no refracted ray owtte OR All light in a more dense material is reflected owtte
(a)(ii)	e.g. The greatest angle of incidence (in the material) at which refraction occurs OR The angle of incidence (in the material) at which the refracted ray travels along the boundary/angle of refraction is 90° OR The angle of incidence/(in the material) above which total internal reflection occurs
(b)(i)	(refractive index $=$) speed of light in air/speed of light in glass $\begin{aligned} & \text { OR } 3.0 \times 10^{8} / 2.0 \times 10^{8} \\ & =1.5 \end{aligned}$
(b)(ii)	$\sin c=1 / n$ OR $1 / 1.5$ seen ($c=42^{\circ}$)
(b)(iii)	No change of direction at first face Total internal reflection at hypotenuse with $i=r$ by eye Refraction with r greater than i at lower face

(i) total internal reflection,

(ii) critical angle.
 \qquad
(b) Fig. 7.1 shows a ray of light, travelling in air, incident on a glass prism.

Fig. 7.1

(i) The speed of light in air is $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Its speed in the glass is $2.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

Calculate the refractive index of the glass.
$==\frac{3 \times 10^{8}}{2 \times 10^{8}}$
$=1.5$

0.7	Mark scheme
(a)(i)	Reflection in a more dense material where there is no refracted ray owtte OR All light in a more dense material is reflected owtte
(a)(ii)	e.g. The greatest angle of incidence (in the material) at which refraction occurs OR The angle of incidence (in the material) at which the refracted ray travels along the boundary/angle of refraction is 90° OR The angle of incidence/(in the material) above which total internal reflection occurs
(b)(i)	(refractive index =) speed of light in air/speed of light in glass $\begin{aligned} & \text { OR } 3.0 \times 10^{8} / 2.0 \times 10^{8} \\ & =1.5 \end{aligned}$
(b)(ii)	$\sin c=1 / n$ OR $1 / 1.5$ seen ($c=42^{\circ}$)
(b)(iii)	No change of direction at first face Total internal reflection at hypotenuse with $i=r$ by eye Refraction with r greater than i at lower face

(ii) Show that the critical angle for the glass-air boundary is 42°.

$$
\begin{aligned}
& \sin c=\frac{1}{1.5} \\
& c=41.8 \\
& c=42^{\circ} .
\end{aligned}
$$

(iii) On Fig. 7.1, draw carefully, without calculation, the continuation of the ray through the prism and into the air.
7(a)(ii) \square

7(b) (i) \square
7(b)(ii)

07	Mark scheme
(a)(i)	Reflection in a more dense material where there is no refracted ray owtte OR All light in a more dense material is reflected owtte
(a)(ii)	e.g. The greatest angle of incidence (in the material) at which refraction occurs OR The angle of incidence (in the material) at which the refracted ray travels along the boundary/angle of refraction is 90° OR The angle of incidence/(in the material) above which total internal reflection occurs
(b)(i)	(refractive index $=$) speed of light in air/speed of light in glass OR 3.0 $\times 10^{8} / 2.0 \times 10^{8}$ $=1.5$
(b)(ii)	sin $c=1 / n$ OR $1 / 1.5$ seen (c $=42^{\circ}$)
(b)(iii)	No change of direction at first face Total internal reflection at hypotenuse with $\mathrm{i}=\mathrm{r}$ by eye Refraction with r greater than i at lower face

(i) total internal reflection,
When the insident ray from a desse,.........
medium seflectsback intes ite medúsm itself
(ii) critical angle.
(b) Fig. 7.1 shows a ray of light, travelling in air, incident on a glass prism.

Fig. 7.1

(i) The speed of light in air is $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Its speed in the glass is $2.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Calculate the refractive index of the glass.

$$
n \mid \sin 1=n_{2} \sin R
$$

$$
\begin{align*}
& \text { When the incideni ray travels exactly belor the. } \\
& \text {.......surface of the neoleum } \tag{1}
\end{align*}
$$

\square

O7	Mark scheme	
(a)(i)	Reflection in a more dense material where there is no refracted ray owtte OR All light in a more dense material is reflected owtte	
(a)(ii)	e.g. The greatest angle of incidence (in the material) at which refraction occurs OR The angle of incidence (in the material) at which the refracted ray travels along the boundary/angle of refraction is 90° OR The angle of incidence/(in the material) above which total internal reflection occurs	
(b)(i)	(refractive index $=$) speed of light in air/speed of light in glass OR 3.0 $\times 10^{8} / 2.0 \times 10^{8}$ $=1.5$	
(b)(ii)	sin c $=1 / n$ OR $1 / 1.5$ seen (c $=42^{\circ}$)	
(b)(iii)	No change of direction at first face Total internal reflection at hypotenuse with $i=r ~ b y ~ e y e ~$ Refraction with r greater than i at lower face	

7(b) (iii) \square
(ii) Show that the critical angle for the glass-air boundary is 42°.
[1]
(iii) On Fig. 7.1, draw carefully, without calculation, the continuation of the ray through the prism and into the air.

0.7	Mark scheme
(a)(i)	Reflection in a more dense material where there is no refracted ray owtte OR All light in a more dense material is reflected owtte
(a)(ii)	e.g. The greatest angle of incidence (in the material) at which refraction occurs OR The angle of incidence (in the material) at which the refracted ray travels along the boundary/angle of refraction is 90° OR The angle of incidence/(in the material) above which total internal reflection occurs
(b)(i)	(refractive index =) speed of light in air/speed of light in glass $\begin{aligned} & \text { OR } 3.0 \times 10^{8} / 2.0 \times 10^{8} \\ & =1.5 \end{aligned}$
(b)(ii)	$\sin c=1 / n$ OR $1 / 1.5$ seen ($c=42^{\circ}$)
(b)(iii)	No change of direction at first face Total internal reflection at hypotenuse with $i=r$ by eye Refraction with r greater than i at lower face

Your Mark

7(a)(i)

7(a)(ii)

7(b)(i)

7(b)(ii)

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 4 (May / June 2016), Question 8
Cambridge IGCSE ${ }^{\text {m }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

8 (a) Fig. 8.1 shows 3 lamps and a fuse connected to a power supply.

Fig. 8.1
The e.m.f. of the supply is 220 V . Each lamp is labelled $220 \mathrm{~V}, 40 \mathrm{~W}$. The rating of the fuse is 2.0 A .

Calculate

(i) the current in each lamp,

$$
\begin{align*}
& \text { rent in each lamp, } \\
& \begin{aligned}
\text { Current } & =\frac{\text { Power }}{\text { Volrage }} \\
& =\frac{80}{220} \\
& =0.18
\end{aligned}
\end{align*}
$$

$$
\text { current }=\ldots . ~
$$

(ii) the current in the fuse,

Total cument in circuit: $\frac{120}{220}$
Fuse cument= totalflamps

$$
\begin{aligned}
& =0.55 \times-(3 \times 0.18) \\
& =0.50-0.54 \\
& =0.01
\end{aligned}
$$

\qquad مิ.........A.......[1]
(iii) the total number of lamps, all in parallel, that could be connected without blowing the fuse.

$$
\begin{aligned}
\text { Total number of amns } & =\frac{\text { eurrentinfuse }}{\text { curient-of lamp }} \\
& =\frac{20}{0.18}=11.11
\end{aligned}
$$

number $=$ \qquad 11

08	Mark scheme
(a)(i)	$\begin{aligned} & \mathrm{P}=\mathrm{IV} \text { OR } 40=220 \times \mathrm{I} \text { OR }(\mathrm{I}=) \mathrm{PN} \text { OR 40/220 } \\ & 0.18 \mathrm{~A} \end{aligned}$
(a)(ii)	$[3 \times 0.18(2)]=0.54 \mathrm{~A}$ OR 0.55 A
(a)(iii)	$2 / 0.182=10.99 \text { OR } 2 / 0.18=11.1$ 10 lamps OR 11 lamps
(b) (i)	resistance increases
(b)(ii)	Power (of lamp) decreases $\mathrm{P}=\mathrm{IV}$ and current in lamp decreases. $\mathrm{OR} \mathrm{P}=\mathrm{V}^{2} / \mathrm{R}$

(b) After a very long period of use; the wire filament of one of the lamps becomes thinner.
(i) Underline the effect of this change on the resistance of the filament. resistance increases resistance remains the same. resistance decreases
(ii) State and explain the effect of this change on the power of the.lamp.

The poaker of the 1 amp wand decrease- This is \qquad due to decrease in culrent The current is decreased ...due to the increase in uresistance.
(a) Fig. 8.1 shows 3 lamps and a fuse connected to a power supply.

Fig. 8.1
The e.m.f. of the supply is 220 V . Each lamp is labelled $220 \mathrm{~V}, 40 \mathrm{~W}$. The rating of the fuse is 2.0 A .

Calculate

(i) the current in each lamp,

$\frac{40}{220}=0.18$
current $=$ \qquad 0.18 A ...[2]
(ii) the current in the fuse,

$$
\begin{align*}
& I=\frac{P}{V} \\
& I=\frac{440}{40}=11 \tag{1}
\end{align*}
$$

current $=$ \qquad $11 . A$
(iii) the total number of lamps, all in parallel, that could be connected without blowing the fuse.

Select

08	Mark scheme
(a) (i)	$\begin{aligned} & \mathrm{P}=\mathrm{IV} \text { OR } 40=220 \times \mathrm{I} \text { OR }(\mathrm{I}=) \mathrm{PN} \text { OR 40/220 } \\ & 0.18 \mathrm{~A} \end{aligned}$
(a)(ii)	$[3 \times 0.18(2)]=0.54 \mathrm{~A}$ OR 0.55 A
(a) (iii)	$\begin{aligned} & \text { 2/0.182 = } 10.99 \text { OR } 2 / 0.18=11.1 \\ & 10 \text { lamps OR } 11 \text { lamps } \end{aligned}$
(b) (i)	resistance increases
(b)(ii)	Power (of lamp) decreases $\mathrm{P}=\mathrm{IV}$ and current in lamp decreases. $\mathrm{OR} \mathrm{P}=\mathrm{V}^{2} / \mathrm{R}$

(b) After a very long period of uṣe, the wire filament of one of the lamps becomes thinner. (i) Underline the effect of this change on the resistance of the filament.

resistance increases. resistance remains the same resistance decreases

(ii) State and explain the effect of this change on the power of the lamp.

$$
\begin{aligned}
& P=\frac{V^{2}}{R . d e t e r n e n e n e s t h a t . . . ~}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. cies Resisfance is halved. [Total: 8] }
\end{aligned}
$$ page

\square

08	Mark scheme
(a)(i)	$\mathrm{P}=\mathrm{IV}$ OR $40=220 \times \mathrm{I}$ OR (I =) PN OR 40/220

8(a)(i) \square

Your Mark
0.18 A
(a)(ii) $[3 \times 0.18(2)]=0.54 \mathrm{~A}$ OR 0.55 A
8(b)(ii) \square
\square

8 (a) Fig. 8.1 shows 3 lamps and a fuse:connected to a power supply.

Fig. 8.1
The e.m.f. of the supply is 220 V . Each lamp is labelled $220 \mathrm{~V}, 40 \mathrm{~W}$. The rating of the fuse is 2.0A.

Calculate
(i) the current in each lamp,

$$
P=I V
$$

$$
40=1 \times 220
$$

$$
\therefore \frac{220}{40}=5.5
$$

current $=$
5.5
(ii) the current in the fuse,
22%
current $=$ \qquad 110
(iii) the total number of lamps, all in parallel, that could be connected without blowing the fuse.
\qquad E

Select

08	Mark scheme
(a) (i)	$\begin{aligned} & \mathrm{P}=\mathrm{IV} \text { OR } 40=220 \times \mathrm{I} \text { OR }(\mathrm{I}=) \mathrm{PN} \text { OR } 40 / 220 \\ & 0.18 \mathrm{~A} \end{aligned}$
(a)(ii)	$[3 \times 0.18(2)]=0.54 \mathrm{~A}$ OR 0.55 A
(a)(iii)	$\begin{aligned} & 2 / 0.182=10.99 \text { OR } 2 / 0.18=11.1 \\ & 10 \text { lamps OR } 11 \text { lamps } \end{aligned}$
(b)(i)	resistance increases
(b)(ii)	Power (of lamp) decreases $\mathrm{P}=\mathrm{IV}$ and current in lamp decreases. $\mathrm{OR} \mathrm{P}=\mathrm{V}^{2} / \mathrm{R}$

(b) After a very long period of use, the wire filament of one of the lamps becomes thinner:
(i) Underline the effect of this change on the resistance of the filament.
resistance increases resistance remains the same resistance decreases
(ii) State and explain the effect of this change on the power of the lamp.
.........thenesis.tence...inereases..............so...the. \qquad ...
[2]

08	Mark scheme
(a)(i)	P = IV OR $40=220 \times$ I OR (I =) PN OR 40/220 0.18 A
(a)(ii)	$[3 \times 0.18(2)]=0.54 \mathrm{~A}$ OR 0.55A
(a)(iii)	$2 / 0.182=10.99$ OR 2/0.18 $=11.1$ 10 lamps OR 11 lamps
(b)(i)	resistance increases (b)(ii)

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 4 (May / June 2016), Question 9
Cambridge IGCSE ${ }^{\text {m }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

9 (a) (i) State what is meant by the direction of an electric field.
poztichs she dinection of Field lines which antise... fremn charged particte. The direction of force experianced between
(ii) Fig. 9.1 shows a pair of oppositely-charged horizontal metal plates with the top plate positive.

Fig. 9.1
The electric field between the plates in Fig. 9.1 is uniform.
Draw lines on Fig. 9.1 to represent this uniform field. Add arrows to these lines to show the direction of the field.
(b) Fig. 9.2 shows a very small negatively-charged oil drop in the air between a pair of oppositely charged horizontal metal plates. The oil drop does not move up or down
oil drop

Fig. 9.2

(i) Suggest, in terms of forces, why the oil drop does not move up or down.

The net bore..................an....the.........p.....is zero... The nesultant Forth ix moment is zero. She fonce due to ghavity is equall to
the porce created by [2]
[lectric field.
(ii) Without losing any of its charge, the oil drop begins to evaporate.

State and explain what happens to the oil drop.
The most energitic molecules sas escape from the surface............. the drop...thin co...ools down the dnop and the mans of drop decimentin] decreases

\square

09	Mark scheme
(a)(i)	direction of the force on a positive charge
(a)(ii)	Straight parallel lines from upper to lower plate At least 3 lines drawn. All lines drawn equally spaced, approximately symmetrical with respect to plates Arrows downwards
(b)(i)	Upward force (on drop) due to electric field/charge on plates = weight of drop Upward force on drop = downward force on drop OR no resultant/net force on drop OR forces are balanced
(b)(ii)	Drop moves upwards Weight/mass of drop decreases OR downward force decreases OR Upward force (due to electric field) > weight of drop

9(b)(ii) \square

9 (a) (i) State what is meant by the direction of an electric field. The flow of current from positive to negative terminals: \qquad
(ii) Fig. 9.1 shows a pair of oppositely-charged horizontal metal plates with the top plate positive.

Fig. 9.1

The electric field between the plates in Fig. 9.1 is uniform.
Draw lines on Fig. 9.1 to represent this uniform field. Add arrows to these lines to show the direction of the field.
(b) Fig. 9.2 shows a very small negatively-charged oil drop in the air between a pair of oppositely charged horizontal metal plates. The oil drop does not move up or down.
oil drop

Fig. 9.2
(i) Suggest, in terms of forces, why the oil drop does not move up or down.
As it is s........not affected by the forces of the plates. They are not very. stang-........ [2]
(ii) Without losing any of its charge, the oil drop begins to evaporate.

9 (a) (i) State what is meant by the direction of an electric field.
...................rom....negutive topasitive...
(ii) Fig. 9.1 shows a pair of oppositely-charged horizontal metal plates with the top plate positive.

Fig. 9.1
The electric field between the plates in Fig. 9.1 is uniform.
Draw lines on Fig. 9.1 to represent this uniform field. Add arrows to these lines to show the direction of the field.
(b) Fig. 9.2 shows a very small negatively-charged oil drop in the air between a pair of oppositely charged horizontal metal plates. The oil drop does not move up or down.

$$
\text { oil drop } \mathrm{O}^{-}
$$

Fig. 9.2
(i) Suggest, in terms of forces, why the oil drop does not move up or down.
…...........Becurse.....both.... the phates..................egatively..............
\qquad
(ii) Without losing any of its charge, the oil drop begins to evaporate.

State and explain what happens to the oil drop.
.................sizen of the........xap..reduces becuuse...its.....................elequlen....escape.

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 4 (May / June 2016), Question 10
Cambridge IGCSE ${ }^{\text {TM }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

10 (a) An iodine isotope ${ }_{53}^{131} \mathrm{I}$ decays by β-emission to an isotope of xenon (Xe).
(i) State the number of each type of particle in a neutral atom of ${ }_{53}^{131} \mathrm{I}$.
protons53 \qquad neutrons. 78
electrons 53
(ii) State the symbol, in nuclide notation, for the xenon nucleus.
(b) The background count rate of radioactivity in a laboratory is 30 counts $/ \mathrm{min}$.

A radioactive sample has a half-life of 50 minutes. The sample is placed at a fixed distance from a detector. The detector measures an initial count rate from the sample, including background, of 310 counts $/ \mathrm{min}$.

On Fig. 10.1, plot suitable points and draw a graph of the count rate from the sample, corrected for background, as it changes with time.

Fig. 10.1

$$
\begin{aligned}
& 131 \\
& 54 \times e
\end{aligned}
$$

corrected count rate counts/min
10(a)(ii) \square
10(b) \square

0.10	Mark scheme
(a)(i)	Protons: 53 neutrons: 78 electrons: 53
(a)(ii)	${ }_{54}^{131} \mathrm{Xe}$
(b)	Points plotted at 3 of: $0 \mathrm{~s}, 50 \mathrm{~s}, 100 \mathrm{~s}, 150 \mathrm{~s}$ 3 corrected counts/minute plotted at any from: - $(0,280)$ - $(50,140)$ - $(100,70)$ - $(150,35)$ Graph drawn as curve through correct points

10 (a) An iodine isotope ${ }_{53}^{131} \mathrm{I}$ decays by β-emission to an isotope of xenon (Xe).
(i) State the number of each type of particle in a neutral atom of ${ }_{53}^{131} \mathrm{I}$.
protons
53 \qquad neutrons 7. \qquad electrons \qquad
\qquad [2]
(ii) State the symbol, in nuclide notation, for the xenon nucleus.

$$
\begin{equation*}
{ }^{131} \mathrm{Xe} \tag{2}
\end{equation*}
$$

(b) The background count rate of radioactivity in a laboratory is 30 counts $/ \mathrm{min}$.

A radioactive sample has a half-life of 50 minutes. The sample is placed at a fixed distance from a detector. The detector measures an initial count rate from the sample, including background, of 310 counts/min.

On Fig. 10.1, plot suitable points and draw a graph of the count rate from the sample, corrected for background, as it changes with time.

Fig. 10.1
10(a)(ii) \square

010	Mark scheme
(a)(i)	Protons: 53 neutrons: 78 electrons: 53
(a)(ii)	${ }_{54}^{131} \mathrm{Xe}$
(b)	Points plotted at 3 of: $0 \mathrm{~s}, 50 \mathrm{~s}, 100 \mathrm{~s}, 150 \mathrm{~s}$ 3 corrected counts/minute plotted at any from: - $(0,280)$ - $(50,140)$ - $(100,70)$ - $(150,35)$ Graph drawn as curve through correct points

10(b) \square

10 (a) An iodine isotope ${ }_{53}^{131} \mathrm{I}$ decays by β-emission to an isotope of xenon (Xe).
(i) State the number of each type of particle in a neutral atom of ${ }_{53}^{131} \mathrm{I}$. protons7.8.5.3.... neutrons8........... electrons 52 [2]
(ii) State the symbol, in nuclide notation, for the xenon nucleus.

131
${ }^{131} \mathrm{Xe}$
(b) The background count rate of radioactivity in a laboratory is 30 counts $/ \mathrm{min}$.

A radioactive sample has a half-life of 50 minutes. The sample is placed at a fixed distance from a detector. The detector measures an initial count rate from the sample, including background, of 310 counts/min.

On Fig. 10.1, plot suitable points and draw a graph of the count rate from the sample, corrected for background, as it changes with time.

Fig. 10.1

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 4 (May / June 2016), Question 11
Cambridge IGCSE ${ }^{\text {TM }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

11 (a) (i) Fig. 11.1 shows the symbol for a logic gate and its truth table.

input A	input B	output
0	0	0
1	0	0
0	1	0
1	1	1

Fig. 11.1
State the name of this logic gate.
(ii) Complete the truth table for the logic gate shown in Fig. 11.2.

input A	input B	output
0	0	1
1	0	0
0	1	0
1	1	0

Fig: 11.2
(b) Fig. 11.3 shows the system of logic gates used to ensure the security of the strongroom of a bank.

Fig. 11.3
The strongroom door will only open when the output F is $\operatorname{logic} 1$.
Complete the table to show the logic states at $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E when the strongroom door can be opened.

input A	input B	input C	output D	output E	output F
1	1	1	1	1	1

AND late[1]

1.1 (a) (i) Fig. 11.1 shows the symbol for a logic gate and its truth table.

input A	input B	output
0	0	0
1	0	0
0	1	0
1	1	1

Fig. 11.1
State the name of this logic gate.
(ii) Complete the truth table for the logic gate shown in Fig. 11.2.

Fig. 11.2
(b) Fig. 11.3 shows the system of logic gates used to ensure the security of the strongroom of a bank.

Fig. 11.3
The strongroom door will only open when the output F is logic 1.
Complete the table to show the logic states at A, B, C, D and E when the strongroom door can be opened.

input A	input B	input C	output D	output E	output F
1	$($	l	$($	1	1

11(a)(ii) \square

11(b) \square

11 (a) (i) Fig. 11.1 shows the symbol for a logic gate and its truth table.

input A	input B	output
0	0	0
1	0	0
0	1	0
1	1	1

Fig. 11.1
State the name of this logic gate.
AN..................
(ii) Complete the truth table for the logic gate shown in Fig. 11.2

input A	input B	output
0	0	1
1	0	1
0	1	1
1	1	0

Fig. 11.2
(b) Fig. 11.3 shows the system of logic gates used to ensure the security of the strongroom of a bank.

Fig. 11.3
The strongroom door will only open when the output F is logic 1 .
Complete the table to show the logic states at $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E when the strongroom door can be opened.

input A	input B	input C	output D	output E	output F
1	c 1	1	O	\square	1

11(a)(ii) \square

11(b) \square

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 5 (May / June 2016), Question 1
Cambridge IGCSE ${ }^{\text {TM }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

1 In this experiment, you will use a pendulum to determine a value for the acceleration of free fall g. Carry out the following instructions, referring to Figs. 1.1 and 1.2.

Fig. 1.1

Fig. 1.2

A pendulum has been set up for you as shown in Fig. 1.1.
(a) Adjust the pendulum until its length $l=50.0 \mathrm{~cm}$. The length l is measured to the centre of the bob.

Explain briefly how you avoided a parallax (line of sight) error when measuring the length l.

(b) Displace the pendulum bob slightly and release it so that it swings. Fig. 1.2 shows one complete oscillation of the pendulum.
(i) Measure the time t for 20 complete oscillations.

$$
\begin{equation*}
t=28,3 \mathrm{~s} \tag{1}
\end{equation*}
$$

(ii) Calculate the period T of the pendulum. The period is the time for one complete oscillation.

$$
\begin{aligned}
\frac{28.3}{20} & =1.415 \\
& =1.425
\end{aligned}
$$

$$
T=\ldots . .1 .42 \mathrm{~s}
$$

\qquad

1(b)(i)

Q1	Mark scheme
(a)	Either suitable use of a horizontal straight edge Or holding rule close to pendulum Or line of sight perpendicular to rule
(b)(i)	$t=27.8$ - 29.0 (s)
(b)(ii)	T correct Unit s
(b)(iii)	More likely to miscount/pendulum may stop swinging
(c)(i)	Correct calculation and unit s ${ }^{2}$
(c)(ii)	g between 9 and 11 from correct T and working 2 or 3 significant figures
(d)(i)	Explanation of cause of inaccuracy in measurement of t or l. e.g. student did not react quickly enough when starting/ stopping stopwatch OR difficulty in measuring accurately to centre of bob
(d)(ii)	Any two from: Use different length(s) Repeat timing Use of a fiducial mark
Increased number of oscillations Plot a graph using length and time or time ${ }^{2}$	

1(d)(i) \square

1(d)(ii) \qquad
(iii) Measuring the time for a large number of oscillations, rather than for 1 oscillation, gives a more accurate value for T.

Suggest one practical reason why measuring the time for 200 oscillations, rather than 20 oscillations, may not be suitable.

$$
\begin{aligned}
& \text { The number of on oscillation may be too } \\
& \text { large and the speed may..1] }
\end{aligned}
$$

(c) (i) Calculate T^{2}

$$
\begin{equation*}
T^{2}=2 \cdot 0164 \quad S^{2} \tag{1}
\end{equation*}
$$

(ii) Calculate the acceleration of free fall g using the equation $g=\frac{4 \pi^{2} l}{T^{2}}$. Give your answer to a suitable number of significant figures for this experiment.

$$
\begin{aligned}
\frac{4 \pi^{2} \times 50}{2.0164} & =978.93 \ldots \\
& =979 \mathrm{rm} / \mathrm{s}^{2} \\
& =9.79 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\text { 9. } 79 \mathrm{~m} / \mathrm{s}^{2}[2]
$$

(d) A student checks the value of the acceleration of free fall g in a text book. The value in the book is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Suggest a practical reason why the result obtained from the experiment may be different. Because we cann of ex.................actly start and stop the timer during the oscitcation peritd because of humans have a reaction rate of 0,045
(ii) Suggest two improvements to the experiment.
1... \qquad
\qquad

Select
page
page

1(b) (i)

1(b)(ii) \square

1(b)(iii) \square
1(c)(i) \square
1(c)(ii) \square
1(d)(i) \square

1(d) (ii) \square

1 In this experiment, you will use a pendulum to determine a value for the acceleration of free fall g. Carry out the following instructions, referring to Figs. 1.1 and 1.2.

Fig. 1.1

Fig. 1.2

A pendulum has been set up for you as shown in Fig. 1.1.
(a) Adjust the pendulum until its length $l=50.0 \mathrm{~cm}$. The length l is measured to the centre of the bob.

Explain briefly how you avoided a parallax (line of sight) error when measuring the length l.
 \qquad
\qquad
(b) Displace the pendulum bob slightly and release it so that it swings. Fig. 1.2 shows one complete oscillation of the pendulum.
(i) Measure the time t for 20 complete oscillations.

$$
\begin{equation*}
t=\ldots .15 \tag{1}
\end{equation*}
$$

(ii) Calculate the period T of the pendulum. The period is the time for one complete oscillation.

$$
\begin{gathered}
\frac{3 / 0}{y 5}=+.333 \ldots \\
\frac{28}{20}=1.4
\end{gathered}
$$

$$
T=\ldots . .4
$$

1(b)(i)

01 Mark scheme

1(b)(ii) \square

1(b)(iii) \square
1(c)(i) \square
1(c)(ii) \square
1(d) (i) \square

1(d) (ii) \qquad
(iii) Measuring the time for a large number of oscillations, rather than for 1 oscillation, gives a more accurate value for T.

Suggest one practical reason why measuring the time for 200 oscillations, rather than 20 oscillations, may not be suitable.
 for 200 oscillations
(c) (i) Calculate T^{2}.

$$
1.777 \ldots
$$

$$
\begin{align*}
& 1.96 \\
& T^{2}=\ldots .1 \cdot 78 \text { seconds } \tag{1}
\end{align*}
$$

(ii) Calculate the acceleration of free fall g using the equation $g=\frac{4 \pi^{2} l}{T^{2}}$. Give your answer to
a suitable number of significant figures for this experiment.

$$
\begin{aligned}
& \begin{aligned}
\frac{4 \times \pi^{2} \times 3.5}{1.78^{0}} & =110.34 .10386 \\
& =10.07
\end{aligned} \\
& \text { 10. } 1 \\
& g=\ldots \ldots \ldots+\ldots \ldots . .11 \mathrm{~m} / \mathrm{s}^{2}[2]
\end{aligned}
$$

(d) A student checks the value of the acceleration of free fall g in a text book. The value in the book is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Suggest a practical reason why the result obtained from the experiment may be different.
 ...for in my results
(ii) Suggest two improvements to the experiment.
1...Repeat the experiment to get the average.
2. Measure the length fon ... \qquad

1 In this experiment, you will use a pendulum to determine a value for the acceleration of free fall g.

Carry out the following instructions, referring to Figs. 1.1 and 1.2.

A pendulum has been set up for you as shown in Fig. 1.1.
(a) Adjust the pendulum until its length $l=50.0 \mathrm{~cm}$. The length l is measured to the centre of the bob.

Explain briefly how you avoided a parallax (line of sight) error when measuring the length l.

........nor....
(b) Displace the pendulum bob slightly and release it so that it swings. Fig. 1.2 shows one complete oscillation of the pendulum
(i) Measure the time t for 20 complete oscillations.

$$
t=37,0 \text { seconds }
$$

(ii) Calculate the period T of the pendulum. The period is the time for one complete oscillation.

$$
\frac{37.0}{20} \mathrm{se}
$$

01 Mark scheme

(a) \quad Either suitable use of a horizontal straight edge

Or holding rule close to pendulum
Or line of sight perpendicular to rule

1(b)(i)

1(b)(ii)

1(b)(iii) \square

1(c)(i) \square

1(c)(ii) \square

1(d)(i) \square

1(d)(ii) \qquad
(iii) Measuring the time for a large number of oscillations, rather than for 1 oscillation, gives a more accurate value for T.

Suggest one practical reason why measuring the time for 200 oscillations, rather than 20 oscillations, may not be suitable.
..t.......ould.....be more accurate........................ersons tine. ..delay ne..neds.to be...countered...for... and it...is difficultto count. for.....np1]osarentons
(c) (i) Calculate T^{2}.

$$
\begin{align*}
(1.85)^{2} & =3.4225 \\
& (35 . F)
\end{align*}
$$

(ii) Calculate the acceleration of free fall g using the equation $g=\frac{4 \pi^{2} l}{T^{2}}$. Give your answer to a suitable number of significant figures for this experiment.

$$
\begin{aligned}
& g=\frac{4 \pi^{2} \times 50,0}{3.4225} \\
& \begin{array}{c}
=1831.584 \\
3(S . F) \\
=184
\end{array} \\
& g=. .1 .8 .4 . \\
& \text {. } \mathrm{m} / \mathrm{s}^{2}[2]
\end{aligned}
$$

(d) A student checks the value of the acceleration of free fall g in a text book. The value in the book is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Suggest a practical reason why the result obtained from the experiment may be different.
.... Recause
the
value of accelaration ...of...........reefall may............ffer.........sightly...........from.p. paer...place ...[1]
(ii) Suggest two improvements to the experiment.

1. To get accurate resulls we could have made oss... of \qquad a senser which starts and end time on pe.....ndulum crossing it. 2. An More number of oscillations should be taken: \qquad

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 5 (May / June 2016), Question 2
Cambridge IGCSE ${ }^{\text {TM }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

2 In this experiment, you will investigate the cooling of water.
(a) - Pour $100 \mathrm{~cm}^{3}$ of the hot water provided into beaker \mathbf{A}.

- Measure the temperature θ_{H} of the water in beaker \mathbf{A}.

$$
\theta_{\mathrm{H}}=\ldots \ldots \ldots \ldots . . . \quad 86^{\circ} \mathrm{C}
$$

\qquad

- Pour $100 \mathrm{~cm}^{3}$ of the cold water provided into beaker B.
- Measure the temperature θ_{C} of the water in beaker \mathbf{B}.

$$
\theta_{\mathrm{C}}=\ldots \ldots \ldots . .
$$

- Calculate the average temperature θ_{AV} using the equation $\theta_{\mathrm{AV}}=\frac{\theta_{\mathrm{H}}+\theta_{\mathrm{C}}}{2}$.

(b) Add the water from beaker \mathbf{B} to the hot water in beaker \mathbf{A}. Stir briefly. Measure the temperature θ_{M} of the mixture

$$
\begin{equation*}
\theta_{\mathrm{M}}=\ldots \ldots \ldots \ldots \tag{1}
\end{equation*}
$$

(c) State one precaution that you took to ensure that the temperature readings are as reliable as possible.

2(a)	02	Mark scheme
	(a)	$\begin{aligned} & \theta_{H} 60-100 \\ & \theta_{\mathrm{C}} 10-40 \text { and } \theta \mathrm{AV} \text { correct } \\ & \text { Unit }^{\circ} \mathrm{C} \end{aligned}$
	(b)	θ_{M} between θ_{H} and θ_{C}
2(b)	(c)	Perpendicular viewing of scale OR wait until temperature stops rising OR carry out without undue delay between parts
2(c)	(d) (i)	Correct diagram with lid Insulation placed round beaker
	(d) (ii)	Sensible series of values with θ_{M} between θ_{H} and θ_{C}
2(d)(i)	(d) (iii)	Statement and justification to match results
2(d)(ii)	(d) (iv)	Two from: Room temperature (or other environmental condition) Temperature of cold water Temperature of hot water Volumes of water Size/shape/material/surface area of beaker
2(d)(iii)		
2(d)(iv)		
		EXAMINER MARK COMMENTS SCHEME

You are provided with

- a lid, with a hole for the thermometer,
- some insulating material,
- two elastic bands.
(i) In the space below, draw a labelled diagram to show how you will use these items to reduce the loss of thermal energy when the procedure is repeated.

(ii) Using the improvements shown in your diagram, repeat the procedure in parts (a) and (b).

$\theta_{\mathrm{H}}=$	G20 $73{ }^{\circ} \mathrm{C}$
$\theta_{\mathrm{C}}=$	$31^{\circ} \mathrm{C}$
$\theta_{\text {AV }}=$	$52^{\circ} \mathrm{C}$
$\theta_{\mathrm{M}}=$	$\begin{equation*} 50^{\circ} \mathrm{C} \tag{1} \end{equation*}$

(iii) Comment on whether the improvements made to the apparatus have significantly changed the value of the temperature θ_{M}. Use your results to justify your answer.
..ignificanty...
 ...difference between tooth experiments \qquad
(iv) Suggest two conditions that should be kept constant for all parts of this experiment.

2 In this experiment, you will investigate the cooling of water.
(a) Pour $100 \mathrm{~cm}^{3}$ of the hot water provided into beaker \mathbf{A}.

- Measure the temperature θ_{H} of the water in beaker \mathbf{A}.

$$
\theta_{\mathrm{H}}=.
$$

\qquad

- Pour $100 \mathrm{~cm}^{3}$ of the cold water provided into beaker B.
- Measure the temperature θ_{C} of the water in beaker \mathbf{B}.

$$
66^{\circ} \mathrm{C}
$$

- Calculate the average temperature θ_{AV} using the equation $\theta_{\mathrm{AV}}=\frac{\theta_{\mathrm{H}}+\theta_{\mathrm{C}}}{2}$.

$$
\begin{align*}
& \frac{66+363}{3} t \\
& \frac{66+32}{2}=49 \quad \theta_{A V}=\ldots \ldots \ldots . ~ \tag{3}
\end{align*}
$$

(b) Add the water from beaker B to the hot water in beaker \mathbf{A}. Stir briefly.

Measure the temperature θ_{M} of the mixture.

$$
\theta_{\mathrm{M}}=\ldots \ldots \ldots \ldots 7^{\circ} \mathrm{C}
$$

(c) State one precaution that you took to ensure that the temperature readings are as reliable as possible.

2(d) (iii

2(d) (iv

0.2	Mark scheme
(a)	$\theta_{H} 60-100$ $\theta_{C} 10-40$ and $\theta A V$ correct Unit ${ }^{\circ} \mathrm{C}$
(b)	θ_{M} between θ_{H} and θ_{C} (c)Perpendicular viewing of scale OR wait until temperature stops rising OR carry out without undue delay between parts
(d)(i)	Correct diagram with lid Insulation placed round beaker
(d)(ii)	Sensible series of values with θ_{M} between θ_{H} and θ_{C} (d)(iii)Statement and justification to match results (d)(iv)Two from: Room temperature (or other environmental condition) Temperature of cold water Temperature of hot water Volumes of water Size/shape/material/surface area of beaker

You are provided with

- a lid, with a hole for the thermometer,
- some insulating material,
- two elastic bands.
(i) In the space below, draw a labelled diagram to show how you will use these items to reduce the loss of thermal energy when the procedure is repeated.

(ii) Using the improvements shown in your diagram, repeat the procedure in parts (a) and (b).

$$
\begin{aligned}
& \frac{69+33}{2}=51
\end{aligned}
$$

(iii) Comment on whether the improvements made to the apparatus have significantly changed the value of the temperature θ_{M}. Use your results to justify your answer.
 was 47° C..nnsumation....

(iv) Suggest two conditions that should be kept constant for all parts of this experiment.

1.ne... \qquad in itirelr.sen \qquad room to mempessature
2.....the \qquad W.ol.lnme \qquad
 \qquad ...ancmadecl........

2 In this experiment, you will investigate the cooling of water.
(a) - Pour $100 \mathrm{~cm}^{3}$ of the hot water provided into beaker A.

- Measure the temperature θ_{H} of the water in beaker \mathbf{A}.

$$
\theta_{\mathrm{H}}=\ldots \ldots .78^{\circ}
$$

- Pour $100 \mathrm{~cm}^{3}$ of the cold water provided into beaker \mathbf{B}.
- Measure the temperature θ_{C} of the water in beaker \mathbf{B}.

$$
\theta_{\mathrm{C}}=\ldots \ldots 32^{\circ}
$$

- Calculate the average temperature θ_{AV} using the equation $\theta_{\mathrm{AV}}=\frac{\theta_{\mathrm{H}}+\theta_{\mathrm{C}}}{2}$.

$$
\begin{aligned}
& \theta_{A V}=\frac{78+32}{2} \\
& \theta_{A V}=55
\end{aligned}
$$

(b) Add the water from beaker \mathbf{B} to the hot water in beaker \mathbf{A}. Stir briefly.

Measure the temperature θ_{M} of the mixture.

$$
\begin{equation*}
\theta_{M}=\ldots \ldots .52^{\circ} \tag{..}
\end{equation*}
$$ possible.

$$
\begin{equation*}
\theta_{\mathrm{AV}}=\ldots \ldots \ldots .55^{\circ} \tag{3}
\end{equation*}
$$

(c) State one precaution that you took to ensure that the temperature readings are as reliable as

$$
\begin{aligned}
& \text { keep room temperature constank i. Lse the same eq volume } \\
& \text { of water for both buk and cold... water }
\end{aligned}
$$

$\substack{\text { Your } \\ \text { Mark } \\ \text { 2(a) } \\ \square}$

02	Mark scheme
(a)	$\theta_{H} 60-100$ $\theta_{c} 10-40$ and $\theta A V$ correct Unit ${ }^{\circ} \mathrm{C}$
(b)	θ_{M} between θ_{H} and θ_{C}
(c)	Perpendicular viewing of scale OR wait until temperature stops rising OR carry out without undue delay between parts
(d) (i)	Correct diagram with lid Insulation placed round beaker
(d) (ii)	Sensible series of values with θ_{M} between θ_{H} and θ_{C}
(d) (iii)	Statement and justification to match results
(d) (iv)	Two from: Room temperature (or other environmental condition) Temperature of cold water Temperature of hot water Volumes of water Size/shape/material/surface area of beaker

2(d)(iii) \square

2(d) (iv)

You are provided with

- a lid, with a hole for the thermometer,
- some insulating material,
- two elastic bands.
(i) In the space below, draw a labelled diagram to show how you will use these items to reduce the loss of thermal energy when the procedure is repeated.
(ii) Using the improvements shown in your diagram, repeat the procedure in parts (a) and
(iii) Comment on whether the improvements made to the apparatus have significantly changed the value of the temperature θ_{M}. Use your results to justify your answer.
 .ftt chang moreased by by 4° fam 52° to 56°
(iv) Suggest two conditions that should be kept constant for all parts of this experiment.
1....nitial temperature \qquad

2. room temperature

2(d)(iv) \square

$$
\begin{array}{l|l}
\text { (a) } & \theta_{H} 60-100 \\
& \theta_{\mathrm{C}} 10-40 \mathrm{a}
\end{array}
$$

O2	Mark scheme
(a)	$\theta_{H} 60-100$ $\theta_{C} 10-40$ and $\theta A V$ correct Unit ${ }^{\circ} \mathrm{C}$
(b)	θ_{M} between θ_{H} and θ_{C} (c)Perpendicular viewing of scale OR wait until temperature stops rising OR carry out without undue delay between parts
(d)(i)	Correct diagram with lid Insulation placed round beaker
(d)(ii)	Sensible series of values with θ_{M} between θ_{H} and θ_{C} (d)(iii)Statement and justification to match results (d)(iv)Two from: Room temperature (or other environmental condition) Temperature of cold water Temperature of hot water Volumes of water Size/shape/material/surface area of beaker

2(d)(iii \square
2(d)(i)

2(d)(ii) \square
2(b)

 Mark

$$
\text { 2(a) } \square
$$

(b) $\quad \theta_{M}$ between θ_{H} and θ_{C}

Temperature of hot water

Size/shape/material/surface area of beaker

$$
\begin{align*}
& \theta_{\mathrm{H}}=\ldots . .777^{\circ} \ldots \\
& \theta_{\mathrm{C}}=\ldots . . .32^{\circ} \\
& \theta_{\mathrm{AV}}=\ldots . .54 .5^{\circ} \tag{L}\\
& \theta_{M}=\ldots . . .56^{\circ}
\end{align*}
$$

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 5 (May / June 2016), Question 3
Cambridge IGCSE ${ }^{\text {TM }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

3 In this experiment, you will investigate refraction using a transparent block.
Carry out the following instructions, using the separate ray-trace sheet provided. You may refer to

Fig. 3.1

Fig. 3.1 for guidance.

(a) - Place the transparent block, largest face down, on the ray-trace sheet supplied. The block
should be approximately in the middle of the paper. Draw the outline of the block ABCD.

- Remove the block and draw a normal at the centre of side $A B$. Label the point E where the normal crosses AB.
- Draw a line FE to the left of the normal and at an angle $i=20^{\circ}$ to the normal.
- Place a pin P on the line FE , at a suitable distance from the block for producing an accurate ray trace.
- There are vertical lines L_{1} and L_{2} drawn on the block. Replace the block so that line L_{1} is at point E.
- Observe the images of L_{1} and P through side $C D$ of the block. Carefully move the block,
keeping line L_{1} at point E, until the vertical line L_{2} and the images of L_{1} and P appear

Observe the images of L_{1} and P through side $C D$ of the block. Carefully move the block,
keeping line L_{1} at point E, until the vertical line L_{2} and the images of L_{1} and P appear one behind the other. This is indicated by the dashed position of the block shown in one behind the other. This is indicated by the dashed position of the block shown in
Fig. 3.1.

- Draw a line along side $\mathbf{A B}$ of the block to mark its new position.
- Remove the block.
- Measure the angle θ between the original position of $\mathbf{A B}$ and the new position of $\mathbf{A B}$, as
indicated in Fig. 3.1.
- Record $i=20^{\circ}$ and θ in Table 3.1.
- Repeat the procedure using values of $i=30^{\circ}, 40^{\circ}, 50^{\circ}$ and 60°.

Table 3.1

$i /^{\circ}$	$\theta /^{\circ}$
20	15
30	17
40	23
50	25
60	37

page

0.3	Mark scheme (a)
	Ray trace: Correct normal and all lines in approximately the right places P at least 5 cm from $\mathbf{A B}$ Table: θ values within $\pm 2^{\circ}$ of ray trace values θ values within $\pm 1^{\circ}$ of 20, 30, 40, 50, 60
(b)	Graph: Axes correctly labelled and right way round Suitable scales All plots correct to $1 / 2$ small square Good line judgement, thin, continuous line
(c)	Triangle method shown on graph and triangle using at least half of candidate's line G 0.9-1.1
(d)	Points close to/scattered from line (to match graph)/all on line.

(b) Plot a graph of $\theta /^{\circ}\left(y\right.$-axis) against $i /^{\circ}(x$-axis $)$.

(c) Determine the gradient G of the graph. Show clearly on the graph how you obtained the necessary information.

$$
\begin{aligned}
g & =\frac{v}{h} \quad=0.6666 \cdots 7 \ldots \\
& =\frac{43.5-17.5}{70-31} \quad G=\ldots \ldots \ldots
\end{aligned}
$$

\qquad
(d) Referring to your graph, comment on the quality of your measurements.
 ...is...no.....equal.....distribution of....point on on......nee............best...fit........[1]

Tie your ray-trace sheet into this Booklet between pages 8 and 9.

3 In this experiment, you will investigate refraction using a transparent block.
Carry out the following instructions, using the separate ray-trace sheet provided. You may refer to

Fig. 3.1

Fig. 3.1 for guidance.

(a) - Place the transparent block, largest face down, on the ray-trace sheet supplied. The block should be approximately in the middle of the paper. Draw the outline of the block ABCD.

- Remove the block and draw a normal at the centre of side $\mathbf{A B}$. Label the point \mathbf{E} where the normal crosses AB.
- Draw a line FE to the left of the normal and at an angle $i=20^{\circ}$ to the normal.
- Place a pin P on the line FE, at a suitable distance from the block for producing an accurate ray trace.
- There are vertical lines L_{1} and L_{2} drawn on the block. Replace the block so that line L_{1} is at point E.
- Observe the images of L_{1} and P through side $C D$ of the block. Carefully move the block, keeping line L_{1} at point E, until the vertical line L_{2} and the images of L_{1} and P appear one behind the other. This is indicated by the dashed position of the block shown in Fig. 3.1.
- Draw a line along side $\mathbf{A B}$ of the block to mark its new position.
- Remove the block.
- Measure the angle θ between the original position of $\mathbf{A B}$ and the new position of $\mathbf{A B}$, as indicated in Fig. 3.1.
- Record $i=20^{\circ}$ and θ in Table 3.1.
- Repeat the procedure using values of $i=30^{\circ}, 40^{\circ}, 50^{\circ}$ and 60°.

Table 3.1

Table 3.1	
$i /^{\circ} \mathrm{U}$ $\theta /^{\circ}$ 20 21 30 24 40 40 50 48 60 55	

(b) Plot a graph of $\theta /^{\circ}(y$-axis $)$ against $i /^{\circ}(x$-axis $)$.

(c) Determine the gradient G of the graph. Show clearly on the graph how you obtained the necessary information.

$$
\begin{array}{cc}
(31,30) & (50,48) \\
x_{1} y_{1} & x_{2} y_{2}
\end{array}
$$

$$
G=\frac{x_{2}-x_{1}}{y_{2}-y_{1}}=\frac{50-31}{48-30}=1.0555
$$

\qquad

* (d) Referring to your graph, comment on the quality of your measurements.

Accurate as they have a large diffenence \qquad

Tie your ray-trace sheet into this Booklet between pages 8 and 9 .

3 In this experiment, you will investigate refraction using a transparent block.
Carry out the following instructions, using the separate ray-trace sheet provided. You may refer to

Fig. 3.1
(a) - Place the transparent block, largest face down, on the ray-trace sheet supplied. The block should be approximately in the middle of the paper. Draw the outline of the block ABCD.

- Remove the block and draw a normal at the centre of side $\mathbf{A B}$. Label the point \mathbf{E} where the normal crosses AB.
- Draw a line FE to the left of the normal and at an angle $i=20^{\circ}$ to the normal.
- Place a pin P on the line FE, at a suitable distance from the block for producing an accurate ray trace.
- There are vertical lines L_{1} and L_{2} drawn on the block. Replace the block so that line L_{1} is at point \mathbf{E}.
- Observe the images of L_{1} and P through side $C D$ of the block. Carefully move the block, keeping line L_{1} at point E, until the vertical line L_{2} and the images of L_{1} and P appear one behind the other. This is indicated by the dashed position of the block shown in Fig. 3.1.
- Draw a line along side $\mathbf{A B}$ of the block to mark its new position.
- Remove the block.
- Measure the angle θ between the original position of $\mathbf{A B}$ and the new position of $\mathbf{A B}$, as
indicated in Fig. 3.1.
- Record $i=20^{\circ}$ and θ in Table 3.1.
- Repeat the procedure using values of $i=30^{\circ}, 40^{\circ}, 50^{\circ}$ and 60°.

Table 3.1

$i /^{\circ}$	$\theta /^{\circ}$
20	50
30	50
40	52
50	54
60	60

Your Mark

03 Mark scheme

(a) Ray trace

Correct normal and all lines in approximately the right places
P at least 5 cm from $\mathbf{A B}$
Table:
θ values within $\pm 2^{\circ}$ of ray trace values
θ values within $\pm 1^{\circ}$ of $20,30,40,50,60$
(b) Graph:

Axes correctly labelled and right way round
Suitable scales
All plots correct to $1 / 2$ small square
Good line judgement, thin, continuous line
(c) Triangle method shown on graph and triangle using at least half of candidate's line
G 0.9-1.1

3(c)
\square

3(d)

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 5 (May / June 2016), Question 4
Cambridge IGCSE ${ }^{\text {TM }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

4 A student is investigating resistors connected in parallel.
The following apparatus is available to the student:

ammeter

voltmeter
power supply
variable resistor
switch
connecting leads
a box of identical resistors.
Plan an experiment to investigate how the combined resistance of the resistors, connected in parallel, depends on the number of resistors. You are not required to carry out this investigation.

You should:

- draw a diagram of the circuit you could use to determine the resistance of resistors connected in parallel (show only two resistors in your diagram)
- explain briefly how you would carry out the investigation
- draw a table or tables, with column headings, to show how you would display your readings. You are not required to enter any readings into the table.

...close the........switch........ndurnent.
.........and......nolta.ge Re......epeat.......experiment.......by.....adding...............

Your

Mark scheme

MP1 On circuit diagram: one voltmeter in parallel with any component

MP2 Circuit diagram correctly shows power supply, ammeter, unless in a branch, two or more resistors in parallel

MP3 Circuit diagram: Correct symbols for ammeter, voltmeter and fixed resistor

MP4 Repeat with a different number of resistors (in parallel)

MP5 Table that includes columns for number of resistors, voltage/V and current/A

MP6 and MP7 Then any two from:
Resistance calculated (may be shown in table)
Use low current (to stop resistors getting too hot)/switch
off between readings
Use at least 5 different combinations
Repeat with different current or voltage or variable resistor setting
Drawing a graph of number of resistors against combined resistance

alsulate...........esistanise.......nsing....................nmm!a

Plot a graph for ...gagam.st.....number.............. resistors

Mark scheme

MP1 On circuit diagram: one voltmeter in parallel with any component

MP2 Circuit diagram correctly shows power supply, ammeter, unless in a branch, two or more resistors in parallel

MP3 Circuit diagram: Correct symbols for ammeter, voltmeter and fixed resistor

MP4 Repeat with a different number of resistors (in parallel)

MP5 Table that includes columns for number of resistors, voltage/V and current/A

MP6 and MP7 Then any two from:
Resistance calculated (may be shown in table)
Use low current (to stop resistors getting too hot)/switch
off between readings
Use at least 5 different combinations
Repeat with different current or voltage or variable resistor setting
Drawing a graph of number of resistors against combined resistance

4 A student is investigating resistors connected in parallel.
The following apparatus is available to the student:

ammeter

voltmeter
power supply
variable resistor
switch
connecting leads
a box of identical resistors.
Plan an experiment to investigate how the combined resistance of the resistors, connected in parallel, depends on the number of resistors. You are not required to carry out this investigation.

You should:

- draw a diagram of the circuit you could use to determine the resistance of resistors connected in parallel (show only two resistors in your diagram)
- explain briefly how you would carry out the investigation
- draw a table or tables, with column headings, to show how you would display your readings. You are not required to enter any readings into the table.

Your

Mark scheme
MP1 On circuit diagram: one voltmeter in parallel with any component

MP2 Circuit diagram correctly shows power supply, ammeter, unless in a branch, two or more resistors in parallel

MP3 Circuit diagram: Correct symbols for ammeter, voltmeter and fixed resistor

MP4 Repeat with a different number of resistors (in parallel)

MP5 Table that includes columns for number of resistors, voltage/V and current/A

MP6 and MP7 Then any two from:
Resistance calculated (may be shown in table)
Use low current (to stop resistors getting too hot)/switch
off between readings
Use at least 5 different combinations
Repeat with different current or voltage or variable resistor setting
Drawing a graph of number of resistors against combined resistance

4 A student is investigating resistors connected in parallel.
The following apparatus is available to the student:

ammeter

voltmeter
power supply
variable resistor
switch
connecting leads
a box of identical resistors.

Plan an experiment to investigate how the combined resistance of the resistors, connected in parallel, depends on the number of resistors. You are not required to carry out this investigation.

You should:

- draw a diagram of the circuit you could use to determine the resistance of resistors connected in parallel (show only two resistors in your diagram)
- explain briefly how you would carry out the investigation
- draw a table or tables, with column headings, to show how you would display your readings. You are not required to enter any readings into the table.
We connect the apparutus as stown above
We connect the apparutus as stown above
Fyy.whenwitci on the pawer,
Fyy.whenwitci on the pawer,
..We connect a resistor (with known pesistoces)
..We connect a resistor (with known pesistoces)

Your Mark

Mark scheme

MP1 On circuit diagram: one voltmeter in parallel with any component

MP2 Circuit diagram correctly shows power supply, ammeter, unless in a branch, two or more resistors in parallel

MP3 Circuit diagram: Correct symbols for ammeter, voltmeter and fixed resistor

MP4 Repeat with a different number of resistors (in parallel)

MP5 Table that includes columns for number of resistors, voltage/V and current/A

MP6 and MP7 Then any two from:
Resistance calculated (may be shown in table)
Use low current (to stop resistors getting too hot)/switch
off between readings
Use at least 5 different combinations
Repeat with different current or voltage or variable resistor setting
Drawing a graph of number of resistors against combined resistance
.........parallel and connect a voltmeter in

and Voltmeter in the the table Del ow and

Then we calculate the combined resistanceusing the formula Sum of born Resistors

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mark scheme
MP1 On circuit diagram: one voltmeter in parallel with any component

MP2 Circuit diagram correctly shows power supply, ammeter, unless in a branch, two or more resistors in parallel

MP3 Circuit diagram: Correct symbols for ammeter, voltmeter and fixed resistor

MP4 Repeat with a different number of resistors (in parallel)

MP5 Table that includes columns for number of resistors, voltage /V and current/A

MP6 and MP7 Then any two from:
Resistance calculated (may be shown in table)
Use low current (to stop resistors getting too hot)/switch
off between readings
Use at least 5 different combinations
Repeat with different current or voltage or variable resistor setting
Drawing a graph of number of resistors against combined resistance

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 6 (May / June 2016), Question 1
Cambridge IGCSE ${ }^{\text {TM }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

1 A student is investigating the stretching of a spring.

The apparatus is shown in Fig. 1.1.

Fig. 1.1
(a) On Fig. 1.1, measure the unstretched length l_{0} of the spring. Record l_{0} in the first row of Table 1.1.
(b) The student hangs a load L of 1.0 N on the spring and measures the new length l of the spring. She repeats the measurements using loads of $2.0 \mathrm{~N}, 3.0 \mathrm{~N}, 4.0 \mathrm{~N}$ and 5.0 N . The readings are shown in Table 1.1.
(i) For each set of readings, calculate the extension e of the spring using the equation $e=\left(l-l_{0}\right)$. Record the values of e in the table.

Table 1.1

L / N	L / mm	e / mm
0.0	55	0
1.0	59	4
2.0	64	9
3.0	69	14
4.0	74	19
5.0	78	23

(ii) Explain briefly one precaution that you would take in order to obtain reliable readings.
 before talking the next reading.

Select
page

Your Mark

1(a) \square

1(b)(ii) \square
1(c) \square
1(d)(i) \square

Q1	Mark scheme
(a)	$l_{0}=55(\mathrm{~mm})$ c.a.o.
(b)(i)	$4,9,14,19,23$ ecf (a)
(b)(ii)	Viewing scale at right angles or use of straight edge/set square/pointer between bottom of spring and scale/ruler
(c)	Graph: Axes correctly labelled with quantity and unit Suitable scales All plots correct to $1 / 2$ small square Good line judgement, thin, continuous line, neat plots
(d)(i)	e = 17 (mm) ecf (a)
(d)(ii)	method clearly shown on graph W value 3.5-3.75 Unit N needed No ecf from (i)

1(d)(ii) \square
(c) Plot a graph of $e / m m$ (y-axis) against $L / N(x$-axis).
e / mm

(d) The student removes the load from the spring and hangs an unknown load \mathbf{X} on the spring She measures the length l of the spring.
$l=$ \qquad 72 mm
(i) Calculate the extension e of the spring.
$e=1-10$ $e=72-55=17$
$e=$ \qquad
(ii) Use the graph to determine the weight W of the load \mathbf{X}. Show clearly on the graph how you obtained the necessary information.
$w=. . .3 .6 \mathrm{~N}$

17 mm \qquad
.................... N

1 A student is investigating the stretching of a spring.
The apparatus is shown in Fig. 1.1.

Fig. 1.1
(a) On Fig. 1.1, measure the unstretched length l_{0} of the spring. Record l_{0} in the first row of Table 1.1.
(b) The student hangs a load L of 1.0 N on the spring and measures the new length l of the spring She repeats the méasurements using loads of $2.0 \mathrm{~N}, 3.0 \mathrm{~N}, 4: 0 \mathrm{~N}$ and 5.0 N . The readings are shown in Table 1.1. / 11°.
(i) For each set of readings, calculate the extension e of the spring using the equation $e=\left(l-l_{0}\right)$. Record the values of e in the table. Table 1.1

L / N	$/ / \mathrm{mm}$	e / mm
0.0	55	0
1.0	59	4
2.0	64	\cdots
3.0	69	14
4.0	74	19
5.0	78	23

(ii) Explain briefly one precaution that you would take in order to obtain reliable readings. I wont put any enternal force on the load. as the length of dhe spring will change..........[1]

1(d)(i) \square

Q1	Mark scheme
(a)	$l_{0}=55$ (mm) c.a.o.
(b)(i)	$4,9,14,19,23$ ecf (a)
(b)(ii)	Viewing scale at right angles or use of straight edge/set square/pointer between bottom of spring and scale/ruler
(c)	Graph: Axes correctly labelled with quantity and unit Suitable scales All plots correct to $1 / 2$ small square Good line judgement, thin, continuous line, neat plots
(d)(i)	e = 17 (mm) ecf (a)
(d)(ii)	method clearly shown on graph W value 3.5-3.75 Unit N needed No ecf from (i)

1(d) (ii) \square
(c) Plot a graph of $e / \mathrm{mm}(y$-axis) against L / N (x-axis).

(d) The student removes the load from the spring and hangs an unknown load X on the spring. She measures the length l of the spring.
$l=$ \qquad 72 mm
(i) Calculate the extension e of the spring.

(ii) Use the graph to determine the weight W of the load X . Show clearly on the graph how you obtained the necessary information.

$$
\begin{align*}
& \text { gradient }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{15-10}{3 \cdot 2-2.2} \tag{2}\\
& W=\ldots \ldots \ldots \\
& \text { - 昰 } \\
& =5 \\
& 5=72-15 \\
& \begin{aligned}
\Rightarrow 5 x & -16 \\
5 x & =73 \\
& =73 \\
x & =1406
\end{aligned} \\
& \text { O2 } \\
& 5=\frac{72-15}{x-3.2} \\
& x=1406
\end{align*}
$$

1(b)(i) \square

1(b)(ii) \square
1(c) \square
1(d) (i) \square

1 A student is investigating the stretching of a spring.

The apparatus is shown in Fig. 1.1.

Fig. 1.1
(a) On Fig. 1.1, measure the unstretched length l_{0} of the spring. Record l_{0} in the first row of
Table 1.1.

On Fig. 1.1, measure the unstretched length l_{0} of the spring. Record l_{0} in the first row of
Table 1.1.
(b) The student hangs a load L of 1.0 N on the spring and measures the new length l of the spring. The student hangs a load L of 1.0 N on the spring and measures the new length l of the spring.
She repeats the measurements using loads of $2.0 \mathrm{~N}, 3.0 \mathrm{~N}, 4.0 \mathrm{~N}$ and 5.0 N . The readings are shown in Table 1.1.
(i) For each set of readings, calculate the extension e of the spring using the equation $e=\left(l-l_{0}\right)$. Record the values of e in the table.

Table 1.1

L / N	l / mm	e / mm
0.0	55	0
1.0	59	4
2.0	64	5
3.0	69	5
4.0	74	5
5.0	78	4

(ii) Explain briefly one precaution that you would take in order to obtain reliable readings. it wes.................ning law the spring law could happen.
 maybe the spring just decreasing itrange from original
leaght when pot on weight
(c) Plot a graph of $e / \mathrm{mm}(y$-axis) against $L / \mathrm{N}(x$-axis $)$.

(d) The student removes the load from the spring and hangs an unknown load \mathbf{X} on the spring. She measures the length l of the spring.
$l=\ldots$
72 mm
(i) Calculate the extension e of the spring.
$e=$ \qquad 17 mm
(ii) Use the graph to determine the weight W of the load \mathbf{X}. Show clearly on the graph how you obtained the necessary information.
$w=\ldots \ldots \ldots . .3,7$
page
\qquad

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 6 (May / June 2016), Question 2
Cambridge IGCSE ${ }^{\text {TM }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

2 A student is using a balancing method to determine the weight of a piece of soft modelling clay. The apparatus is shown in Fig. 2.1.

Fig. 2.1

P is a metal cube of weight $P=1.0 \mathrm{~N} . \mathbf{Q}$ is the piece of soft modelling clay.
The student places the cube \mathbf{P} so that its weight acts at a distance x from the pivot.
He adjusts the position of \mathbf{Q} to balance the rule and measures the distance y from the centre of \mathbf{Q} to the pivot. He calculates the weight W of Q using the equation $W=\frac{P x}{y}$
(a) On Fig. 2.1, mark clearly the distance x.
(b) Suggest a change to \mathbf{Q} that would make it easier to find the value of y accurately.
 find the center of the object
(c) It is difficult to achieve an exact balance of the metre rule in this type of experiment. This can make the result unreliable.

Explain how you would reduce the effect of this problem to improve the reliability of the experiment.

+ Use a solid object instena ot a modelling clan. \qquad t Make sure object P and Q dan't Gover the lines.... and numbers of the ruler. \qquad
\qquad

(a)	Mark scheme
(b)	Make Q into a cube/regular shape/small contact area with rule
(c)	Move Q or P slowly one way P to pivot other way until it tips back and take middle reading OR repeat procedure/experiment AND take average
(d)	Measure width w of cube Place w/2 either side of desired position OR draw centre line on cube/find centre of mass of cube and mark side of rule in desired position OR take readings on both sides of the cube and find the mean
(e)	Place rule on pivot (without P and Q) and record/find balance point

(d) The metal cube \mathbf{P} is larger than the width of the metre rule.

Explain briefly how you would determine the reading of the metre rule scale at the position of

Step) hena you maill Find the senter ot the cube in the most accurate way posible. \qquad
(e) Before starting the experiment, the student determines the position of the centre of mass of the metre rule.

Explain briefly how you would do this.

+ Bybalancing the ruler...en the Pivet. \qquad
+ or by hanging it from two sides and then drawing. [1] a line, wherethe plumb falls. Wherethe two lines
intersect is the centre of mass. [Total: 6]
sfer each side

O2	Mark scheme	
(a)	x shown clearly from centre of P to pivot	
(b)	Make Q into a cube/regular shape/small contact area with rule	
(c)	Move Q or P slowly one way until it just tips, then back other way until it tips back and take middle reading OR repeat procedure/experiment AND take average	
(d)	Measure width w of cube Place $w / 2$ either side of desired position OR draw centre line on cube/find centre of mass of cube and mark side of rule in desired position OR take readings on both sides of the cube and find the mean	
(e)	Place rule on pivot (without P and Q) and record/find balance point	

2 A student is using a balancing method to determine the weight of a piece of soft modelling clay. The apparatus is shown in Fig. 2.1.

Fig. 2.1

P is a metal cube of weight $P=1.0 \mathrm{~N} . \mathbf{Q}$ is the piece of soft modelling clay.
The student places the cube \mathbf{P} so that its weight acts at a distance x from the pivot.
He adjusts the position of \mathbf{Q} to balance the rule and measures the distance y from the centre of \mathbf{Q} to the pivot. He calculates the weight W of \mathbf{Q} using the equation $W=\frac{P X}{y}$.
(a) On Fig. 2.1, mark clearly the distance x.
(b) Suggest a change to \mathbf{Q} that would make it easier to find the value of y accurately.

Give an appoti appropriate measuneel shape... lay
(c) It is difficult to achieve an exact balance of the metre rule in this type of experiment. This can make the result unreliable

Explain how you would reduce the effect of this problem to improve the reliability of the experiment.

Select
page

(a)	Mark scheme
(b)	Make Q into a cube/regular shape/small contact area from centre of P to pivot rule
(c)	Move Q or P slowly one way until it just tips, then back other way until it tips back and take middle reading OR repeat procedure/experiment AND take average
(d)	Measure width w of cube Place w/2 either side of desired position OR draw centre line on cube/find centre of mass of cube and mark side of rule in desired position OR take readings on both sides of the cube and find the mean
(e)	Place rule on pivot (without P and Q) and record/find balance point

(d) The metal cube \mathbf{P} is larger than the width of the metre rule.

Explain briefly how you would determine the reading of the metre rule scale at the position of the centre of mass of \mathbf{P}. You may draw a diagram.

.... By diriding the mass gqually on troth sides... \cdots af the requined position \qquad
(e) Before starting the experiment, the student determines the position of the centre of mass of the metre rule.

Explain briefly how you would do this.
By placing the metre vule on pivot and
 [Total: 6]

2 A student is using a balancing method to determine the weight of a piece of soft modelling clay.

The apparatus is shown in Fig. 2.1.

Fig. 2.1
P is a metal cube of weight $P=1.0 \mathrm{~N} . Q$ is the piece of soft modelling clay.
The student places the cube \mathbf{P} so that its weight acts at a distance x from the pivot.
He adjusts the position of \mathbf{Q} to balance the rule and measures the distance y from the centre of \mathbf{Q} to the pivot. He calculates the weight W of \mathbf{Q} using the equation $W=\frac{P x}{y}$.
(a) On Fig. 2.1, mark clearly the distance x.
(b) Suggest a change to Q that would make it easier to find the value of y accurately.
Neign ni申
Place it
on \qquad
.........centre of mass. \qquad
(c) It is difficult to achieve an exact balance of the metre rule in this type of experiment. This can make the result unreliable.
Explain how you would reduce the effect of this problem to improve the reliability of the experiment.
expomennerpect the experiment and find
The average . -

02	Mark scheme
(a)	x shown clearly from centre of P to pivot
(b)	Make Q into a cube/regular shape/small contact area with rule
(c)	Move Q or P slowly one way until it just tips, then back other way until it tips back and take middle reading OR repeat procedure/experiment AND take average
(d)	Measure width w of cube Place w/2 either side of desired position OR draw centre line on cube/find centre of mass of cube and mark side of rule in desired position OR take readings on both sides of the cube and find the mean
(e)	Place rule on pivot (without P and Q) and record/find balance point

(d) The metal cube \mathbf{P} is larger than the width of the metre rule.

Explain briefly how you would determine the reading of the metre rule scale at the position of the centre of mass of P. You may draw a diagram.
you would measure the reading
(e) Before starting the experiment, the student determines the position of the centre of mass of the metre rule.

Explain briefly how you would do this.

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 6 (May / June 2016), Question 3
Cambridge IGCSE ${ }^{\text {TM }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

3 A student is investigating the magnification of images produced by a lens.

The apparatus is shown in Fig. 3.1.

Fig. 3.1
The student places a screen at a distance $D=80.0 \mathrm{~cm}$ from an illuminated object. The screen and the illuminated object remain in the same positions throughout the experiment.
(a) She places the lens close to the illuminated object. She moves the lens until she sees a sharply focused, enlarged image of the object on the screen.

She measures the distance a from the illuminated object to the centre of the lens.

She measures the distance b from the centre of the lens to the screen.
$b=$.
59.7 cm

Calculate the magnification m_{1} of the image, using the equation $m_{1}=\frac{b}{a}$.

3(d)

$$
m_{1}=\ldots \ldots . .
$$

(b) The student then moves the lens towards the screen until a smaller, sharply focused image of the object is seen on the screen.

She measures the distance x from the illuminated object to the centre of the lens.

$$
\begin{aligned}
& x=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
& .2 \mathrm{~cm}
\end{aligned}
$$

She measures the distance y from the centre of the lens to the screen.

Calculate the magnification m_{2} of the image, using the equation $m_{2}=\frac{y}{x}$.

$$
m_{2}=\ldots .
$$

(c) A student suggests that $m_{1} \times m_{2}$ should equal 1 .

State whether the results support this suggestion. Justify your answer by reference to the results.

(d) State two precautions that you would take in this experiment to obtain reliable results. Keep the object, lens and screen at the same height. Do the experiment in a dark room
2. \qquad
(e) Suggest one reason why it is difficult, in this type of experiment, to decide on the best position of the lens to obtain a sharply focused image on the screen.

$$
\begin{align*}
& \begin{array}{l}
\text { of the lens to obtain a sharply focused image on the screen. } \\
\text { it is hard to find the best sharply focased }
\end{array} \tag{1}
\end{align*}
$$

The apparatus is shown in Fig. 3.1.

Fig. 3.1

The student places a screen at a distance $D=80.0 \mathrm{~cm}$ from an illuminated object. The screen and the illuminated object remain in the same positions throughout the experiment.
(a) She places the lens close to the illuminated object. She moves the lens until she sees a sharply focused, enlarged image of the object on the screen.

She measures the distance a from the illuminated object to the centre of the lens.

She measures the distance b from the centre of the lens to the screen.

$$
59.7 \mathrm{~cm}
$$

Calculate the magnification m_{1} of the image, using the equation $m_{1}=\frac{b}{a}$.

$$
a=\quad 20.3 \mathrm{~cm}
$$

$$
m_{1}=\ldots . . .2 .94
$$

3(c)

3(d)

03	Mark scheme
(a)	$\mathrm{m}_{1}=2.94$
(b)	$\left(m_{2}=0.329\right.$ OR 0.33) m_{1} and m_{2} to 2 or 3 significant figures only AND both m with no unit (accept x)
(c)	Statement, expect YES. Must match results. e.c.f .allowed Justification to include idea of within (or beyond) limits of (experimental) accuracy
(d)	Any two from: - Use of darkened room/brighter lamp/no other lights - Mark position of centre of lens on holder - Place metre rule on bench (or clamp in position) - Ensure object and centre of lens are same height from the bench - Move lens slowly/to and fro (when focusing) - Lens, object, screen vertical/perpendicular to bench - Repeat with different D - Use of graph paper/cm scale on screen to measure image
(e)	image appears well focused over a (small) range of lens positions/not all of image focused at same time/relevant reference to chromatic aberration

(b) The student then moves the lens towards the screen until a smaller, sharply focused image of the object is seen on the screen.

She measures the distance x from the illuminated object to the centre of the lens.

She measures the distance y from the centre of the lens to the screen.

Calculate the magnification m_{2} of the image, using the equation $m_{2}=\frac{y}{x}$.

$$
\begin{equation*}
m_{2}=\ldots \ldots \ldots \tag{1}
\end{equation*}
$$

(c) A student suggests that $m_{1} \times m_{2}$ should equal 1 .

State whether the results support this suggestion. Justify your answer by reference to the results.
statementegnification of the imose is क्लिe no the some justificationgnificatron..te...............
 the lens is plared $2.94 \times 0.33=0.97$
(d) State two precautions that you would take in this experiment to obtain reliable results.

(e) Suggest one reason why it is difficult, in this type of experiment, to decide on the best position of the lens to obtain a sharply focused image on the screen.
iffult
page

The apparatus is shown in Fig. 3.1.

Fig. 3.1
The student places a screen at a distance $D=80.0 \mathrm{~cm}$ from an illuminated object. The screen and the illuminated object remain in the same positions throughout the experiment.
(a) She places the lens close to the illuminated object. She moves the lens until she sees a sharply focused, enlarged image of the object on the screen.

She measures the distance a from the illuminated object to the centre of the lens.

She measures the distance b from the centre of the lens to the screen.

\square

03	Mark scheme
(a)	$m_{1}=2.94$
(b)	(m, $m_{2}=0.329$ OR 0.33) m_{1} and m_{2} to 2 or 3 significant figures only AND both m with no unit (accept \times)
(c)	Statement, expect YES. Must match results. e.c.f .allowed Justification to include idea of within (or beyond) limits of (experimental) accuracy
(d)	Any two from: Use of darkened room/brighter lamp/no other lights Mark position of centre of lens on holder - Place metre rule on bench (or clamp in position) Ensure object and centre of lens are same height from the bench - Move lens slowly/to and fro (when focusing) Lens, object, screen vertical/perpendicular to bench Repeat with different D - Use of graph paper/cm scale on screen to measure image
(e)	image appears well focused over a (small) range of lens positions/not all of image focused at same time/relevant reference to chromatic aberration

(b) The student then moves the lens towards the screen until a smaller, sharply focused image of the object is seen on the screen.

She measures the distance x from the illuminated object to the centre of the lens.

She measures the distance y from the centre of the lens to the screen.

Calculate the magnification m_{2} of the image, using the equation $m_{2}=\frac{y}{x}$.

$$
m_{2}=
$$

$$
\times 0.3
$$

(c) A student suggests that $m_{1} \times m_{2}$ should equal 1

State whether the results support this suggestion. Justify your answer by reference to the results.
statementNO.

(d) State two precautions that you would take in this experiment to obtain reliable results.

 \qquad
(e) Suggest one reason why it is difficult, in this type of experiment, to decide on the best position of the lens to obtain a sharply focused image on the screen.
 \qquad

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 6 (May / June 2016), Question 4
Cambridge IGCSE ${ }^{\text {m }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

4 A student is investigating how the resistance of a wire depends on the length of the wire. The student aims to plot a graph.

The following apparatus is available to the student

ammeter

voltmeter
power supply
variable resistor
switch
connecting leads
resistance wires of different lengths
metre rule.
Plan an experiment to investigate how the resistance of a wire depends on the length of the wire.

You should

- draw a diagram of the circuit you could use to determine the resistance of each wire
- explain briefly how you would carry out the investigation
- suggest suitable lengths of wire
- state the key variablest that you would control
- draw a table, or tables, with column headings to show how you would display your readings You are not required to enter any readings in the table.

Mark scheme
Circuit diagram
MP1 Sample of wire must be clearly identifiable by a label on the diagram or by letters on the diagram with an explanation
in the text
MP2 All circuit symbols correct (even if circuit is incorrect)

Method:
MP3 Take readings of V and I
MP4 For 5 or more lengths
MP5 Range of lengths must be between 5 cm and 2 m with the largest length at least twice the smallest

Table drawn with headings:
MP6 $l / m, \mathrm{~V} / \mathrm{V}, \mathrm{I} / \mathrm{A}, \mathrm{R} / \Omega$
Key variables to control:
MP7 Any one from

- Material/resistivity/conductivity/type of wire
- Diameter/radius/thickness/cross sectional area
- Temperature of wire

Sters:...(1). Alccording...to...the diagrans....connect...the circuit... With .theapparatus.... and conuect.... a 10
(2)..close the switch read the cument on the ammeter I nile)
\qquad

\qquad record....them onto....the ...table.

.....................the resistanch...of....this...wire r and R record............................
...............4) repeat.... the experiment.......... only change, the wiresith ...different...Lengths.) $r \ldots 15 \mathrm{~cm} . \ldots .20 \mathrm{~cm}, \ldots 5 \mathrm{~cm}, 30 \mathrm{~cm}$, $35 \mathrm{~cm}, 40 \mathrm{~cm}$ seperately. calculate their. resistance and ...ecordKelep...the power supply....constant...)
\qquad
\qquad
\qquad

$\begin{aligned} & \text { length of } \\ & \text { ressane wire } / \mathrm{cm} \end{aligned}$	I / A	V / V	R / Ω	
\qquad				

\qquad
\qquad

Your Mark
\square

Mark scheme
Circuit diagram:
MP1 Sample of wire must be clearly identifiable by a label on the diagram or by letters on the diagram with an explanation
in the text
MP2 All circuit symbols correct (even if circuit is incorrect)
Method:
MP3 Take readings of V and I
MP4 For 5 or more lengths
MP5 Range of lengths must be between 5 cm and 2 m with the largest length at least twice the smallest

Table drawn with headings:
MP6 $l / m, \mathrm{~V} / \mathrm{V}, \mathrm{I} / \mathrm{A}, \mathrm{R} / \Omega$
Key variables to control:
MP7 Any one from

- Material/resistivity/conductivity/type of wire
- Diameter/radius/thickness/cross sectional area
- Temperature of wire

4 A student is investigating how the resistance of a wire depends on the length of the wire. The student aims to plot a graph

The following apparatus is available to the student:
ammeter
voltmeter
power supply
variable resistor
switch
connecting leads
resistance wires of different lengths
metre rule.
Plan an experiment to investigate how the resistance of a wire depends on the length of the wire. You should

- draw a diagram of the circuit you could use to determine the resistance of each wire
- explain briefly how you would carfyout the investigation
- suggest suitable lengths of wire
- state the key variables that you would control
- draw a table, or tables, with column headings to show how you would display your readings. You are not required to enter any readings in the table.

Mark scheme
Circuit diagram:
MP1 Sample of wire must be clearly identifiable by a label on the diagram or by letters on the diagram with an explanation
in the text
MP2 All circuit symbols correct (even if circuit is incorrect)
Method:
MP3 Take readings of V and I
MP4 For 5 or more lengths
MP5 Range of lengths must be between 5 cm and 2 m with the largest length at least twice the smallest

Table drawn with headings:
MP6 l/m, V/V, I/A, R/ Ω
Key variables to control:
MP7 Any one from

- Material/resistivity/conductivity/type of wire
- Diameter/radius/thickness/cross sectional area
- Temperature of wire

MARK
SCHEME

First i compact the circuit The length of wee should be 50 m First, connect the connecting lead on the wire and connect the crivuit. × Record the length of the wire which is connect into the inn use and the wo tare and the current Use $s=\frac{V}{1}$ to get the resistance of the wire ${ }^{1}$ Then change the position at the lomecting lead and repeat the expexineme In the experiment you should nat.... change the are the sectional area of the wive and the voltage of the battery \qquad
..

Mark scheme
Circuit diagram:
MP1 Sample of wire must be clearly identifiable by a label on the diagram or by letters on the diagram with an explanation
in the text
MP2 All circuit symbols correct (even if circuit is incorrect)
Method:
MP3 Take readings of V and I
MP4 For 5 or more lengths
MP5 Range of lengths must be between 5 cm and 2 m with the largest length at least twice the smallest

Table drawn with headings:
MP6 l/m, V/V, I/A, R/ Ω
Key variables to control:
MP7 Any one from

- Material/resistivity/conductivity/type of wire
- Diameter/radius/thickness/cross sectional area
- Temperature of wire

4 A student is investigating how the resistance of a wire depends on the length of the wire. The student aims to plot a graph.

The following apparatus is available to the student:

ammeter

voltmeter
power supply
variable resistor
switch
connecting leads
resistance wires of different lengths
metre rule.
Plan an experiment to investigate how the resistance of a wire depends on the length of the wire. investigate
You should

- draw a diagram of the circuit you could use to determine the resistance of each wire
- explain briefly how you would carry out the investigation
- suggest suitable lengths of wire
- state the key variables that you would control
- draw a table, or tables, with column headings to show how you would display your readings you are not required to enter any readings in the table.

Mark scheme
Circuit diagram:
MP1 Sample of wire must be clearly identifiable by a label on the diagram or by letters on the diagram with an explanation
in the text
MP2 All circuit symbols correct (even if circuit is incorrect)
Method:
MP3 Take readings of V and I
MP4 For 5 or more lengths
MP5 Range of lengths must be between 5 cm and 2 m with the largest length at least twice the smallest

Table drawn with headings:
MP6 l/m, V/V, I/A, R/ Ω
Key variables to control:
MP7 Any one from

- Material/resistivity/conductivity/type of wire
- Diameter/radius/thickness/cross sectional area
- Temperature of wire

 length after texting. in. the ctrradt.
. . Purring. .the spariment, make we each wive only need. to tat for twice,

thun reactance.
.... Then maculate.
\qquad

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

Interactive Example Candidate Responses

Paper 6 (May / June 2016), Question 5
Cambridge IGCSE ${ }^{\text {TM }}$
Physics 0625

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?
Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

5 A student is investigating the cooling of water.
Some of the apparatus is shown in Fig. 5.1.

Fig. 5.1
(a) The student pours $200 \mathrm{~cm}^{3}$ of hot water into a $250 \mathrm{~cm}^{3}$ insulated beaker labelled A . He covers the top of the beaker with a lid.

The student takes a temperature reading every 30 s as the water cools. The readings are shown in Table 5.1.
(i) Complete the column headings in the table.
(ii) The starting temperature θ of the hot water in beaker A is shown on Fig. 5.1.

Record this temperature in the table at time $t=0 \mathrm{~s}$.
Table 5.1

	beaker A insulation and lid	beaker B insulation, no lid	beaker \mathbf{C} lid, no insulation
t / δ	$\theta /{ }^{\circ} \mathrm{C}$	$\theta /{ }^{\circ} \mathrm{C}$	$\theta /{ }^{\circ} \mathrm{C}$
0	83	85	78
30	80	79	74
60	77	74	71
90	75	70	68
120	73	67	66
150	71	64	64

Your Mark
\square

5(a)(ii) \square
5(b) (i) \square

Q.5	Mark scheme
(a)(i)	s, ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{C}$
(a)(ii)	$83\left({ }^{\circ} \mathrm{C}\right.$)
(b)(i)	First box/sentence indicated
(b) (ii)	Clear reference to readings with examples of temperature differences
(c)	Any two from: Room temperature (or suitable reference to draughts or similar) Starting temperature (of water) Density of packing/amount/type of insulation Thickness of lids/identical lids
(d)	Card or any suitable insulating material Should be a good insulator/poor conductor
(e)	Perpendicular viewing/view at right angles/eye level Reading to bottom of meniscus

(b) The student repeats the procedure using a. $250 \mathrm{~cm}^{3}$ beaker labelled B. This beaker is insulated but has no lid.

He repeats the procedure again using a $250 \mathrm{~cm}^{3}$ beaker labelled \mathbf{C}. This beaker has a lid but no insulation.

All the readings are shown in Table 5.1.
(i) Tick the statement that best describes the results of the investigation.

Removing the lid speeds up the rate of cooling significantly more than removing Removing the
the insulation.Removing the insulation speeds up the rate of cooling significantly more than removing the lid.There is no significant difference between removing the lid and removing the insulation.
(ii) Justify your answer by reference to the readings.
 \qquad

\qquad

(c) State two of the conditions that should be kept the same in this experiment in order for the

\qquad
2. \square

(d) Suggest a suitable material for the lid. Give a reason for your choice of material.
material \qquad anod \qquad
ter.......ather...effichnely \qquad
\square
5(a)(i)
Your

5(a)(ii)

0.5	Mark scheme
(a)(i)	$\mathrm{s},{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{C}$
(a)(ii)	$83\left({ }^{\circ} \mathrm{C}\right)$
(b) (i)	First box/sentence indicated
(b) (ii)	Clear reference to readings with examples of temperature differences
(c)	Any two from: - Room temperature (or suitable reference to draughts or similar) - Starting temperature (of water) - Density of packing/amount/type of insulation - Thickness of lids/identical lids
(d)	Card or any suitable insulating material Should be a good insulator/poor conductor
(e)	Perpendicular viewing/view at right angles/eye level Reading to bottom of meniscus

(e) Describe briefly how a measuring cylinder is read in order to obtain a reliable value for the volume of water. You may draw a diagram.

Eys should prependialar to the meusming oylonder's scale of: ...lewl of waster.......... \qquad

Some of the apparatus is shown in Fig. 5.1.

Fig. 5.1
(a) The student pours $200 \mathrm{~cm}^{3}$ of hot water into a $250 \mathrm{~cm}^{3}$ insulated beaker labelled A . He covers the top of the beaker with a lid.

The student takes a temperature reading every 30 s as the water cools. The readings are shown in Table 5.1
(i) Complete the column headings in the table.
(ii) The starting temperature θ of the hot water in beaker A is shown on Fig. 5.1.

Record this temperature in the table at time $t=0 \mathrm{~s}$.
Table 5.1

	beaker A insulation and lid	beaker B insulation, no lid	beaker \mathbf{C} lid, no insulation
t / S	$\theta /^{\circ} \mathrm{C}$	$\theta /{ }^{\circ} \mathrm{C}$	$\theta /{ }^{\circ} \mathrm{C}$
0	$\ell 3$	85	78
30	80	79	74
60	77	74	71
90	75	70	68
120	73	67	66
150	71	64	64

Your Mark

5(a)(ii) \square
5(b)(i)

5(b)(ii)

$$
\begin{aligned}
& 5(\mathrm{c}) \square \\
& \text { 5(d) } \square
\end{aligned}
$$

0.5	Mark scheme
(a)(i)	$\mathrm{s},{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{C}$
(a)(ii)	$83\left({ }^{\circ} \mathrm{C}\right)$
(b) (i)	First box/sentence indicated
(b) (ii)	Clear reference to readings with examples of temperature differences
(c)	Any two from: - Room temperature (or suitable reference to draughts or similar) - Starting temperature (of water) - Density of packing/amount/type of insulation - Thickness of lids/identical lids
(d)	Card or any suitable insulating material Should be a good insulator/poor conductor
(e)	Perpendicular viewing/view at right angles/eye level Reading to bottom of meniscus

(b) The student repeats the procedure using a $250 \mathrm{~cm}^{3}$ beaker labelled B . This beaker is insulated but has no lid.

He repeats the procedure again using a $250 \mathrm{~cm}^{3}$ beaker labelied \mathbf{C}. This beaker has a lid but no insulation.

All the readings are shown in Table 5.1.
(i) Tick the statement that best describes the results of the investigation.Removing the lid speeds up the rate of cooling significantly more than removing the insulation.Removing the insulation speeds up the rate of cooling significantly more than removing the lid.There is no significant difference between removing the lid and removing the insulation.
(ii) Justify your answer by reference to the readings.

Beaker B and C have different rates of coding at the start but then Beaker B's rate gets foster and the become almost same
(c) State two of the conditions that should be kept the same in this experiment in order for the comparison to be fair.

1. Volume of water....................................
2. Initial Temperatore f unter
(d) Suggest a suitable material for the lid. Give a reason for your choice of material.
material ...Rubber \qquad
reason Good insulatior
5(a)(ii) \square
5(b) (i) \square
5(b) (ii)

5(e)

(e) Describe briefly how a measuring cylinder is read in order to obtain a reliable value for the volume of water. You may draw a diagram.

The point at which the rop of the water is,... is read in the scale provided so in this case the volume of the uater is $9 \mathrm{~cm}^{3}$

Some of the apparatus is shown in Fig. 5.1.

Fig. 5.1
(a) The student pours $200 \mathrm{~cm}^{3}$ of hot water into a $250 \mathrm{~cm}^{3}$ insulated beaker labelled A. He covers the top of the beaker with a lid.

The student takes a temperature reading every 30 s as the water cools. The readings are shown in Table 5.1.
(i) Complete the column headings in the table,
(ii) The starting temperature θ of the hot water in beaker \mathbf{A} is shown on Fig. 5.1.

Record this temperature in the table at time $t=0 \mathrm{~s}$.
Table 5.1

	beaker A insulation and lid.	beaker B insulation, no lid	beaker C lid, no insulation
t / S	θ / cm	θ / cm	θ / cm
0	83	85	78
30	80	79	74
60	77	74	71
90	75	70	68
120	73	67	66
150	71	64	64

$+$
Your Mark

0.5	Mark scheme
(a)(i)	$\mathrm{s},{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{C}$
(a)(ii)	$83\left({ }^{\circ} \mathrm{C}\right)$
(b)(i)	First box/sentence indicated
(b)(ii)	Clear reference to readings with examples of temperature differences
(c)	Any two from: - Room temperature (or suitable reference to draughts or similar) - Starting temperature (of water) - Density of packing/amount/type of insulation - Thickness of lids/identical lids
(d)	Card or any suitable insulating material Should be a good insulator/poor conductor
(e)	Perpendicular viewing/view at right angles/eye level Reading to bottom of meniscus

5(e) \square
(b) The student repeats the procedure using a $250 \mathrm{~cm}^{3}$ beaker labelled B. This beaker is insulated but has no lid.

He repeats the procedure again using a $250 \mathrm{~cm}^{3}$ beaker labelled \mathbf{C}. This beaker has a lid but no insulation.

All the readings are shown in Table 5.1.
(i) Tick the statement that best describes the results of the investigation.

40 Removing the lid speeds up the rate of cooling significantiy more than removing the insulation.Removing the insulation speeds up the rate of cooling significantly more than removing the lid.There is no significant difference between removing the lid and removing the insulation.
(ii) Justify your answer by reference to the readings.

(c) State two of the conditions that should be kept the same in this experiment in order for the comparison to be fair.

1.Surrounding temperatue should be dept same/normal at all Aimes

\qquad
(d) Suggest a suitable material for the lid. Give a reason for your choice of material.
materialglass

.........uater droplets.

Select
page

5(a)(ii)

5(b) (i) \square

05	Mark scheme
(a)(i)	$\mathrm{s},{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{C}$
(a)(ii)	$83\left({ }^{\circ} \mathrm{C}\right)$
(b)(i)	First box/sentence indicated
(b)(ii)	Clear reference to readings with examples of temperature differences
(c)	Any two from: - Room temperature (or suitable reference to draughts or similar) - Starting temperature (of water) - Density of packing/amount/type of insulation - Thickness of lids/identical lids
(d)	Card or any suitable insulating material Should be a good insulator/poor conductor
(e)	Perpendicular viewing/view at right angles/eye level Reading to bottom of meniscus

5(e) \square
(e) Describe briefly how a measuring cylinder is read in order to obtain a reliable value for the volume of water. You may draw a diagram.
.... Water is filled inside measuringelinder. The readings will be giuen and there are proper divisions in the cylindee You you to obtain a much mone acculate reading

[Total: 10]

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017

