Example Candidate Responses
 Paper 3

Cambridge IGCSE ${ }^{\text {™ }}$ Physics 0625

In order to help us develop the highest quality Curriculum Support resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of Cambridge Curriculum Support resources are very important to us.
https://surveymonkey.co.uk/r/GL6ZNJB

Do you want to become a Cambridge consultant and help us develop support materials?
Please follow the link below to register your interest.
http://cie.org.uk/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Contents

Introduction 4
Assessment at a glance 6
Paper 3 - Theory (Core) 7
Question 1 7
Question 2 11
Question 3 13
Question 4 15
Question 5 17
Question 6 19
Question 7 21
Question 8 23
Question 9 27
Question 10 30
Question 11 34
Question 12 38

Introduction

The main aim of this booklet is to exemplify standards for those teaching IGCSE Physics (0625), and to show how different levels of candidates' performance (middle and low) relate to the subject's curriculum and assessment objectives.

In this booklet candidate responses have been chosen to exemplify a range of answers. Each response is accompanied by a brief commentary explaining the strengths and weaknesses of the answers.

For each question, response is annotated with clear explanation of where and why marks were awarded or omitted. This, in turn, followed by examiner comments on how the answer could have been improved. In this way it is possible for you to understand what candidates have done to gain their marks and what they will have to do to improve their marks. At the end there is a list of common mistakes candidates made in their answers for each question.

This document provides illustrative examples of candidate work. These help teachers to assess the standard required to achieve marks, beyond the guidance of the mark scheme. Some question types where the answer is clear from the mark scheme, such as short answers and multiple choice, have therefore been omitted

The questions, mark schemes and pre-release material used here are available to download from Teacher Support. These files are:

Question Paper 3, June 2016	
Question paper Mark scheme	$\begin{aligned} & 0625 \text { _s16_qp_31.pdf } \\ & 0625 \text { _s16_ms_31.pdf } \end{aligned}$
Question Paper 4, June 2016	
Question paper Mark scheme	$\begin{aligned} & 0625 \text { _s16_qp_41.pdf } \\ & 0625 \text { _s16_ms_41.pdf } \end{aligned}$
Question Paper 6, June 2016	
Question paper Mark scheme	$\begin{aligned} & \text { 0625_s16_qp_61.pdf } \\ & 0625 \text { _s16_ms_61.pdf } \end{aligned}$

Other past papers, Examiner Reports and other teacher support materials are available on the School Support Hub at www.cambridgeinternational.org/support

How to use this booklet

How the candidate could have improved the answer

(a) To achieve full marks candidate should have
(c) The candidate should have calculated the are 81 m having to gain full marks.

Examiner comments This explains how the candidate could have improved the answer. This helps you to interpret the standard of Cambridge exams and helps your learners to refine exam technique.

Common mistakes candidates made in this question

(b) A common misconception was that the cycli
(c) A common incorrect value was 108 m . Candic the maximum speed by the total time. They did n

Common mistakes a list of common mistakes candidates made in their answers for each question.

Assessment at a glance

All candidates take must enter for three papers.

Teachers are reminded that the latest syllabus is available on our public website at www.cambridgeinternational.org and the School Support Hub at www.cambridgeinternational.org/support

Paper 3 - Theory (Core)

Question 1

Example Candidate Response - middle

Examiner comments

1 Fig. 1.1 shows part of the speed-time graphs for a cyclist and for a runner.

Fig. 1.1
(a) Compare the motion of the cyclist and the runner during the first 6 seconds. Explain your answer.

(b) Describe the motion of the cyclist between time $t=6.0 \mathrm{~s}$ and time $t=12.0 \mathrm{~s}$.

$$
\text { Its constant } 2
$$

(c) Calculate the total distance travelled by the cyclist between $t=0$ and $t=12.0 \mathrm{~s}$.
$T=S \times T$

$$
\begin{aligned}
1 / 2+6 \times 9 & =29 \\
6 \times 9 & =\frac{54}{83}
\end{aligned}
$$

distance travelled = \qquad 833
(d) After the first 6.0 seconds, the runner moves at constant speed for 4.0 seconds. He then slows down uniformly and stops in a further 2.0 seconds.

On Fig. 1.1, complete the graph for the runner's motion.
(1) This response indicates that the cyclist is gaining speed but does not give details of the motion of the runner. A mark is scored for identifying correctly the faster speed of the cyclist.

Mark awarded for $(a)=1$ out of 3
2 Constant speed is the required answer.

Mark awarded for (b) = 1 out of 1
(3) The graph gives an indication of the areas of a triangle and a rectangle. The candidate has calculated the area of the triangle incorrectly. The final mark is a quality mark awarded to candidates who obtain the value of 81 m having completed correctly all parts of the calculation.

Mark awarded for (c) $=2$ out of 4
The graph completed correctly.
Mark awarded for (d) $=2$ out of 2
Total mark awarded = $\mathbf{6}$ out of $\mathbf{1 0}$

How the candidate could have improved the answer
(a) To achieve full marks candidate should have given details of the motion of the runner.
(c) The candidate should have calculated the area of the triangle correctly and reached the final value of 81 m to gain full marks.

Example Candidate Response - low
Examiner comments

Fig. 1.1 shows part of the speed-time graphs for a cyclist and for a runner.

Fig. 1.1
(a) Compare the motion of the cyclist and the runner during the first 6 seconds. Explain your answer.
During the first 6 second the cyclist was having more offed them the summer and that is. liecovise A crucuist is machine and the 1 rum mes is humor so theirs hus e differsoncelishusen them: [3]
(b) Describe the motion of the cyclist between time $t=6.0 \mathrm{~s}$ and time $t=12.0 \mathrm{~s}$.
$9 \mathrm{~m} / \mathrm{s}$ and it movesincemstent sherd. 2
(c) Calculate the total distance travelled by the cyclist between $t=0$ and $t=12.0 \mathrm{~s}$.

(d) After the first 6.0 seconds, the runner moves at constant speed for 4.0 seconds. He then slows down uniformly and stops in a further 2.0 seconds.

On Fig. 1.1, complete the graph for the runner's motion.

Although the cyclist is moving faster there is no indication that the initial motion is acceleration. The higher acceleration of the cyclist has not been linked with the steeper gradient shown on the graph.

Mark awarded for $(\mathrm{a})=1$ out of 3
The value of the cyclist's speed is not required. The candidate obtains the mark for "constant speed".

Mark awarded for (b) = 1 out of 1
3 The candidate has not taken into account the acceleration takes place during the first six seconds of the journey.

Mark awarded for (c) $=1$ out of 4
(4) The question is about the runner but the response given uses the cyclist's graph. As an error has been carried forward the second mark has been awarded for the correct interpretation of the deceleration.

Mark awarded for $(\mathrm{d})=1$ out of 2
Total mark awarded = 4 out of 10

Example Candidate Responses: Paper 3

How the candidate could have improved the answer

(a) The candidate has given no indication that the initial motion is acceleration. The higher acceleration of the cyclist should have been linked with the steeper gradient shown on the graph.
(c) The use of distance $=$ speed x time does not take into account the acceleration taking place during the first six seconds of the journey. Subtracting 27 m would have given a correct response.
(d) The question is about the runner. To gain full credit the candidate needs to complete the runner's motion rather than the cyclist's.

Common mistakes candidates made in this question

(b) A common misconception was that the cyclist had stopped moving.
(c) A common incorrect value was 108m. Candidates used the equation distance $=$ speed x time , multiplying the maximum speed by the total time. They did not account for the initial acceleration.

Question 2

2 A boy steps off a high board into a swimming pool:
Fig. 2.1 shows the forces acting on the boy at one point in his fall.

Fig. 2.1
(a) The 540 N force is caused by gravitational attraction.

State the cause of the 100 N force.
(b) Calculate the mass of the boy.

$$
\begin{aligned}
& m= \\
& \quad 540 \div 10=54
\end{aligned}
$$

\qquad
(c) Calculate the resultant force on the boy. State its direction.
$100 \div 10$

1004
resultant force $=$

direction $=$
(2) Although the equation is not stated, the calculation shows correct use of the equation and a correct value.

Mark awarded for (b) $=2$ out of 2
(3) There is an appreciation that the resultant force acts downwards but the value of the force has been calculated incorrectly.

Mark awarded for (c) $=1$ out of 2

How the candidate could have improved the answer

(b) To improve the answer, the candidate should have stated the equation.
(c) The candidate should have stated the correct value for resultant force which was $(540-100)=440(\mathrm{~N})$.

2 A boy steps off: a high board into a. swimming pool.
Fig. 2.1 shows the forces acting on the boy at one point in his fall.

Fig. 2.1
(a) The 540 N force is caused by gravitational attraction.

State the cause of the 100 N force.

(b) Calculate the mass of the boy.

$$
\begin{gathered}
540-100 \\
\frac{440}{10}
\end{gathered}
$$

mass of boy = \qquad 44 (2) $\mathrm{kg} \cdot[2]$.
(c) Calculate the resultant force on the boy. State its direction.

(1) The candidate is not aware that a frictional force, air resistance or drag, acts against the boy.

Mark awarded for (a) $=0$ out of 1
(2) The candidate is aware that there is a link between mass and weight. However, this response suggests that the boy has a lower mass as he falls.

Mark awarded for (b) $=0$ out of 2
(3) The value of the resultant force is incorrectly calculated. It is not appreciated that the forces act in opposite directions. The direction, in which the resultant force acts, is correct.

Mark awarded for (c) $=1$ out of 2
Total mark awarded $=1$ out of 5

How the candidate could have improved the answer

(a) The candidate should have indicated that a frictional force, air resistance or drag, acts against the boy.
(b) This response suggests that the boy has a lower mass as he falls. The correct response for resultant force was $(540-100)=440(\mathrm{~N})$

Common mistakes candidates made in this question

A variety of responses in the range of 44 to 640 was seen. Candidates used the numbers provided in a variety of ways to obtain incorrect values.

Question 3

Example Candidate Response - middle

3 Fig. 3.1 shows a metal plate-warmer.

Fig. 3.1
The plate-warmer contains two small candle heaters. Plates of food are placed on top of the warming-tray.
(a) (i) State the name of a process.by which the thermal energy from the candles passes to the

(ii) State the name of the process by which thermal energy moves through the warming-tray Conivectien 2 1]
(b) The outside of the plate-warmer is shiny.

Suggest how this helps the plate-warmer to stay hot.
It Conduetg heat and preuerta heat frem. [in 3 belma lost
(c) The handles of the plate-warmer are made from metal.

Identify a problem with this, and suggest how the problem could be solved.

does net conquet ar*. of heat. 4
[Total: 5]
(1) Correct response.

2 The response suggests confusion between convection and conduction.

Mark awarded for (a) = 1 out of 2
(3) This is a vague response that is just repeating the question.

Mark awarded for (b) $=0$ out of 1

(4) Correct response

Mark awarded for (c) $=2$ out of 2
Total mark awarded $=3$ out of 5

How the candidate could have improved the answer

(a) (ii) The candidate should have stated the correct answer which was 'conduction'.
(b) The candidate should have answered in terms of shiny surfaces being poor emitters of thermal radiation.

3 Fig. 3.1 shows a metal plate-warmer.

Fig. 3.1
The plate-warmer contains two small candle heaters. Plates of food are placed on top of the warming-tray.
(a)
a) (i) State the name of a process by which the thermal energy from the candles passes to the

(ii) State the name of the process by which thermal energy moves through the warming-traymouss.......the Gmoke..........p.................................... 2 .[1]
(b) The outside of the plate-warmer is shiny.

Suggest how this helps the plate-warmer to stay họt.
..............................et.......eflection 3
(c) The handles of the plate-warmer are made from metal.

Identify a problem with this, and suggest how the problem could be solved.
problem: The bandle couldeated.....nod...difficult..tiontouch. (4)

[Total: 5]
(1) The response just repeats part of the question.
(2) The process is not named.

Mark awarded for (a) $=0$ out of 2
(3) "Reflection" is too vague to be credited worthy.

Mark awarded for (b) $=0$ out of 1
4 The problem (hot handles) and a suitable action (gloves) are identified.

Mark awarded for (c) $=2$ out of 2
Total mark awarded $=\mathbf{2}$ out of 5

How the candidate could have improved the answer

(a) (i) The response repeated part of the question. The name of the process by which thermal energy is transferred was required.
(a) (ii) The name of the correct thermal process was required.
(b) To gain credit the candidate must have indicated that it was reflection of thermal radiation. 'Reflection' on its own is too vague.

Common mistakes candidates made in this question

(a) Few candidates confused the terms conduction, convection and radiation.
(b) There were many responses given in terms of light rather than thermal energy being reflected.

Question 4

Example Candidate Response - middle

Examiner comments

Fig. 4.1 is a simplified diagram of a geothermal power station.

Fig. 4.1
(a) Describe the energy resource labelled X in Fig. 4.1
.................nenewable
1
(b) Identify the useful energy transformation that takes place in the geothermal power station. Tick one box in each column

(c) State two disadvantages of obtaining energy from fossil fuels.

(1) The response does not answer the question. The correct answer is 'hot rocks'.

Mark awarded for (a) = 0 out of 1

2 Correct response.
Mark awarded for (b) $=2$ out of 2
(3) The first point is too vague. The second point scores a mark for non-renewable energy source.

Mark awarded for (c) $=1$ out of 2
Total mark awarded = 3 out of 5

How the candidate could have improved the answer

(a) The candidate needed to identify what caused the water to become very hot.
(c) To obtain full marks the candidate must have identified atmospheric pollution or the pollution of air.

4 Fig. 4.1 is a simplifled diagram of a geothermal power station.

Fig. 4.1
(a) Describe the energy resource labelled X in Fig. 4.1. 1
...nylio elecfic ence...............
(b) Identify the useful energy transformation that takes place in the geothermal power station. Tick one box in-each column.

(c) State two disadvantages of obtaining energy from fosșil fuels.

1 The candidate does not appreciate that water becomes hot as a result of passing through hot rocks.

Mark awarded for $(\mathrm{a})=0$ out of 1
(2) Only one of the boxes has been ticked correctly. The output energy is electrical.
(3) Input energy has been identified correctly. The output energy is electrical.

Mark awarded for $(b)=1$ out of 2
Noisy is a general term and does not score a mark.

Mark awarded for $(\mathrm{c})=1$ out of 2
Total mark awarded $=\mathbf{2}$ out of 5

How the candidate could have improved the answer

(a) The candidate needed to identify what causes the water to become very hot.
(b) The candidate should have ticked electrical for output energy.
(c) Noisy is a general term and did not gain credit. There is a range of specific disadvantages e.g. global warming or non-renewable that could have been used to gain credit.

Common mistakes candidates made in this question

(a) A variety of wrong responses was seen linked to renewable sources of energy, e.g. wave, tidal and hydroelectric.
(b) A small number of candidates had reversed the input and output energies.

Question 5

5 Fig. 5.1 shows two men repairing'a weak roof using a crawler-boardt

Fig. 5.1
(a) Explain why use of the crawler-board prevents the men from falling, through the roof:

It has a ranfe rurfacre, arem
which whll prevent the roof to
collepse when presure is ade............................[2]
(b) The crawler-board has a weight of 400 N , The total weight of the two men is 1600 N The area of the crawler-board in contact with the roof is $0.8 \mathrm{~m}^{2}$.

Calculate the pressure on the roof when the men are on the crawler-board. Include the unit:

$$
\begin{gathered}
1600-400=1200 \\
1200 \div 0.8
\end{gathered}
$$

(1) Large surface area is identified but no indication of how this affects the pressure exerted by the workers.

Mark awarded for $(\mathrm{a})=1$ out of 2
(2) The calculation of the total force is incorrect. $\mathrm{P}=\mathrm{F} / \mathrm{A}$ is not stated. An error carried forward is allowed for candidate's force divided by the area. The value obtained for the pressure is incorrect, but credit is given for the nit that is stated correctly.

Mark awarded for $(b)=2$ out of 5

Total mark awarded = 3 out of 7

How the candidate could have improved the answer

(a) The candidate should have indicated how large surface are affects the pressure exerted by the workers.
(b) The candidate should have calculated the total force correctly by adding the forces. Pressure $=$ force/area should have been stated.

5 Fig. 5.1 shows two men repairing a:weak roof using a crawler-board.

Fig. 5.1

(b) The crawler-board has a weight of 400 N . The total weight of the two men is 1600 N . The area of the crawler-board in contact with the roof is $0.8 \mathrm{~m}^{2}$.

Calculate the pressure on the roof.when the men are on the crawler-board. Include the unit.

$$
\frac{400}{1600} \times 0.64
$$

(1) The response here indicates a misconception that the crawler board is for safety and to prevent the workers from slipping.

Mark awarded for $(\mathrm{a})=0$ out of 2
(2) There is no indication that the candidate is aware of the need to use the equation $\mathrm{P}=\mathrm{F} / \mathrm{A}$. The numbers appear to have been randomly applied to an equation.

Mark awarded for (b) $=0$ out of 5

How the candidate could have improved the answer

(a) The candidate should have explained that the crawler has a large surface and prevents the roof from collapsing by spreading the men's weight.
(b) The candidate should have used the correct formula $\mathrm{P}=\mathrm{F} / \mathrm{A}$. The numbers appear to have been randomly applied to an equation.

Common mistakes candidates made in this question

(a) A common misconception was answers that suggested the crawler board is for safety and to prevent the workers from slipping.
(b) Stating the equation incorrectly: pressure $=$ force x area.

Question 6

Example Candidate Response - middle
Examiner comments

(a) (i) Fig. 6.2 shows the view through the microscope of one smoke particle, labelled P.

On Fig. 6.2, draw 3 lines to show the movement of this particle.
(ii) Explain what causes the smoke particle to move.

(b) The air containing the smoke particles becomes warmer.

Suggest how this changes the movement of the smoke particles.

evergy. mave faster
(3)
...[1]
[Total: 5]

Correct response.
Mark awarded for (a) = 2 out of 2
(2) The response is not answering the question.

Mark awarded for (b) $=0$ out of 2
(3) Correct response.

Mark awarded for (b) = 1 out of 1

Total mark awarded = 3 out of 5

How the candidate could have improved the answer
(a) (ii) The candidate must have referred to collisions of smoke particles with air molecules.

Fig. 6.1

Fig. 6.2
(a) (i) Fig. 6.2 shows the view through the microscope of one smoke particle, labelled P.

On Fig. 6.2, draw 3 lines to show the movement of this particle.
(ii) Explain what causes the smoke particle to move.

These prortricies.........antoin energy....................... matces....them......mone........nonhd.... and bounce... .of any objects
(b) The air containing the smoke particles becomes warmer.

Suggest how this changes the movement of the smoke particles.

 (3) energy total: 5]
(1) There is no appreciation of particles moving in straight lines until deflected by collisions.

Mark awarded for $(\mathrm{a})=0$ out of 2
(2) The idea of collisions between objects gains partial credit.

Mark awarded for $(b)=1$ out of 2
(3) Increased movement is too vague and does not indicate an increase in speed or an increase in collisions.

Mark awarded for (c) $=0$ out of 1

How the candidate could have improved the answer

(a) (i) The candidate must have clearly indicated the movement of one particle.
(a) (ii) For full credit the candidate must have stated that the collisions occurred between smoke particles and air molecules.
(b) The candidate should have indicated that smoke particles would change directions or there would be an increase in collisions.

Common mistakes candidates made in this question

(a) Candidates did not give a response in terms of the movement of a single particle.

Question 7

Example Candidate Response - middle

Examiner comments

7 Fig. 7.1 shows equipment used to demonstrate thermal expansion.

(a) The copper rod is heated and expands. It turns the roller and moves the pointer.

On Fig. 7.1, draw the new position of the pointer.
(b) As the rod is heated, some of its properties change.

Identify how each property changes. Place one tick in each row of the table.

property of rod	decreases	increases	stays the same
volume			
mass			
density			

(c) Suggest one disadvantage of thermal expansion.

3
(1) Candidate correctly identifies that, as the rod expands, the pointer rotates in an anti-clockwise direction.

Mark awarded for (a) = 1 out of 1

2 A correct response. The candidate recognises that a volume increases and mass remains constant density decreases.

Mark awarded for (b) $=3$ out of 3
(3) A vague response that did not address the question asked.

Mark awarded for (c) = 0 out of 1

Total mark awarded = 4 out of 5

How the candidate could have improved the answer
(c) The candidate should have indicated that electrical cables would be lower to the ground.

(a) The copper rod is heated and expands. It turns the roller and moves the pointer.

On Fig. 7.1, draw the new position of the pointer.
(b) As the rod is heated, some of its properties change.

Identify how each property changes. Place one tick in each row of the table.

property of rod	decreases	increases	stays the same
volume			
mass			
density			

(c) Suggest one disadvantage of thermal expansion.

 fixed into. e.g A fixed block.

1 The candidate realises that the pointer moves but indicates the wrong direction.

Mark awarded for (a) = 0 out of 1

2 The candidate correctly identifies that volume increases and mass stays the same. There is a misconception that density is also constant as the rod is heated.

Mark awarded for (b) $=2$ out of 3
(3) An incorrect response that did not address the question.

Mark awarded for (c) = 0 out of 1

Total mark awarded = 2 out of 5

How the candidate could have improved the answer

(a) The candidate should have indicated the correct direction which was 'to the left' or 'anticlockwise'.
(b) The candidate needed to follow through the correct responses to identify that density would decrease.
(c) An example of a disadvantage of thermal expansion was required, e.g. buckling of railway lines.

Common mistakes candidates made in this question

(b) There were a range of misconceptions about mass, volume and density changing when a material is heated.
(c) There were many vague responses in terms of buildings, bridges and railways that were not given credit.

Question 8

Example Candidate Response - middle
Examiner comments

8 A student directs a ray of light towards a plane mirror, as shown in Fig. 8.1.

Fig. 8.1
(a) (i) Name the line labelled X .

(ii) When angle a is 45°, angle b is also 45°.

Angle a is changed to 20°.
What is the new value of angle b ? Tick one box.

(b) The student now makes the ray of light from Fig. 8.1 pass into a glass block, as shown in Fig. 8.2.

Fig. 8.2
Complete the table, using the labels from Fig. 8.2. The first label is done for you.

description	label
an angle of incidence	a
an angle of refraction	d
an internally reflected angle	g
a critical angle	f
a refracted ray	R

(1) An incorrect response that did not use Physics terminology.
(2) The correct box is ticked.

Mark awarded for $(\mathrm{a})=1$ out of 2
(3) Here the candidate correctly identifies all items. Note that the final label could have been R or S.

Mark awarded for (b) $=4$ out of 4

Example Candidate Response - middle, continued
(c) The student uses a converging lens to produce an image of an object. Fig. 8.3 shows the arrangement.

Fig. 8.3
On Fig. 8.3, using a ruler, carefully draw two rays from the object O to locate the position of the image. Use an arrow to represent the image.

Examiner comments

A good ray diagram is drawn by the candidate to gain two marks. The image inverted but does not meet the intersection of two rays. The third mark is not awarded.

Mark awarded for $(\mathrm{c})=2$ out of 3

Total mark awarded $=7$ out of 9

How the candidate could have improved the answer
(a) (i) Candidate was required to use the correct terminology; the correct response was 'normal'.
(c) The candidate should have shown that the image is inverted but does not meet the intersection of the two rays.

8 A student directs a ray of light towards a plane mirror, as shown in Fig. 8.1

(1)

Fig. 8.1
(a) (i) Name the line labelled X .

A Anent.r.entoction. \qquad
(ii) When angle a is 45°, angle b is also 45°.

Angle a is changed to 20°.
What is the new value of angle b ? Tick one box.
20°

\square 65° \square 80° \square
(b) The student now makes the ray of light from Fig. 8.1 pass into a glass block, as shown in Fig. 8.2.

Fig. 8.2
Complete the table, using the labels from Fig. 8.2. The first label is done for you.

description	label
an angle of incidence	a
an angle of refraction	c
an internally reflected angle	e
a critical angle	$\not \subset f$.
a refracted ray	g

(3)
(1) The candidate correctly identifies one of the angles shown but gives an incorrect response for the name of the line at right angles to the mirror
(2) The correct box is ticked.

Mark awarded for $(\mathrm{a})=2$ out of 2
(3) In this question the candidate is required to identify various labels from a ray diagram. Only one is correct; the critical angle f.

Mark awarded for (b) $=1$ out of 4
(c) The student uses a converging lens to produce an image of an object. Fig. 8.3 shows the arrangement.

Fig. 8.3
On Fig. 8.3, using a ruler, carefully draw two rays from the object O to locate the position of the image. Use an arrow to represent the image.
4. The candidate is aware that rays need to pass through F but is unable to complete the ray diagram to obtain an inverted image.

Mark awarded for (c) $=0$ out of 3

Total mark awarded $=\mathbf{2}$ out of 9

How the candidate could have improved the answer

(a) (i) The correct response was normal.
(b) Only one of the labels was correct: critical angle - f. The candidate needed to have a clear understanding of the use of terms reflection and refraction to complete the table correctly.
(c) The candidate should have constructed the ray diagram correctly to obtain an inverted image.

Common mistakes candidates made in this question

(b) Less well prepared candidates gave a variety of labels when completing the table.
(c) A common misconception was the lack of refraction of a ray passing through the lens.

Question 9

Example Candidate Response - middle

Examiner comments

9 Fig. 9.1 represents the regions of the electromagnetic spectrum.

Fig. 9.1
(a) Complete Fig. 9.1:
(i) Add the label of the missing region. 1
(ii) Complete the label under the arrow. 2
(b) (i) State two uses of X -rays.

> 1.aressed.........kitl cancer cells.
> 2. ...They......are used for.....scanning hunan body....in herneitals.
(ii) Describe two safety precautions taken by people using X -rays.

1. They......should not be used for a long thene.
2. Propls using x-rays should wear protective clothes4
(iii) X -rays and light waves can both travel through a vacuum.

Identify the correct statement. Tick one box.
X-rays travel at a slower speed than light waves.
X -rays travel at the same speed as light waves.
X-rays travel at a faster speed than light waves.
(5)
[Total: 7]
(1) Correct response.
(2) An incorrect response that did not address the question asked.

Mark awarded for (a) = 1 out of 2
3 Candidate gives two correct responses.

A correct response in terms of restricting exposure is given along with a vague response about protective clothing that is not given any credit.

5 The candidate has ticked the wrong box indicating that X-ray travels faster than light waves.

Mark awarded for (b) $=3$ out of 5

Total mark awarded = 4 out of 7

How the candidate could have improved the answer

(a) (ii) The candidate should have recognised that the electromagnetic spectrum showed increasing frequency (decreasing wavelength) from left to right.
(b) (ii) A correct response in terms of restricting the user's exposure to X-rays gains credit. A vague second response about protective clothing did not gain any further credit. The candidate should have mentioned wearing 'lead apron' or 'standing behind a screen' to gain full marks.
(b) (iii) The candidate should have indicated that X -rays travel at the same speed as light waves.

Example Candidate Response - low

Examiner comments

Fig. 9.1 represents the regions of the electromagnetic spectrum.

(a) Complete Fig. 9.1:
(i) Add the label of the missing region.

1
[1]
(ii) Complete the label under the arrow. 2
(b) (i) State two uses of X -rays.

1. To Check your skeleton. (-mediensen Hospital usen)
2. \qquad (3)
[2]
(ii) Describe two safety precautions taken by people using X-rays.
3. Safety goggles
4. gloues.

(iii) X -rays and light waves can both travel through a vacuum.

Identify the correct statement. Tick one box.

X-rays travel at a slower speed than light waves.
X-rays travel at the same speed as light waves. 5
X -rays travel at a faster speed than light waves.

An incorrect response repeating information already included in the electromagnetic spectrum.

2 The candidate has not appreciated that all elements of the electromagnetic spectrum travel at the same speed.

Mark awarded for $(\mathrm{a})=0$ out of 2
Hospital use is too vague but the candidate has indicated a particular area that can be given benefit of doubt.

Vague responses such as goggles and gloves do not gain marks.
5) A correct response identifying x ray travel at the same speed as light waves.

Mark awarded for (b) $=2$ out of 5

Total mark awarded = 2 out of 7

How the candidate could have improved the answer

(a) (i) The candidate should have indicated the correct response which was 'infra-red'.
(a) (ii) The candidate should have appreciated that all elements of the electromagnetic spectrum travel at the same speed and gives an incorrect response.
(b) (i) Only one use was given. Hospital use was too vague to gain full marks; the candidate should have clearly stated where or for what purpose in hospitals.
(b) (ii) Vague responses such as goggles and gloves do not gain any credit. Screening from X-rays and limiting exposure would have gained full credit.

Common mistakes candidates made in this question

(a) (i) Incorrect responses included sound and ultra-sound.
(a) (ii) Wavelength and speed were common misconceptions.
(b) (i) Some very vague responses were seen, e.g. "use in pipes".
(b) (ii) Goggles and gloves were common responses that did not gain any credit.
(b) (iii) There was a lack of appreciation that X-rays travelled at the same speed as light waves and consequently the top and bottom statements received equal numbers of incorrect responses.

Question 10

10 A student makes the circuit shown in Fig： 10.1 using a 12 V battery．

Fig． 10.1
（a）Complete the sentences about the circuit．Use words from the box．

（b）Fig． 10.2 shows how the resistance of Y varies with temperature．

Fig． 10.2
（i）Describe how the resistance of Y varies with temperature．

the higher the resistance
（ii）The temperature of Y is $10^{\circ} \mathrm{C}$ ．The resistance of X is 20Ω ．
Calculate the combined resistance of Y and X ．
2哺 $80+20=16$

正清

㫄

$$
I=\frac{12}{100+140+120+100+80+60+40+20}=\frac{12}{220}
$$

（1）Correct response．
（2）The candidate identifies X rather than Y ．

Mark awarded for $(\mathrm{a})=1$ out of 2
（3）A partially correct response is given that gains 1 mark．
（4）A correct response．The candidate used the graph to determine the value of the resistance of Y and then added the value of X to obtain the correct value for the total resistance．
（5）The candidate states correctly the $V=I R$ equation to gain 1 mark．A further calculation is then undertaken to determine the value of R instead of using the R value form part（b）（ii）．

Mark awarded for（b）$=5$ out of 8

How the candidate could have improved the answer
(a) (ii) The candidate needed to identify Y (thermistor) rather than X .
(b) (i) A partially correct response was given. The candidate should have the curve to explain the rate of change.
(b) (iii) The candidate should have made use of the R value from part (b)(ii) rather than incorrectly calculating the value of R.

10 A student makes the circuit shown in Flg. 10.1 using a 12 V battery.

Fig. 10.1
(a) Complete the sentences about the circuit. Use words from the box

flxed resistor	lamp	light-dependent resistor	paraliel	series	thermistor
(i) Components X and Y are connected in \qquad (ii) The component Y is a \qquad fo...xed resishor.					

(b) Fig. 10.2 shows how the resistance of Y varies with temperature.

Fig. 10.2
(i) Describe how the resistance of Y varies with temperature.

As. thenesistance..
Acmproathare of of y incresises
\qquad
(ii) The temperature of Y is $10^{\circ} \mathrm{C}$. The resistance of X is 20Ω.

Calculate the combined reṣistance of Y and X .
$r=y^{\prime} \times \times \Omega$
$r=80 \Omega \times 20 \Omega=1600 \Omega$
resistance $=.16 .00$. \qquad
(iii) Calculate the current in the circuit.

Current $=\frac{F-}{N}=\frac{1600 \Omega}{120 \mathrm{~V}}=133.3 \mathrm{~A}$
\qquad
(1) The candidate is unclear about series and parallel circuits.

2 The candidate identifies X rather than Y .

Mark awarded for (a) $=0$ out of 2

3 A partially correct response is given that gains 1 mark.
(4) The candidate correctly uses the graph to obtain a resistance value for Y of 80Ω, obtaining 1 mark. The calculation is incorrect, the candidate multiplies the rather than adding them together.
(5) The question requires the use of $\mathrm{V}=\mathrm{IR}$. The candidate uses an incorrect equation and therefore reaches an incorrect value.

Mark awarded for (b) $=2$ out of 8

Total mark awarded = 2 out of 10

How the candidate could have improved the answer

(a) (i) The candidate did not understand the difference between a series and a parallel circuit.
(a) (ii) The candidate needed to identify Y (thermistor) rather than X .
(b) (i) The candidate should have linked the curve to explain the rate of change.
(b) (ii) To calculate the combined resistance, the candidate should have added two resistances to each other rather than multiply them together.
(b) (iii) The candidate should have used the correct formula: V=IR. The equation was incorrectly stated and an incorrect value was obtained.

Common mistakes candidates made in this question

(b) (ii) A common misconception was a value for the combined resistance of 30 ohm.
(b) (iii) There were the full range of incorrect variations of the $V=I R$ equation.

Question 11

Example Candidate Response - middle

11 (a) Put a ring around the names of the metals which are attracted to magnets.

(b) Fig. 11.1 and Fig. 11.2 show magnetic field patterns for bar magnets.

On each diagram, correctly label the poles. Write \mathbf{N} or \mathbf{S}.

Fig. 11.1

Fig. 11.2
(c) For each diagram in Fig. 11.3, describe the force acting, if any. Use the words attraction, repulsion, or no force.

Fig. 11.3

1 Three metals ringed. Two are correct and one (copper) is incorrect.

Mark awarded for (a) = 1 out of 2

2 The candidate gives correct responses but on the bottom diagram includes a contradiction with the magnet being labelled with two north poles.

Mark awarded for (b) $=1$ out of 2

3 Correct responses.
Mark awarded for (c) $=3$ out of 3

Total mark awarded =5 out of 7

How the candidate could have improved the answer
(a) The candidate should have ringed two correct answers and not three.
(b) The candidate should have labelled the magnet with one South and one North pole to gain full marks.

11 (a) Put a ring around the names of the metals which are attracted to magnets.
aluminium

magnesium

(b) Fig. 11.1 and Fig. 11.2 show magnetic field patterns for bar magnets.

On each diagram, correctly label the poles. Write \mathbf{N} or \mathbf{S}.

Fig. 11.1

Fig. 11.2
(c) For each diagram in Fig. 11.3, describe the force acting, if any. Use the words attraction, repulision, or no force.

..... Attraction.
${ }^{\text {magnet }}$

.... Pepulsion..................

no force \qquad

Fig. 11.3

1 Two marks available for two metals correctly identified. The candidate has ringed four metals two are correct and two are incorrect. No credit is given.

Mark awarded for (a) $=0$ out of 2
(2) The candidate identifies the poles correctly in the top diagram 1 mark. However on the figures 11.2 the poles are incorrectly marked.

Mark awarded for (b) = 1 out of 2

The first answer is incorrect.

Mark awarded for $(\mathrm{c})=2$ out of 3

Total mark awarded $=3$ out of 7

How the candidate could have improved the answer
(a) The candidate should have ringed two correct answers and not four.
(b) The candidate should have identified the poles correctly in the bottom diagram to gain full credit.
(c) To gain full marks the candidate should have stated 'repulsion' for the first answer.

Common mistakes candidates made in this question
(a) Many candidates put a ring around more than two metals. Copper was a frequent incorrect response.

Question 12

Example Candidate Response - middle

Examiner comments

12 Two radioactive sources are used by a teacher. One source emits only alpha particles and the other source emits only beta particles.
(a) Suggest how the sources can be identified.

(b) The teacher also has a source that emits gamma rays.

State two ways in which gamma rays are different from alpha particles.

(c) State an effiect of ionising radiation on living things

(1) The candidate identifies the differing penetrating properties of alpha and beta particles but the response is too vague to be given any credit.

Mark awarded for (a) = 0 out of 2

2 The difference in the penetrating properties gains 1 of the two available marks.

Mark awarded for $(b)=1$ out of 2
(3) Correct response is given.

Mark awarded for (c) = 1 out of 1

Total mark awarded = 2 out of 5

How the candidate could have improved the answer

(a) The candidate identifies the differing penetrating properties of alpha and beta particles but the response is too vague to gain any credit. The candidate should have included the materials used for determining the sources.
(b) The difference in the penetrating properties gains 1 of the two available marks. Other acceptable responses that could have been given included speed of travel and levels of ionisation.

12 Two radioactive sources are used by a teacher. One source emits only alpha particles and the other source emits only beta particles.
(a) Suggest how the sources can be identified.
 each one.....of them............. idsmifying.....which \qquad
 \qquad beta particles....bufl....by...identinfying.....thm................... ... a.e.............tume.
(b) The teacher also has a source that emits gamma rays.

State two ways in which gamma rays are different from alpha particles.

(c) State an effect of ionising radiation on living things.

(1) The candidate responds by repeating the question. No credit is given.

Mark awarded for $(\mathrm{a})=0$ out of 2
(2) Both responses are the same indicating that gamma rays do not have a charge.

Mark awarded for (b) = 1 out of 2
(3) A vague response that is not credit worthy.

Mark awarded for (c) = 0 out of 1

How the candidate could have improved the answer

(a) The candidate should have identified a particular method such as 'idea of paper between source and detector'.
(b) Both responses are the same indicating that gamma rays do not have a charge. The candidate should have given two ways in which gamma rays are different from alpha.
(c) 'Damages cells' or 'tissues' would have gained credit.

Common mistakes candidates made in this question

(a) Many candidates gained partial credit giving details about alpha being stopped by paper but did not include the use of a detector to gain full credit.

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Example Candidate Responses
 Paper 4

Cambridge IGCSE ${ }^{\text {TM }}$ Physics 0625

In order to help us develop the highest quality Curriculum Support resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of Cambridge Curriculum Support resources are very important to us.
https://surveymonkey.co.uk/r/GL6ZNJB

Do you want to become a Cambridge consultant and help us develop support materials?
Please follow the link below to register your interest.
http://cie.org.uk/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Contents

Introduction 4
Assessment at a glance 6
Paper 4 - Theory (Extended) 7
Question 1 7
Question 2 12
Question 3 15
Question 4 18
Question 5 23
Question 6 27
Question 7 31
Question 8 35
Question 9 39
Question 10 43
Question 11 47

Introduction

The main aim of this booklet is to exemplify standards for those teaching IGCSE Physics (0625), and to show how different levels of candidates' performance (high, middle and low) relate to the subject's curriculum and assessment objectives.

In this booklet candidate responses have been chosen to exemplify a range of answers. Each response is accompanied by a brief commentary explaining the strengths and weaknesses of the answers.

For each question, response is annotated with clear explanation of where and why marks were awarded or omitted. This, in turn, followed by examiner comments on how the answer could have been improved. In this way it is possible for you to understand what candidates have done to gain their marks and what they will have to do to improve their marks. At the end there is a list of common mistakes candidates made in their answers for each question.

This document provides illustrative examples of candidate work. These help teachers to assess the standard required to achieve marks, beyond the guidance of the mark scheme. Some question types where the answer is clear from the mark scheme, such as short answers and multiple choice, have therefore been omitted.

The questions, mark schemes and pre-release material used here are available from the School Support Hub. These files are:

Question Paper 31, June 2016	
Question paper Mark scheme	$\begin{aligned} & \text { 0620_s16_qp_31.pdf } \\ & 0620 _ \text {s16_ms_31.pdf } \end{aligned}$
Question Paper 42, March 2016	
Question paper Mark scheme	$\begin{aligned} & \text { 0620_m16_qp_42.pdf } \\ & \text { 0620_m16_ms_42.pdf } \end{aligned}$
Question Paper 61, June 2016	
Question paper Mark scheme	0620_s16_qp_61.pdf 0620_s16_ms_61.pdf

Other past papers, Examiner Reports and other teacher support materials are available on the School Support Hub at www.cambridgeinternational.org/support

How to use this booklet

How the candidate could have improved the answer

(a) To achieve full marks candidate should have
(c) The candidate should have calculated the are 81 m having to gain full marks.

Examiner comments This explains how the candidate could have improved the answer. This helps you to interpret the standard of Cambridge exams and helps your learners to refine exam technique.

Common mistakes candidates made in this question

(b) A common misconception was that the cycli
(c) A common incorrect value was 108 m . Candic the maximum speed by the total time. They did n

Common mistakes a list of common mistakes candidates made in their answers for each question.

Assessment at a glance

All candidates take must enter for three papers.

Core candidates take:	
Paper 1	45 minutes
Multiple Choice	30\%
40 marks	
40 four-choice multiple-choice questions	
Questions will be based on the Core subject content	
Assessing grades C-G	
Externally assessed	
and:	
Paper 3	1 hour 15 minutes
Theory	50\%
80 marks	
Short-answer and structured questions	
Questions will be based on the Core subject content	
Assessing grades C-G	
Externally assessed	
All candidates take either:	
Paper 501 hour 15 minutes	
Practical Test 20% 40 marks	
Questions will be based on the experimental skills in Section 4	
Assessing grades $\mathrm{A}^{*}-\mathrm{G}$	
Externally assessed	

Extended candidates take:	
Paper 2	45 minutes
Multiple Choice	30\%
40 marks	
40 four-choice multiple-choice questions	
Questions will be based on the Extended subject content (Core and Supplement)	
Assessing grades $\mathrm{A}^{*}-\mathrm{G}$	
Externally assessed	
and:	
Paper 4	1 hour 15 minutes
Theory	50\%
80 marks	
Short-answer and structured questions	
Questions will be based on the Extended subject content (Core and Supplement)	
Assessing grades $\mathrm{A}^{*}-\mathrm{G}$	
Externally assessed	
or:	
Paper 6	1 hour
Alternative to Practical	20\%
40 marks	
Questions will be based on the experimental skills in Section 4	
Assessing grades $\mathrm{A}^{*}-\mathrm{G}$	
Externally assessed	

Teachers are reminded that the latest syllabus is available on our public website at www.cambridgeinternational.org and the School Support Hub at www.cambridgeinternational.org/support

Paper 4 - Theory (Extended)

Question 1

Example Candidate Response - high

Examiner comments

1 A driving instructor gives a student a sudden order to stop the car in the shortest possible time.
Fig. 1.1 shows the speed-time graph of the motion of the car from the moment the order is given.

Fig. 1.1
(a) The order to stop is given at time $t=0 \mathrm{~s}$.
(i) State the speed of the car at $t=0 \mathrm{~s}$.

$$
\begin{equation*}
\text { speed }=18 \mathrm{~m} / \mathrm{s} 1 \tag{1}
\end{equation*}
$$

(ii) Suggest why the car continues to travel at this speed for 0.9 s .
(b) Calculate
(i) the deceleration of the car between $t=0.9 \mathrm{~s}$ and $t=4.0 \mathrm{~s}$,

(ii) the total distance travelled by the car from $t=0 \mathrm{~s}$.

$$
\begin{aligned}
d & =A \text { und ee grap } \\
& =\frac{1}{2}(a+b) h \\
& =\frac{1}{2}(0.9+4) 18
\end{aligned}
$$

$$
\begin{equation*}
44.1 \mathrm{~m} \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \text { It takes some hime be...............................enerates offer the } \tag{2}
\end{align*}
$$

(c) Describe and explain a danger to a driver of not wearing a safety belt during a sudden:stop.

(1) The graph was read correctly and the correct speed stated.

2
The continuity of the initial speed was wrongly attributed to the hydraulic system of the car rather than to the reaction time of the driver.

Mark awarded for (a) = 1 out of 2

3 The formula was stated and the deceleration correctly calculated.
(4) The distance required was recognised as being given by the area under the graph. The formula for the area of a trapezium was quoted, correct substitutions were made and the answer calculated correctly.

Mark awarded for (b) = 5 out of 5
5 The danger to the driver (hitting the windscreen) was described, but the suggestion that this was due to the driver being thrust forward, rather than continuing at the prebraking speed of the car, was wrong.

Mark awarded for (c) = 1 out of 2
Total mark awarded = 7 out of 9

Example Candidate Responses: Paper 4

How the candidate could have improved the answer
(a) (ii) Reference should have been made to the reaction time of the driver rather than to a mechanical feature of the braking system.
(c) An explanation in terms of the driver continuing to move forwards with the previous speed of the car was needed to gain full credit.

Example Candidate Response - middle

Examiner comments

1 A driving instructor gives a student a sudden order to stop the car in the shortest possible time.
Fig. 1.1 shows the speed-time graph of the motion of the car from the moment the order is given.

Fig. 1.1
(a) The order to stop is given at time $t=0 \mathrm{~s}$.
(i) State the speed of the car at $t=0 \mathrm{~s}$.
speed $=18 \mathrm{~m} / \mathrm{s} 1$
(ii) Suggest why the car continues to travel at this speed for 0.9 s .

Due tr o a sudden break, the car travelled for move a 0.9 seconds at the Y. ts slopped teas. 2]...[1]
(b) Calculate
(i) the deceleration of the car between $t=0.9 \mathrm{~s}$ and $t=4.0 \mathrm{~s}$,
gradient $=$ deceleration

(c) Describe and explain a danger to a driver of not wearing a safety belt during a sudden stop. The sudden sip caused the dapueas body to lean forward. If no belt is nom, dale can calash is forehead on the shearing. 5
\qquad
[Total: 9]
(1) The graph was read correctly and the correct speed was stated.

2 The answer given, suggesting that the car travelled for more than 0.9 s and stopped accelerating, bore no relation to the required response.

Mark awarded for $(\mathrm{a})=1$ out of 2
3 The formula was stated and the deceleration correctly calculated.

4 The distance required was recognised as being given by the area under the graph. However, the substitution of 1 rather than 0.9 in the trapezium formula resulted in the wrong numerical answer.

Mark awarded for (b) $=3$ out of 5
5 The danger to the driver (hitting the windscreen) was described correctly. The explanation, that the driver's body would lean forward, was vague and unacceptable.

Mark awarded for (c) = 1 out of 2
Total mark awarded =5 out of 9

How the candidate could have improved the answer

(a) (ii) The driver's time to react should have been referred to.
(b) (ii) Correct numbers needed to be substituted into the correct formula that the candidate wrote down.
(c) The cause of the danger to the driver was also required.

1 A driving instructor gives a student a sudden order to stop the car in the shortest possible time.
Fig. 1.1 shows the speed-time graph of the motion of the car from the moment the order is given.

Fig. 1.1
(a) The order to stop is given at time $t=0 \mathrm{~s}$.
(i) State the speed of the car at $t=0 \mathrm{~s}$.
speed $=\ldots .18 \mathrm{~m} / \mathrm{s} 1$
(ii) Suggest why the car continues to travel at this speed for 0.9 s .

The car travels at the constant speed. 2
(b) Calculate
(i) the deceleration of the car between $t=0.9 \mathrm{~s}$ and $t=4.0 \mathrm{~s}$,

$$
\text { deceleration }=\frac{(v-u)}{t}=\frac{20}{-3 \cdot 1}
$$

$$
\begin{aligned}
& 0.17 x+20-0 \\
&=\frac{0.9-4.0}{} \quad \text { deceleration }=\ldots-6.45 \\
&-6.45
\end{aligned}
$$

(3)
(ii) the total distance travelled by the car from $t=0 \mathrm{~s}$.$18 \times 0.9=16.2$
(2) $18 \times 31=55.8$
$16.2+55.8 . \quad$ distance $=\ldots 72 \mathrm{~m}$
$=72$.
(c) Describe and explain a danger to a driver of not wearing a safety belt during a sudden stop. T... The driver may inpour himself because he is not
 ..driver may get a jerk or the body may come forward very rapidly and hit the staring. As the break is 5 . ${ }^{[2]}$ Pressed hardly so the car has to stop immediately. [Total:9]
(1) The graph was read correctly and the correct speed stated.

The statement that the car travels at constant speed, suggested failure to grasp the requirements of the question.

Mark awarded for $(a)=1$ out of 2
(3) The formula quoted for calculating the deceleration was rewarded. The subsequent substitution into the formula was wrong.

4 The candidate's work involved the calculation of the area of two rectangles rather than a rectangle and a triangle. This produced a wrong numerical answer. With no statement that the area under the graph was needed, no compensation marks were possible.

Mark awarded for (b) $=1$ out of 5
(5) The danger to the driver was described correctly. The explanation failed to make any reference to the driver continuing to move forward with the speed of the car.

Mark awarded for $(\mathrm{c})=1$ out of 2
Total mark awarded = 3 out of 9

How the candidate could have improved the answer

(a) (ii) A reason for the delay in applying the brakes was needed.
(b) (i) Correct numbers needed to be substituted into the formula that the candidate wrote down.
(b) (ii) Numbers obtained from the graph were written down, but it needed to be clear from these that the area under the graph was being deduced.
(c) The cause of the danger to the driver was also required.

Common mistakes candidates made in this question

(a) (i) Failure to recognise the significance of the reaction time the driver was a common feature.
(b) (i) Many candidates failed to quote an acceptable formula. Others succeeded in this aspect, but then substituted wrong data from the graph.
(b) (ii) The relevance of finding the area under the graph was usually known, but incorrect substitutions or wrong arithmetic frequency followed.
(c) Having correctly describing the danger to the driver, many answers suggested that the driver experienced a force from the seat causing forward motion, rather than continuing to move forwards with previous speed of the car.

Question 2

2 Fig. 2.1 shows a hammer being used to drive a nail into a plece of wood.

Fig. 2.1
The mass of the hammer head is 0.15 kg .
The speed of the hammer head when it hits the nail is $8.0 \mathrm{~m} / \mathrm{s}$.
The time for which the hammer head is in contact with the nail is 0.0015 s .
The hammer head stops after hitting the nail.
(a) Calculate the change in momentum of the hammer head.
momentum 旅 $=V \times m$

$$
8 \mathrm{~m} / \mathrm{s} \times 0.15
$$

(b) State the impulse given to the nail

Force $=$ MonNs Force \times Time.
$\frac{1.2}{0.0015}=800 \quad 800 \times 0.0015$ late the average force between the hammer and the nail.

$$
F=\frac{\text { change in momentum }}{\text { time. }}
$$

$$
\frac{1.2 \mathrm{~kg} \mathrm{~m} / \mathrm{s}}{0.0015 \mathrm{~s}} \quad \text { average force }=\ldots \ldots
$$

(3)
(1) The formula for momentum change was correctly stated, as were the numbers substituted and the ensuing calculation.

Mark awarded for (a) = 2 out of 2
(2) The candidate correctly stated the impulse.

Mark awarded for (b) = 1 out of 1
(3) The formula written as force = change in momentum / time was correctly stated as were the numbers substituted ensuring the correct response.

Mark awarded for $(\mathrm{c})=2$ out of 2
Total mark awarded = 5 out of 5

How the candidate could have improved the answer
Candidate was awarded full marks.

2 Fig: 2.1 shows a hammer being used to drive a n nail into a piece of wood.

Fig. 2.1
The mass of the hammer head is 0.15 kg .
The speed of the hammer head when it hits the nail is $8.0 \mathrm{~m} / \mathrm{s}$. The time for which the hammer head is in contact with the nail is 0.0015 s .

The hammer head stops after hitting the nail.
(a) Calculate the change in momentum of the hammer head.

(b) State the impulse given to the nail.

$$
\text { impulse }=\ldots .1: 2 \text { Ns } 2
$$

(c) Calculate the average force between the hammer and the nail.

(1) The formula for momentum change was correctly stated, as were the numbers substituted and the ensuing calculation.

Mark awarded for $(a)=2$ out of 2
(2) The candidate correctly stated the impulse as being equal to the momentum change in (a), albeit with the alternative acceptable unit.

Mark awarded for (b) = 1 out of 1
(3) In this calculation, the formula $2 m v / t$ was used rather than the correct $m v / t$.

Mark awarded for (c) $=0$ out of 2
Total mark awarded $=3$ out of 5

How the candidate could have improved the answer

(c) The formula $m v / t$, written as symbols or words, should have been used. The candidate used 2 x mass x speed / time. (Use of the word 'speed' rather than the correct word 'velocity' was condoned in this answer.)

2 Fig. 2.1 shows a hammer being used to drive a nail into a piece of wood.

Fig. 2.1
The mass of the hammer head is 0.15 kg .
The speed of the hammer head when it hits the nail is $8.0 \mathrm{~m} / \mathrm{s}$. The time for which the hammer head is in contact with the nail is 0.0015 s .

The hammer head stops after hitting the nail,
(a) Calculate the change in momentum of the hammer head.

$$
\begin{aligned}
& \text { Momentum }=\text { Mars } \times \text { Velocity. } \\
&=0.15 \times 8.0 \\
&=1.2 \\
& \text { change in momentum }=\ldots .1 . .2
\end{aligned}
$$

(b) State the impulse given to the nail.
impulse $=\ldots . .0 .00018 .2$
(c) Calculate the average force between the hammer and the nail.

Fore $=$ Mas \times auleration .
average force $=$ \qquad [Total: 5]
(1) The correct numerical value was calculated using the acceptable formula mass x velocity Omission of the unit resulted in a 1 mark penalty.

Mark awarded for (a) = 1 out of 2
2 For no apparent reason, the impulse was stated as 0.0018 s .

Mark awarded for (b) = 0 out of 1
3 The formula written as force = mass x acceleration was rewarded. No substitutions into this formula followed.

Mark awarded for $(\mathrm{c})=1$ out of 2
Total mark awarded = 2 out of 5

How the candidate could have improved the answer

(a) For both marks the candidate was required to write the correct unit with the numerical value that was calculated.
(b) The requirement was to recall that impulse = change of momentum and thus to repeat the answer to (a)
(c) The answer began correctly with F = mass x acceleration. No further work was shown. Data from the question should then have been used to evaluate the acceleration.

Common mistakes candidates made in this question

(a) The common error was to quote a wrong unit, e.g. $\mathrm{kg} / \mathrm{ms}$ instead of $\mathrm{kg} \mathrm{m} / \mathrm{s}$, or to omit a unit.
(b) Errors were made by candidates who failed to recall that change of momentum, (the answer to (a)), is equal to impulse.
(c) Failure to make progress after quoting $F=m a$ or $F=m(v-u) / t$ was a frequent mistake.

Question 3

Example Candidate Response - high

Examiner comments

3 (a) (i) On Fig. 3.1, draw a graph of extension against load for a spring which obeys Hooke's law.

Fig. 3.1
(ii) State the word used to describe the energy stored in a spring that has been stretched or compressed.
........... Strain edos es energy or elastic potential energy.... [1]
(b) Fig. 3.2 shows a model train, travelling at speed v, approaching a buffer.

Fig. 3.2
The train, of mass 2.5 kg , is stopped by compressing a spring in the buffer. After the train has stopped, the energy stored in the spring is 0.48 J

Calculate the initial speed v of the train.

$$
\begin{array}{rlr}
K E=\frac{1}{2} \times m \times v^{2} & v=\sqrt{0.384} \\
0.48 & =\frac{1}{2} \times 2.5 \times v^{2} & v=0.62 \mathrm{~m} \\
v^{2} & =0.384 &
\end{array}
$$

$$
v=0.62 \mathrm{~m} / \mathrm{s}
$$

[Total: 6]
(1) The drawing showed a straight line through the origin that became a curve at its upper end. The end of the straight line section was labelled X with a further label Y on the curve. With an appropriate key for point X , e.g. limit of proportionality, a mark would have been possible.

2 The candidate wrote 'strain energy or elastic potential energy'. Either of these alternatives is acceptable.

Mark awarded for (a) = 1 out of 2

3 For a successful calculation, candidates needed to assume that all the energy stored in the spring transfers to the train as kinetic energy. The candidate made this assumption and successfully carried out the calculation of the speed of the train.

Mark awarded for (b) $=4$ out of 4
Total mark awarded $=5$ out of 6

How the candidate could have improved the answer

(a) (i) The candidate's graph should have terminated at point X. Alternatively, the point X could have been identified as the limit of proportionality, inferring that Hooke's was applicable up to this point.

Example Candidate Response - middle

Examiner comments

3 (a) (i) On Fig. 3.1, draw a graph of extension against load for a spring which obeys Hooke's law.

(ii) State the word used to describe the energy stored in a spring that has been stretched or compressed.
Static energy
(b) Fig. 3.2 shows a model train, travelling at speed v, approaching a buffer.

Fig. 3.2
The train, of mass 2.5 kg , is stopped by compressing a spring in the buffer. After the train has stopped, the energy stored in the spring is 0.48 J .

Calculate the initial speed v of the train.
Mass: $m=2.5 \mathrm{~kg}$ Enerqy Stored in spoing: 0.48 J potential eneray: kinetic energy
$0.48=\frac{1}{2} \mathrm{mv}^{2}$

[Total: 6]

How the candidate could have improved the answer

(a) (ii) The type of energy should have been identified as 'strain' or 'elastic' rather 'static'.
(b) The correct formula was stated. The mass of the train should have been substituted for the mass in that formula rather than the energy stored in the spring.

Example Candidate Response - low

Examiner comments

3 (a) (i) On Fig. 3.1, draw a graph of extension against load for a spring which obeys Hooke's law.

Fig. 3.1
(ii) State the word used to describe the energy stored in a spring that has been stretched or compressed.

Clastic energy
2
(b) Fig. 3.2 shows a model train, travelling at speed v, approaching a buffer.
model train

Fig. 3.2
The train, of mass 2.5 kg , is stopped by compressing a spring in the buffer. After the train has stopped, the energy stored in the spring is 0.48 J .

Calculate the initial speed v of the train.

$$
\begin{aligned}
& =\frac{1}{2} m v^{2} \\
& =\frac{1}{2} 2.5 \times 0.48^{2} \\
& =0.288
\end{aligned}
$$

(1) A curved graph drawn from the origin was unacceptable.

The reference to elastic energy gained the mark.

Mark awarded for (a) = 1 out of 2
$1 / 2 m v^{2}$ was seen and rewarded with a mark. No correct work followed.

Mark awarded for (b) = 1 out 4
Total mark awarded $=2$ out of 6

How the candidate could have improved the answer

(a) (i) The graph required was a straight line starting at the origin, not a curve.
(b) The candidate wrote down the correct formula for kinetic energy, but failed to equate this with the given quantity of energy stored in the spring.

Common mistakes candidates made in this question

(a) (i) Failure to draw a straight line starting at the origin.
(a) (ii) Wrong identification of the type of energy stored in a spring.
(b) After a correct statement of the formula for kinetic energy, failing to equate this to the given quantity of energy stored in the spring, or, having done this correctly, making mistakes with the ensuing calculation.

Question 4

4 (a) The source of solar energy is the Sun.
Tick the box next to those resources for which the Sun is also the source of energy.

(1) -
[2]
(b) Fig. 4.1 shows a solar water-heating panel on the roof of a house.

Fig. 4.1
Cold water flows into the copper tubes, which are heated by solar radiation. Hot water flows out of the tubes and is stored in a tank.
(i) Explain why the tubes are made of copper and are painted black.

The tobes are made of copper because copper is a. good conductro of heat, oit will be heated rasily, It is (2) paintat blak because black abjectr are goodabsorkers [2]
ii) $\operatorname{In} 5.0 \mathrm{~s}, 0.019 \mathrm{~kg}$ of water flows through the tubes. The temperature of the water increases from $20^{\circ} \mathrm{C}$ to $72^{\circ} \mathrm{C}$. The specific heat capacity of water is $\overline{4} 200 \mathrm{~J} /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)$.

Calculate the thermal energy gained by the water in 5.0 s.

$$
\begin{aligned}
\text { energy } & =m \subset \Delta T \\
\text { enorgy } & =0.019 \times 4200 \times\left(72^{\circ}-20^{\circ}\right) \\
& =79.8 \times 52 \\
& =4149.6 \mathrm{~J} \\
& \quad \text { thermal energy }=\ldots 149.6 \mathrm{~J}
\end{aligned}
$$

(iii) The efficiency of the solar panel is 70%.

Calculate the power of the solar radiation incident on the panel.

$$
\begin{aligned}
& 700 \% \rightarrow 4149 \cdot 6 \\
& 100 \% \rightarrow \frac{4149 \cdot 6}{70} \times 100=5928
\end{aligned}
$$

$$
\text { power }=.5 . .428 \mathrm{~W} .
$$

[Total: 9]
(1) The 3 correct boxes, coal, hydroelectric and wind, were ticked.

Mark awarded for (a) = 2 out of 2

2 A correct explanation for the use of copper tubes was given. The explanation for the tubes being painted black required a reference to their good absorption of radiation or infra-red, not simply 'heat' as suggested by the candidate.
(3) The thermal energy was correctly calculated, correct substitutions having been made into the recalled formula.
(4) Having written an acceptable definition of efficiency, the candidate calculated the energy incident on the panel in the stated time rather than the power.

Mark warded for (b) $=5$ out of 7
Total mark awarded = 7 out of 9

How the candidate could have improved the answer

(b) (i) The second part required 'tubes painted black because black is a good absorber of radiation', not simply 'heat'.
(b) (iii) In order to calculate the power input, the thermal energy calculated in (b) (ii) needed to be divided by 5 before the subsequent calculation. The candidate's answer was the energy input.

4 (a): The source of solar energy is the Sun.
Tick the box next to those resources for which the Sun is also the source of energy.

(b) Fig. 4.1 shows a solar water-heating panel on the roof of a house.

Fig. 4.1
Cold water flows into the copper tubes, which are heated by solar radiation. Hot water flows out of the tubes and is stored in a tank.
(i) Explain why the túbes are made of copper and are painted black.

(ii) In $5.0 \mathrm{~s}, 0.019 \mathrm{~kg}$ of water flows through the tubes. The temperature of the water increases from $20^{\circ} \mathrm{C}$ to $72^{\circ} \mathrm{C}$. The specific heat capacity of water is $4200 \mathrm{~J} /\left(\mathrm{kg} .{ }^{\circ} \mathrm{C}\right)$.

Calculate the thermal energy gained by the water in 5.0 s.

$$
\begin{aligned}
& H=m C \Delta t \\
& H=0.019 \times 4200 \times 52=4149.6 \times 5=20748
\end{aligned}
$$

thermal energy $=20748 \mathrm{~J}$
(iii). The efficiency of the solar panel is 70%.

Calculate the power of the solar radiation incident on the panel.
$\frac{4149.6 \times 100}{1 \times 70}=5928$

$$
\begin{equation*}
\text { power }=5928 \mathrm{~W} / \mathrm{s} \text { 4 } \tag{2}
\end{equation*}
$$

(1) The hydroelectric and wind boxes only were ticked, the candidate presumably not realising that coal is derived from wood, for which the growth requires sunlight.

Mark awarded for $(\mathrm{a})=1$ out of 2

2 The candidate wrote that copper conducts heat, as do all metals, rather than that copper is a good conductor of heat.
No explanation as to why the tubes are painted black was offered.

3 The correct formula was used, correct substitutions were made, and the thermal energy correctly calculated. This thermal energy was then inexplicably multiplied by the time of heating, resulting in the loss of a mark.
(4) Having made correct substitution into an energy formula (not written down), the energy incident on the panel was calculated, rather than the power.

Mark awarded for (b) $=3$ out of 7

Total mark awarded = 4 out of 9

Example Candidate Responses: Paper 4

How the candidate could have improved the answer
(a) A tick was also required in the box for 'coal'.
(b) (i) An explanation for the tubes being painted black was also required. None was offered.
(b) (ii) The candidate should not have multiplied the value of the energy that had been correctly calculated, by the time of heating.
(b) (iii) In order to calculate the power input, the thermal energy calculated in (b) (ii) needed to be divided by 5 before the subsequent calculation. The candidate's answer was the energy input.

Example Candidate Response - low

Examiner comments

4 (a) The source of solar energy is the Sun.
Tick the box next to those resources for which the Sun is also the source of energy.

(1)
(b) Fig. 4.1 shows a solar water-heating panel on the roof of a house.

Fig. 4.1
Cold water flows into the copper tubes, which are heated by solar radiation. Hot water flows out of the tubes and is stored in a tank.
(i) Explain why the tubes are made of copper and are painted black.

(ii) In $5.0 \mathrm{~s}, 0.019 \mathrm{~kg}$ of water flows through the tubes. The temperature of the water increases from $20^{\circ} \mathrm{C}$ to $72^{\circ} \mathrm{C}$. The specific heat capacity of water is $4200 \mathrm{~J} /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)$.

Calculate the thermal energy gained by the water in 5.0 s .

$$
\begin{aligned}
& 0=m \times \Delta O \times c \\
& 0=0.0,2 x \quad 52 \text { 人 } 200 \mathrm{~J} / \mathrm{Rg}^{\circ} \mathrm{C}
\end{aligned}
$$

(iii) The efficiency of the solar panel is 70%.

Calculate the power of the solar radiation incident on the panel.

$$
\begin{aligned}
\frac{x}{4199}+100=70 & =2904.72 \mathrm{~J} \\
& : \\
\text { power } & =2993.72 \mathrm{~J}
\end{aligned}
$$

[Total: 9]
(1) It is possible that the candidate had misread the question. The 2 boxes ticked were those not associated with energy derived from the Sun.

Mark awarded for (a) = 0 out of 2

2 A correct explanation for the use of copper tubes was given. As with many answers to this question about the reason for using tubes painted black, the candidate referred to their good absorption of heat, not thermal energy or infrared, as required.
(3) The correct formula was used, correct substitutions were made, and the thermal energy correctly calculated. This thermal energy was then multiplied by the time of heating, resulting in a mark deduction.
(4) A formula defining energy was not written down. The use of data did not suggest that a correct formula had been recalled.

Mark awarded for (b) $=3$ out of 7
Total mark awarded $=4$ out of 9

Example Candidate Responses: Paper 4

How the candidate could have improved the answer

(a) The candidate left unticked the 3 boxes that should have been ticked, instead ticking the other 2 wrong boxes. It is possible that the question had been misinterpreted.
(b) (i) The second part required 'tubes painted black because black is a good absorber of radiation', not simply 'heat'.
(b) (ii) The candidate should not have multiplied the value of the correctly calculated energy by the time of heating.
(b) (iii) The formula relating efficiency to energy input and output, or power input and output, should have been written down, which if correct would have gained a mark.

Common mistakes candidates made in this question

(a) Possible misreading of the question may have led to some of the wrong responses. In general, awareness that the Sun is not the origin of nuclear and geothermal energy is not a well-known idea.
(b) (i) Many answers referred to the good absorption of heat radiation by a black-painted surface rather than the correct good absorption of radiation.
(b) (ii) It was not uncommon for answers to show a correct value for the thermal energy gained subsequently multiplied by the time.
(b) (iii) Failure to write down a formula before attempting to use the numbers deprived many of a possible mark. Many answers failed to address the power aspect, working entirely with energy instead.

Question 5

Example Candidate Response - high

Examiner comments

5 (a). A student carries out an experiment to find the relationship between the pressure p and the volume V of a fixed mass of gas. The table contains four of her sets of measurements.

p / kPa	250	500	750	1000
$\mathrm{~V} / \mathrm{cm}^{3}$	30.0	15.2	9.8	7.6

(i) Use the data in the table to suggest the relationship between the pressure and the volume in this experiment. Explain how you reach your conclusion.

(ii) State the property of the gas, apart from the mass, that remains constant during the experiment.
..................emperature
(b) A lake is 5.0 m deep. The density of the water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
(i) Calculate the pressure at the bottom of the lake due to this depth of water.
$p=p g h$
$p=1000 \times 10 \times 5=50000$

(ii) A bubble of gas escapes from the mud at the bottom of the lake and rises to the surface. Place one tick in each row of the table to indicate what happens to the volume, the mass and the density of the gas in the bubble. Assume that no gas or water vapour enters or leaves the bubble.

	increases	stays the same .'	decreases
volume of bubble	\checkmark		
mass of gas in bubble		\checkmark	
density of gas in bubble	$\sqrt{2}$.

[Total: 7]
(1) The statement that pressure and volume are inversely proportional to each other was correct and probably based on recall of Boyle's law. However, the explanation that this is simply because as the volume decreases the pressure increases is insufficient to explain the inverse relationship.

2 The temperature was correctly identified as being the quantity that stays constant, this being a conditional factor in the statement of Boyle's law.

Mark awarded for (a) = 2 out of 3
(3) The formula $P=h \rho g$ was stated was used to obtain the correct pressure.
(4) The boxes for 'volume increases' and 'mass stays the same' were ticked as required. Correctly using the recall of density = mass/volume would have directed the candidate to tick 'density decreases' rather than increases.

Mark awarded for (b) $=3$ out of 4
Total mark awarded =5 out of 7

How the candidate could have improved the answer

(a) (i) A complete answer required a reference as to how the data confirmed the relationship between the pressure and volume. The answer only stated the relationship.
(b) (ii) The answer should have shown that the density of the gas decreases.

Example Candidate Response - middle

Examiner comments

(a) A student carries out an experiment to find the relationship between the pressure p and the volume V of a fixed mass of gas. The table contains four of her sets of measurements.

p / kPa	250	500	750	1000
V / cm^{3}	30.0	15.2	9.8	7.6

(i) Use the data in the table to suggest the relationship between the pressure and the volume in this experiment. Explain how you reach your conclusion.

 .[2]
(ii) State the property of the gas, apart from-the-mass, that remains constant during the experiment.

(b) A lake is 5.0 m deep. The density of the water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
(i) Calculate the pressure at the bottom of the lake due to this depth of water.

$$
\begin{aligned}
p & =\rho g h \\
& =1000 \times 10 \times 5 \\
& =50,000
\end{aligned}
$$

pressure $=\ldots . . .50,000 \mathrm{~Pa}$
(ii) A bubble of gas escapes from the mud at the bottom of the lake and rises to the surface.

Place one tick in each row of the table to indicate what happens to the volume, the mass and the density of the gas in the bubble. Assume that no gas or water vapour enters or leaves the bubble.

	increases	stays the same	decreases
volume of bubble	-		
mass of gas in bubble			
density of gas in bubble			

1 The correct statement that pressure and volume are inversely proportional to each other was probably based on recall of an aspect of Boyle's law. The explanation that this is because as the volume decreases the pressure increases is insufficient to explain this relationship.

2 'Energy' was chosen as being the quantity that stays constant rather than the correct 'temperature'. It appears that the candidate's recall of Boyle's law was incomplete.

Mark awarded for (a) = 1 out of 3
(3) The formula $P=h \rho g$ was stated was used to obtain the correct pressure.
(4) To have ticked the boxes volume increases (correct), mass decreases (wrong) and density decreases (correct), suggests that the candidate did not consider the validity of the formula density = mass/volume in the approach to these responses.

Mark awarded for (b) $=3$ out of 4
Total mark awarded $=4$ out of 7

How the candidate could have improved the answer

(a) (i) A complete answer required a reference as to how the data confirmed the relationship between the pressure and volume. The answer only stated the relationship.
(a) (ii) Temperature should have been stated as the property of the gas that remained constant, not energy.
(b) (ii) The answer should have shown that the mass of the gas stays the same.

Examiner comments

5 (a) A student carries out an experiment to find the relationship between the pressure p and the volume V of a fixed mass of gas. The table contains four of her sets of measurements.

X p / kPa	250	500	750	1000
Ol $\mathrm{V} / \mathrm{cm}^{3}$	30.0	15.2	9.8	7.6

(i) Use the data in the table to suggest the relationship between the pressure and the volume in this experiment. Explain how you reach your conclusion.

 decrense? (1)
shape
volune.
(ii) State the property of the gas, apart from the mass, that remains constant during the experiment.
Lefent Density 2
(b) A lake is 5.0 m deep. The density of the water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
(i) Calculate the pressure at the bottom of the lake due to this depth of water.

$$
\text { pressure }=\frac{8}{160} \quad 5 \times 1000
$$

(ii) A bubble of gas escapes from the mud at the bottom of the lake and rises to the surface.

Place one tick in each row of the table to indicate what happens to the volume, the mass and the density of the gas in the bubble. Assume that no gas or water vapour enters or leaves the bubble.

[Total: 7]

1 The relationship between pressure and volume was correctly stated. From the explanation given it is apparent that there is a general belief that an inversely proportional relationship is confirmed if one quantity increases and the other one decreases.

2 To answer this correctly, there needs to be a thorough knowledge of a complete statement of Boyle's law and the relationship between density, mass and volume. The statement that density stays constant suggests a lack of this knowledge.

Mark awarded for $(\mathrm{a})=1$ out of 3
3 The depth of the lake and density of the water were multiplied together. No recall of $P=h \rho g$ was apparent.

4 The candidate ticked the boxes for volume stays the same and mass decreases, both wrong. Although density = mass/volume had been written down, the box for density decreases was ticked correctly, although it did not follow from the previous wrong ticks, gaining a mark.

Mark awarded for (b) $=1$ out of 4
Total mark awarded = 2 out of 7

Example Candidate Responses: Paper 4

How the candidate could have improved the answer

(a) (i) A complete answer required a reference as to how the data confirmed the relationship between pressure and volume. The answer only stated the relationship.
(a) (ii) Temperature should have been stated as the property of the gas that remained constant, not mass.
(b) (i) Candidates should always state a relevant formula, which if correct, gains a mark. In this case no formula was stated and the use of numbers in the calculation was totally incorrect.
(b) (ii) The answer should have shown that the volume of the gas increases and the mass of the gas stays the same.

Common mistakes candidates made in this question

(a) (i) The requirement to use the data in the table was infrequently complied with. Candidates could either state that the products of P and V were all about 7500 or show that if pressure doubles the volume halves, or vice versa.
(a) (ii) Many instances of candidates stating the wrong property as constant were seen.
(b) (i) Most mistakes that were made were due to failure to recall the required formula.
(b) (ii) One, or less frequently two, wrongly placed ticks were in seen in a significant number of answers. It was particularly disappointing to see a response suggesting that the mass of the bubble changes.

Question 6

Example Candidate Response - high

Examiner comments

6 (a) Fig. 6.1 represents the waveform of a sound wave. The wave is travelling at constant speed.

(i) On Fig. 6.1,

1. label with the letter X the marked distance corresponding to the amplitude of the wave,
[1]
2. label with the letter Y the marked distance corresponding to the wavelength of the wave.[1]
(ii) State what happens to the amplitude and the wavelength of the wave if
3. the loudness of the sound is increased at constant pitch,
amplitudefncreases.
\qquad
4. the pitch of the sound is increased at constant loudness.
amplitude Cecroases
wavelength ...decreases.
2
(b) A ship uses pulses of sound to measure the depth of the sea beneath the ship. A sound pulse is transmitted into the sea and the echo from the sea-bed is received after 54 ms . The speed of sound in seawater is $1500 \mathrm{~m} / \mathrm{s}$. 0.054 s

Calculate the depth of the sea beneath the ship
$S=f \times \lambda$
A. $\frac{s}{f}$

$$
\begin{array}{ll}
S=\frac{2 d}{t} & d=40.5 \\
1500 \times 0.054=2 d & \text { depth }=\ldots \ldots . .40 .5 \mathrm{~m} \\
\frac{81}{2}=d &
\end{array}
$$

1 The candidate is clearly aware of the required definitions. 1. The amplitude was correctly labelled.
2. The wavelength was correctly labelled.

2 There is evidence of some confusion in the answers here. Neither mark could be awarded. 1. The amplitude and wavelength were both described as increasing. The former only was correct. 2. The amplitude and wavelength were both described as decreasing. The latter only was correct.

Mark awarded for (a) $=2$ out of 4

3 Substitutions were made into the correct formula. With correct manipulation of the numbers, the depth of water was accurately calculated.

Mark awarded for (b) $=3$ out of 3
Total mark awarded =5 out of 7

How the candidate could have improved the answer

(a) (ii) The candidate needed to have learnt thoroughly the links between amplitude and loudness, and between pitch, frequency and wavelength.

Example Candidate Response - middle

6 (a) Fig. 6.1 represents the waveform of a sound wave. The wave is travelling at constant speed.

Fig. 6.1
(i) On Fig. 6.1,

1. label with the letter X the marked distance corresponding to the amplitude of the wave,
2. label with the letter Y the marked distance corresponding to the wavelength of the wave.
(ii) State what happens to the amplitude and the wavelength of the wave if
3. the loudness of the sound is increased at constant pitch,

wavelengthcomes Shorter
4. the pitch of the sound is increased at constant loudness.
amplitude \qquad stays the same
wavelength \qquad betomes shorter \qquad 2
(b) A ship uses pulses of sound to measure the depth of the sea beneath the ship. A sound pulse is transmitted into the sea and the echo from the sea-bed is received after 54 ms . The speed of sound in seawater is $1500 \mathrm{~m} / \mathrm{s}$.

Calculate the depth of the sea beneath the ship.

$$
\begin{aligned}
& \text { eth of the sea beneath the ship. } \quad \Rightarrow 81,000=2 d \\
& \qquad 15=\frac{2 d}{t} \\
& \Rightarrow 1500=\frac{2 x d}{54}
\end{aligned}
$$

[Total: 7]

1 The candidate's recall of the definition of amplitude was unsound.

1. The labelling of the amplitude was incorrect.
2. The labelling of the wavelength was correct.

2 The candidate was aware of the connection between loudness and amplitude. The knowledge of relationship between pitch and wavelength is less certain.

1. The amplitude was correctly described as larger. The wavelength was incorrectly described as shorter. 2. The amplitude was correctly described as the same. The wavelength was correctly described as shorter.

Mark awarded for (a) $=2$ out of 4
(3) The formula was stated correctly. 54 milliseconds was not converted to seconds before substitution, so there was a power of 10 error in the depth, resulting in a 1 mark penalty.

Mark awarded for $(b)=2$ out of 3
Total mark awarded $=4$ out of 7

How the candidate could have improved the answer

(a) (i) The candidate needed to have learnt and recalled the definition of amplitude as the maximum displacement.
(a) (ii) Recall of the link between amplitude and loudness was shown, but a mistake was made in recalling the link between pitch and wavelength.
(b) More care in reading the question may have avoided the mistake of using 54 s in the calculation instead of 54 ms .

Example Candidate Response - low

Examiner comments

6 (a) Fig. 6.1 represents the waveform of a sound wave. The wave is travelling at constant speed.

Fig. 6.1
(i) On Fig. 6.1,

1. label with the letter X the marked distance corresponding to the amplitude of the wave,
2. label with the letter Y the marked distance corresponding to the wavelength of the wave.
(ii) State what happens to the amplitude and the wavelength of the wave if
3. the loudness of the sound is increased at constant pitch,

$$
\begin{aligned}
& \text { amplitudes.fays....the S...............me } \\
& \text { wavelengthncruecose }
\end{aligned}
$$

2. the pitch of the sound is increased at constant loudness.
amplitude ...fic decre ose
wavelength ... $\$$ p....i.incruente...

[1]
(b) A ship uses pulses of sound to measure the depth of the sea beneath the ship. A sound pulse is transmitted into the sea and the echo from the sea-bed is received after 54 ms . The speed of sound in seawater is $1500 \mathrm{~m} / \mathrm{s}$.

Calculate the depth of the sea beneath the ship.

$$
\begin{align*}
& S=\frac{D}{t} \\
& \frac{54}{60}=0.93333 \mathrm{~S} \\
& =1500=\frac{D}{\begin{array}{c}
0.544 \\
0.93
\end{array}} \tag{3}\\
& D=1500 \times 90.93 \\
& =\frac{1395 \mathrm{~m}}{2} \text { depth }=\ldots .97 .5 \mathrm{~m}
\end{align*}
$$

1 The candidate showed no appreciation of the definition of amplitude.

1. The labelling of the amplitude was incorrect.
2. The labelling of the wavelength was correct.

Knowledge of the relationships between loudness and amplitude, and between wavelength and pitch was not in evidence.

1. The amplitude was incorrectly described as staying the same. The wavelength was incorrectly described as increased.
2. The amplitude was incorrectly described as decreased. The wavelength was incorrectly described as increased.

Mark awarded for (a) = 2 out of 4

3 The mark awarded was for stating speed $s=d / t$
The conversion of 54 milliseconds to seconds was made by dividing 54 by 60 . Inevitably the calculation of the depth was wrong.

Mark awarded for (b) = 1 out of 3
Total mark awarded $=4$ out of 7

How the candidate could have improved the answer

(a) (i) The candidate needed to have learnt and recalled the definition of amplitude as the maximum displacement
(a) (ii) The relationships between loudness and amplitude, and between pitch, frequency and wavelength need to have been learnt thoroughly.

6 (b) The method of conversion of milliseconds to seconds must be learnt. The formula relating the time for an echo to return to a source of sound, the speed of the sound, and the distance from a reflecting surface needed to be recalled.

Common mistakes candidates made in this question

(a) (i) Mistakes due to lack of or poor recall of the definitions of amplitude, and less frequently, wavelength.
(a) (ii) Mistakes due to lack of knowledge of the relationships between loudness and amplitude, and between pitch, frequency and wavelength.
(b) Failure to the conversion of milliseconds to seconds. Using v $=d / t$ without noting the fact that d is twice the distance from the source of sound to the reflecting surface.

Question 7

Example Candidate Response - high

Examiner comments

7 (a) Explain what is meant by
(i) total internal reflection,

All of the light is reflected inside the gloves prism/block with out any (continue below)[1]
(ii) critical angle.

The angl at which the refracted ray is perpendicular to the normal and (continue below). 11 parallel to the surface of the block 2
(b) Fig. 7.1 shows a ray of light, travelling in air, incident on a glass prism.

Fig. 7.1
(i) The speed of light in air is $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Its speed in the glass is $2.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

Calculate the refractive index of the glass.
refractive index $=\frac{\text { speed of light in air }}{\text { speed of light in object }}$
$=\frac{3 \times 10^{8}}{2 \times 10^{8}}=1.5$
refractive index $=$

(ii) Show that the critical angle for the glass-air boundary -is 42°.

$$
\begin{align*}
& \text { Refraction index }=\frac{\sin ^{-1}\left(\frac{1}{1.5}\right) .}{} \tag{4}
\end{align*}
$$

(1) Reference to a glass prism is accepted as a more dense medium, so the detail given was correct.

2 The candidate needed to say that the angle of incidence, not just the angle, at which the refracted ray is perpendicular to the normal.

Mark awarded for $(\mathrm{a})=1$ out of 2
(3) The ray diagram fails to show the refraction of the ray away from the normal at the lower face of the prism.

The formula stated the substitutions and the calculation are correct.

5 The formula stated the substitutions and the calculation are correct.

Mark awarded for (b) $=5$ out of 6
Total mark awarded = 6 out of 8

How the candidate could have improved the answer

(a) (ii) The angle referred to must be the angle of incidence.
(b) (iii) The ray emerging from the lower face needed to be shown bending away from the normal.

Example Candidate Response - middle

Examiner comments

(a) Explain what is meant by
(i) total internal reflection,

(ii) critical angle.

(b) Fig. 7.1 shows a ray of light, travelling in air, incident on a glass prism.

Fig. 7.1
(i) The speed of light in air is $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Its speed in the glass is $2.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Calculate the refractive index of the glass.

$$
\begin{aligned}
& =\frac{3 \times 10^{8}}{2 \times 10^{8}} \\
& =1.5
\end{aligned}
$$

refractive index =
$1 \cdot 54$
(ii) Show that the critical angle for the glass-air boundary is 42°.
$\sin c=\frac{1}{1 \cdot 5}$
$c=41.8$
$c=42^{\circ}$. 5
:
(iii) On Fig. 7.1, draw carefully, without calculation, the continuation of the ray through the prism and into the air.

The answer omits the point that the angle of incidence is in a more dense medium or e.g. glass.
(2) The critical angle is an angle of incidence and this aspect is not addressed in the answer.

Mark awarded for (a) $=0$ out of 2

3 The only possible credit is for showing that the ray undergoes no change of direction at the vertical face of the prism. The ray is shown as passing out of the prism at the sloping face, not undergoing total internal reflection.

The formula is not stated, but the data is used to calculate the correct value of the refractive index.

5 As in (i), no formula is stated, but a correct calculation is carried out.

Mark awarded for (b) $=4$ out of 6
Total mark awarded $=4$ out of 8

How the candidate could have improved the answer

(a) (i) The response needed to refer to reflection in a more dense material and state that there is no refracted ray.
(a) (ii) The response needed to state that the critical angle is an angle of incidence and also that it is the angle for which the refracted ray travels along the boundary, or the angle above which total internal reflection occurs.
(b) (iii) The completed diagram needed to show total internal reflection at the sloping face of the prism followed by bending away from the normal.at the lower face.

Example Candidate Response - low

Examiner comments

(a) Explain what is meant by
(i) total internal reflection,
When the insider roy from a denser..
meatium reflects bach into ute medrím itself 1
(ii) critical angle.

(b) Fig. 7.1 shows a ray of light, travelling in air, incident on a glass prism.

Fig. 7.1
(i) The speed of light in air is $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Its speed in the glass is $2.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Calculate the refractive index of the glass.

$$
n \mid \sin 1=n_{2} \sin R
$$

(ii) Show that the critical angle for the glass-air boundary is 42°.

5

(iii) On Fig. 7.1, draw carefully, without calculation, the continuation of the ray through the prism and into the air.

The meaning of total internal reflection is satisfactorily explained.
(2) In common with many answers to this question, there is no reference to the critical angle being an angle of incidence.

Mark rewarded for (a) = 1 out of 2

3 The ray was correctly shown as passing through the first face undeflected. Total internal reflection at the sloping face was shown but would only have been correct for a $45^{\circ}, 90^{\circ}, 45^{\circ}$ prism.

4
The formula stated is not relevant to the data provided. The answer stated as $3 / 2$, that should have been written as 1.5 , does not follow from the preceding work and could simply be a recall of the value of the refractive index of glass.

5 No attempt at calculating the critical angle was made.

Mark awarded for (b) $=0$ out of 6
Total mark awarded = 2 out of 8

How the candidate could have improved the answer

(a) (ii) The response needed to state that the critical angle is an angle of incidence and also that it is the angle for which the refracted ray travels along the boundary' or the angle above which total internal reflection occurs.
(b) (i) The formula needed was the one relating the refractive index of the glass to the speeds of light in air and in glass, with substitutions into this formula. The numerical answer needed to follow from this working.
(b) (ii) No response was offered.
(b) (iii) The completed diagram was required to show total internal reflection with reasonable accuracy occurring at the sloping face of the prism. This accuracy was not achieved in the answer. The ray needed to be shown bending away from the normal.at the lower face.

Common mistakes candidates made in this question

(a) (i) Failure to refer to the reflection taking place in a more dense material.
(a) (ii) Failure to state that the critical angle is an angle of incidence.
(b) (i) In the context of the data given in the question, use of the wrong formula for refractive index.
(b) (ii) Lack of recall of the relevant formula relating the critical angle to the refractive index of the denser material.
(b) (iii) Insufficient accuracy in drawing the totally reflected ray at the sloping face of the prism. Not showing the ray refracting away from the normal at the lower face of the prism.

Question 8

Example Candidate Response - high

Examiner comments

8 (a) Fig. 8.1 shows 3 lamps and a fuse connected to a power supply.

Fig. 8.1
The e.m.f. of the supply is 220 V . Each lamp is labelled $220 \mathrm{~V}, 40 \mathrm{~W}$. The rating of the fuse is 2.0A.

Calculate

(i) the current in each lamp,

$$
\begin{aligned}
& \text { ent in each lamp, Power } \\
& \text { Current } \begin{aligned}
I= & = \\
& =\frac{40}{220} \\
& =0.18
\end{aligned}
\end{aligned}
$$

current $=$

(ii) the current in the fuse,

(iii) the total number of lamps, all in parallel, that could be connected without blowing the fuse.

$$
\begin{aligned}
\text { Total number oflamns } & =\frac{\text { Curventinfuse }}{\text { current of lamps }} \\
& =\frac{20}{0.18}=11.11
\end{aligned}
$$

number $=$
(b) After a very long period of use, the wire filament of one of the lamps becomes thinner. ,:
(i) Underline the effect of this change on the resistance of the filament. resistance increases resistance remainis the same. resistance decreases (4) [1]
(ii) State and explain the effect of this change on the power of the lamp.

The pawer of the lamp would decrease. This is \qquad
due to decrease in cuirsent- The current is decregsed ...due to the increase in resistance. 5 ?
[Total: 8]

1 With the correct formula and substitution, the correct current was calculated.
(2) After an inconclusive attempt at a calculation, the candidate wrote down the rating of the fuse as the total current. The current in a single lamp had to be multiplied by 3 .
(3) The fuse rating was correctly divided by the value calculated in (a) (i).

Mark awarded for (a) = 4 out of 5
4 The candidate had recalled correctly that a thinner wire has a larger resistance.

5 The statement that the power would be reduced was rewarded. The explanation was incomplete. It was correct to write that the current would be reduced, but a reference to $P=I V$ with V having a constant value also had to be made.

Mark awarded for (b) $=2$ out of 3
Total mark awarded $=6$ out of 8

How the candidate could have improved the answer

(a) (ii) The answer to (i) needed to be multiplied by 3.
(b) (ii) The answer required a reference to a relevant formula; either $P=I V$ or $P=V^{2} / R$.

8 (a) Fig. 8.1 shows 3 lamps and a fuse connected to a power:supply.

Fig. 8.1
The e.m.f. of the supply is 220 V . Each lamp is labelled $220 \mathrm{~V}, 40 \mathrm{~W}$. The rating of the fuse is 2.0A.

Calculate
(i) the current in each lamp,

$$
\begin{aligned}
& P=V I . \\
& \frac{P}{V}=I . \\
& \frac{40}{220}=0.18
\end{aligned}
$$ current $=$ \qquad $0.18 A$

(ii) the current in the fuse,

$$
\begin{aligned}
& I=\frac{P}{V} \\
& I=\frac{440}{40}=11
\end{aligned}
$$

$$
\text { current }=
$$

\qquad $1 A 2$
(iii) the total number of lamps, all in parallel, that could be connected without blowing the fuse.
number =6. 6.13
(b) After a very long period of use, the wire filament of one of the lamps becomes thinner.
(i) Underline the effect of this change on the resistance' of the filament.
resistance increases. resistance remains the same resistance decreases 4 [1]
(ii) State and explain the effect of this change on the power of the lamp.
usisistance......is inverneruly.......propportion al. toponver.............therefore if if pichs dourded than ...

* cies Resisfance is halved.
[Total: 8]

1 Using the correct formula and substitution, the candidate calculated the correct current.
(2) The answer suggested that the candidate had no idea as to how to cope with issues concerning lamps, and by implication, resistors, in parallel. For no apparent reason, the formula $P=I V$ was quoted and spurious substitutions made.
(3) A numerical answer of no relevance was written in the answer space.

Mark awarded for $(\mathrm{a})=2$ out of 5
(4) The candidate had recalled correctly that a thinner wire has a larger resistance.
(5) The formula $P=V^{2} / R$ was quoted and power stated as being inversely proportional to resistance. Together, these aspects allowed a mark. There was no follow-up to complete an explanation.

Mark awarded for (b) $=2$ out of 3
Total mark awarded = 4 out of 8

How the candidate could have improved the answer

(a) (ii) The answer to (i) needed to be multiplied by 3 .
(a) (iii) The fuse value of $2 A$ should have been divided by the answer to (a) (i).
(b) (ii) A relevant formula was written down, but the candidate's use of the formula needed to be applicable to the particular details of the question.

8 (a) Fig. 8.1 shows 3 lamps and a fuse connected to a:power supply.

Fig. 8.1
The e.m.f. of the supply is 220 V . Each lamp is labelled $220 \mathrm{~V}, 40 \mathrm{~W}$. The rating of the fuse is 2.0A.

Calculate
(i) the current in each lamp,

$$
\begin{gathered}
P=1 V \\
40=1 \times 220 \\
\therefore \frac{220}{40}=5.5
\end{gathered}
$$

\qquad 5.s. 1
(ii) the current in the fuse,

239 current $=$ \qquad 10 2
(iii) the total number of lamps, all in parallel, that could be connected without blowing the fuse.
number $=$ \qquad z 3
(b) After a very long period of use, the wire filament of one of the lamps:becomes thinner:
(i) Underline the effect of this change on the resistance of the filament. resistance increases resistance remains the same resistance decreases 4 [1]
(ii) State and explain the effect of this change on the power of the lamp.
.........ne.......nesis.tence....inereoses.......tot....so....the. \qquad

(1) The stated formula was correct and gained a mark. Wrong substitutions followed.

2 No working was shown, just a wrong numerical answer with no unit.

3 Again there was no working. A wrong numerical answer was written in the answer space, but was crossed out.

Mark awarded for (a) = 1 out of 5
(4) The candidate had recalled correctly that a thinner wire has a larger resistance.

5 The statement that power decreases with an increase in resistance was rewarded, but there was no subsequent explanation.

Mark awarded for (b) $=2$ out of 3
Total mark awarded $=3$ out of 8

How the candidate could have improved the answer

(a) (i) Correct substitutions were made into the correct formula but the arithmetic that followed should have calculated 40/220 rather than 220/40.
(a) (ii) The answer to (i) needed to be multiplied by 3.
(a) (iii) The fuse value of 2 A should have been divided by the answer to (a)(i).
(b) (ii) The answer required a reference to a relevant formula; either $P=I V$ or $P=V^{2} / R$.

Common mistakes candidates made in this question

(a) (i) Wrong use of the data, sometimes after correct substitution into a relevant formula.
(a) (ii) A wrong arithmetic approach, usually arising from the fact that some candidates do not appreciate that in the parallel circuit, the total current is the sum of the currents in the individual lamps.
(a) (iii) Using a recalled formula unnecessarily. This mistake arises from the point made in (a)(ii) above. (b) (i) Failure to recall the relationship between the resistance of a wire and the area of cross-section of the wire.
(b) (ii) After stating correctly that the current in the lamp decreases, not following this with a deduction based upon using $P=I V$ or $P=V^{2} / R$.

Question 9

Example Candidate Response - high

Examiner comments

Fig. 9.1
The electric field between the plates in Fig. 9.1 is uniform.
Draw lines on Fig. 9.1 to represent this uniform field. Add arrows to these lines to show the direction of the field.
(b) Fig. 9.2 shows a very small negatively-charged oil drop in the air between a pair of oppositely charged horizontal metal plates. The oil drop does not move up or down.

Fig. 9.2
(i) Suggest, in terms of forces, why the oil drop does not move up or down.

The net force acting on the drop is zero. The newtant forte io moment is zero. Sf e froe de to gravity is squall to [|2]
(ii) Without losing any of its charge, the oil drop begins to evaporate.

State and explain what happens to the oil drop.
The most energetic modules sencescape from the merpace of
Le drop, this. bells dawn the drop and the mas of drop dom 4 derneneses.
[Total: 8]
(1) The candidate could not recall what is meant by the direction of an electric field.

2 The field lines and the direction of the field limes were accurately drawn.

Mark awarded for (a) $=3$ out of 4
(3) The statement that the force due to gravity acting on the oil drop and the force created by the electric field was acceptable
(4) The candidate correctly stated that the mass of the oil drop decreases due to evaporation, but made no suggestion about the consequent movement of the drop.

Mark awarded for (b) $=3$ out of 4
Total mark awarded $=6$ out of 8

How the candidate could have improved the answer

(a) (i) By stating that the direction of the of the field is the direction of the force acting on a positive charge.
(b) (ii) As well as stating that the mass of the drop decreases, the answer needed to include the point that the drop moves upwards.

Example Candidate Response - middle

Examiner comments

9 (a) (i) State what is meant by the direction of an electric field.

The flow of current from po..........................itive
tonative ter......terminals: \qquad
(ii) Fig. 9.1 shows a pair of oppositely-charged horizontal metal plates with the top plate positive.

Fig. 9.1
The electric field between the plates in Fig. 9.1 is uniform.
Draw lines on Fig. 9.1 to represent this uniform field. Add arrows to these lines to show the direction of the field.
(b) Fig. 9.2 shows a very small negatively-charged oil drop in the air between a pair of oppositely charged horizontal metal plates. The oil drop does not move up or down.

Fig. 9.2
(i) Suggest, in terms of forces, why the oil drop does not move up or down. As it is not affected by the forces. of the plates. They are not very strong. 3
(ii) Without losing any of its charge, the oil drop begins to evaporate.

State and explain what happens to the oil drop.

3 The suggestion that the oil drop was not affected by forces due to the plates was entirely wrong.

4 Exceptionally for this question, the candidate's statement that the oil drop moves towards the positively charged plate was rewarded. Unfortunately, no explanation was offered.

Mark awarded for (b) = 1 out of 4
Total mark awarded $=4$ out of 8

How the candidate could have improved the answer

(a) (i) By stating that the direction of the of the field is the direction of the force acting on a positive charge.
(b) (i) By stating that the upward force on the drop due to the electric field (1 mark) equals the weight of the drop or the downward force on the drop. (1 mark)
(b) (ii) The answer needed to include the point that the mass or weight of the drop decreases.

Example Candidate Response - low

Examiner comments

9 (a) (i) State what is meant by the direction of an electric field.
..................rom....negative. .to.....pasitive.
\qquad
(ii) Fig. 9.1 shows a pair of oppositely-charged horizontal metal plates with the top plate positive.

Fig. 9.1
The electric field between the plates in Fig. 9.1 is uniform
Draw lines on Fig. 9.1 to represent this uniform field. Add arrows to these lines to show the direction of the field.
(b) Fig. 9.2 shows a very small negatively-charged oil drop in the air between a pair of oppositely charged horizontal metal plates. The oil drop does not move up or down.

Fig. 9.2
(i) Suggest, in terms of forces, why the oil drop does not move up or down.
...............Becubse.....both....the.....plates.....cere...negatixelycharged
(ii) Without losing any of its charge, the oil drop begins to evaporate.

State and explain what happens to the oil drop
.................size of the dxap.....reduces becukse...it.s. Molecules....escape.
[Total: 8]

1 'From negative to positive', for the suggested meaning of the direction of the electric field, was wrong.

2 The field lines between the plates were accurately drawn as parallel and equally spaces. The arrows indicating the direction of the field pointed upwards rather than downwards.

Mark awarded for (a) = 2 out of 4

3 No marks could be awarded for the statement that both plates are negatively charged.

4 The candidate stated correctly that the size of the drop reduces as a result of evaporation. However, a reduction in the mass of the drop is the issue in the context of this question. No explanation followed.

Mark awarded for (b) $=0$ out of 4
Total mark awarded = 2 out of 8

How the candidate could have improved the answer

(a) (i) By stating that the direction of the of the field is the direction of the force acting on a positive charge.
(a) (ii) The field direction arrows needed to be point in in the downward direction.
(b) (i) The candidate needed to have noted that the question specified that the plates are oppositely charged.
(b) (ii) By stating that the mass or weight of the drop, not the size, decreases, and that the drop moves upwards.

Common mistakes candidates made in this question

(a) (i) Failure to recall the syllabus statement defining the direction of an electric field.
(a) (ii) Uneven spacing of field lines. Direction arrows on field line pointing in the wrong direction.
(b) (i) Making vague statements about the forces acting on the drop rather than referring to the equilibrium of the forces, i.e. the upward force on the drop due to the electric field is equal to the downward force on the drop or the weight of the drop.
(b) (ii) Not stating that the mass or weight of the drop decreases (due to evaporation), and that the drop moves upwards.

Question 10

Example Candidate Response - high

Examiner comments

Fig. 10.1
[Total: 7]
(1) The particle numbers stated were all correct.
(2) The symbol for the xenon nucleus was correct.

Mark awarded for (a) $=4$ out of 4
(3) Points were plotted at 3 out of 4 correct times, allowing a mark. The background count rate was not subtracted from the count rates listed, so there was no further credit.

Mark awarded for (b) = 1 out of 3
Total mark awarded =5 out of 7

How the candidate could have improved the answer

(b) The points were plotted at suitable times, but the count rates plotted did not take account of the background count rate.

Example Candidate Response - middle

Examiner comments

10 (a) An iodine isotope ${ }_{53}^{131} \mathrm{I}$ decays by β-emission to an isotope of xenon (Xe).
(i) State the number of each type of particle in a neutral atom of ${ }_{53}^{131} \mathrm{I}$. protons neutrons electrons 6筫.5.3. [2] (ii) State the symbol, in nuclide notation, for the xenon nucleus.
${ }_{53}^{131} \mathrm{Xe}$
(b) The background count rate of radioactivity in a laboratory is 30 counts $/ \mathrm{min}$

A radioactive sample has a half-life of 50 minutes. The sample is placed at a fixed distance from a detector. The detector measures an initial count rate from the sample, including background, of 310 counts $/ \mathrm{min}$.

On Fig. 10.1, plot suitable points and draw a graph of the count rate from the sample, corrected for background, as it changes with time.

Fig. 10.1
[3]
[Total: 7]
(3) Points were plotted at 3 out of 4 correct times, allowing a mark.
The background count rate was not subtracted from the initial count rates listed, so the plotting of the points was wrong, as was the graph.

Mark awarded for (b) = 1 out of 3
Total mark awarded = 4 out of 7

How the candidate could have improved the answer

(a) (ii) By writing the subscript number as 54 , i.e. the proton number increases by one for a β-decay.
(b) The points were plotted at suitable times, but the count rates plotted did not take account of the background count rate.

Example Candidate Response - low

Examiner comments

10 (a) An iodine isotope ${ }_{53}^{131} \mathrm{I}$ decays by β-emission to an isotope of xenon (Xe)
(i) State the number of each type of particle in a neutral atom of ${ }_{53}^{131} \mathrm{I}$ protons7.3.5.3... neutrons8........... electrons 0 [2] (ii) State the symbol, in nuclide notation, for the xenon nucleus.

$$
\begin{equation*}
{ }_{52}^{131} \mathrm{Xe} \tag{2}
\end{equation*}
$$

(b) The background count rate of radioactivity in a laboratory is 30 counts $/ \mathrm{min}$.

A radioactive sample has a half-life of 50 minutes. The sample is placed at a fixed distance from a detector. The detector measures an initial count rate from the sample, including background, of 310 counts $/ \mathrm{min}$

On Fig. 10.1, plot suitable points and draw a graph of the count rate from the sample, corrected for background, as it changes with time.

Fig. 10.1
[3]

Total: 7

3 The candidate clearly had no idea how to handle the given data. Points were plotted at times not suggested by the data, and such that the graph through these points lay in the straight line that was drawn.

Mark awarded for (b) $=0$ out of 3
Total mark awarded $=\mathbf{2}$ out of 7

How the candidate could have improved the answer

(a) (i) The candidate should have recalled that for a neutral atom, the electron number is the same as the proton number.
(a) (ii) By writing the subscript number as 54 , i.e. the proton number increases by one for a β-decay.
(b) First, by subtracting the background count rate from the initial count rate. Then dividing this corrected initial count rate successively by 2 . Finally, plotting these values at 50 s intervals and drawing a curve through these points.

Common mistakes candidates made in this question

(a) (i) No particularly common mistakes, but those made tended to be random ones, mostly in either the neutron number or the electron number.
(a) (ii) Of the mistakes made, most were in the subscript, the number of protons. Fewer were in the superscript, the nucleon number.
(b) The most frequent mistake was in failing to subtract the background count rate. Some of the responses in which this aspect was correct, were followed by curves not sufficiently smooth or straight lines joining successive points.

Question 11

Example Candidate Response - high

11 (a) (i) Fig. 11.1 shows the symbol for a logic gate and its truth table.

input A	input B	output
0	0	0
1	0	0
0	1	0
1	1	1

Fig. 11.1
State the name of this logic gate. \qquad AND Gate 1 [1]
(ii) Complete the truth table for the logic gate shown in Fig. 11.2.

input A	input B	output
0	0	1
1	0	0
0	1	0
1	1	0

Fig: 11.2
(b) Fig. 11.3 shows the system of logic gates used to ensure the security of the strongroom of a bank.

Fig. 11.3
The strongroom door will only open when the output F is logic 1 .
Complete the table to show the logic states at $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E when the strongroom door can be opened.

input A	input B	input C	output D	output E	output F
1	1	1	1	1	1

Examiner comments
(1) The logic gate was correctly identified from its symbol or its truth table, or both of these.

2 The table for the unidentified logic gate was successfully completed.

Mark awarded for (a) $=3$ out of 3
(3) There was an error in the entry in the C column of the table.

Mark awarded for (b) $=2$ out of 3
Total mark awarded =5 out of $\mathbf{6}$

How the candidate could have improved the answer
(c) The entry in the C column should be zero.

11 (a) (i) Fig. 11.1 shows the symbol for a logic gate and its truth table.

input A	input B	output
0	0	0
1	0	0
0	1	0
1	1	1

Fig. 11.1
State the name of this logic gate.
(1)
....[1]
(ii) Complete the truth table for the logic gate shown in Fig. 11.2.

input A	input B	output
0	0	0
1	0	1
0	1	1
1	1	1

Fig. 11.2
(2) [2]
(b) Fig. 11.3 shows the system of logic gates used to ensure the security of the strongroom of a bank.

Fig. 11.3
The strongroom door will only open when the output F is logic 1
Complete the table to show the logic states at $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E when the strongroom door can be opened.

input A	input B	input C	output D	output E	output F
1	$($	l	1	1	1

1 The logic gate was correctly identified as an AND gate.

2 The candidate either failed to recognise that the given gate as a NOR gate or could not recall the output of a NOR gate.

Mark awarded for $(\mathrm{a})=1$ out of 3

3 There was an error in the entry in the C column of the table, the candidate having entered 1 rather than 0.

Mark awarded for (b) $=2$ out of 3
Total mark awarded = 3 out of 6

How the candidate could have improved the answer

(b) The output column numbers should be for a NOR gate, not an OR gate
(c) The entry in the C column should be zero.

11 (a) (i) Fig. 11.1 shows the symbol for a a logic gate and its truth table.

input A	input B	output
0	0	0
1	0	0
0	1	0
1	1	1

Fig. 11.1
State the name of this logic gate.

(ii) Complete the truth table for the logic gate shown in Fig. 11.2.

input A	input B	output
0	0	1
1	0	1
0	1	1
1	1	0

Fig. 11.2
(b) Fig. 11.3 shows the system of logic gates used to ensure the security of the strongroom of a bank.

Fig. 11.3
The strongroom door will only open when the output F is logic 1 .
Complete the table to show the logic states at $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E when the strongroom door can be opened.

input A	input B	input C	output D	output E	output F
1	策 1	1	0	0	1

[Total: 6]
(1) There was a correct identification as the gate as an AND gate
(2) Two of the entries in the output column were wrong.

Mark awarded for (a) = 1 out of 3
(3) The entries in the A and B columns only were correct. The candidate clearly has poor recall of the symbols and properties of logic gates.

Mark awarded for $(b)=1$ out of 3 Total mark awarded $=\mathbf{2}$ out of $\mathbf{6}$

How the candidate could have improved the answer

(b) The output column numbers should be for a NOR gate, not a NAND gate.
(c) The numbers in the C, D and E columns should be 0,1 and 1 respectively.

Common mistakes candidates made in this question

(b) Failure to identify the given gate as a NOR gate.
(c) Mistakes were fairly uncommon, but those made were most frequently made in the C column.

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Example Candidate Responses Paper 5

Cambridge IGCSE ${ }^{m}$ Physics 0625

In order to help us develop the highest quality Curriculum Support resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of Cambridge Curriculum Support resources are very important to us.
https://surveymonkey.co.uk/r/GL6ZNJB

Do you want to become a Cambridge consultant and help us develop support materials?
Please follow the link below to register your interest.
http://cie.org.uk/cambridge-for/teachers/teacherconsultants/

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Contents

Introduction 4
Assessment at a glance 6
Paper 5 - Practical Test 7
Question 1 7
Question 2 13
Question 3 18
Question 4 31

Introduction

The main aim of this booklet is to exemplify standards for those teaching IGCSE Physics (0625), and to show how different levels of candidates' performance (high, middle and low) relate to the subject's curriculum and assessment objectives.

In this booklet candidate responses have been chosen to exemplify a range of answers. Each response is accompanied by a brief commentary explaining the strengths and weaknesses of the answers.

For each question, response is annotated with clear explanation of where and why marks were awarded or omitted. This, in turn, followed by examiner comments on how the answer could have been improved. In this way it is possible for you to understand what candidates have done to gain their marks and what they will have to do to improve their marks. At the end there is a list of common mistakes candidates made in their answers for each question.

This document provides illustrative examples of candidate work. These help teachers to assess the standard required to achieve marks, beyond the guidance of the mark scheme. Some question types where the answer is clear from the mark scheme, such as short answers and multiple choice, have therefore been omitted.

The questions, mark schemes and pre-release material used here are available to download from the School Support Hub. These files are:

Question Paper 3, June 2016	
Question paper Mark scheme	$\begin{aligned} & \text { 0625_s16_qp_31.pdf } \\ & \text { 0620_s16_ms_31.pdf } \end{aligned}$
Question Paper 4, June 2016	
Question paper Mark scheme	0620_s16_qp_41.pdf 0620_s16_ms_41.pdf
Question Paper 5, November 2016	
Question paper Mark scheme	0620_w16_qp_52.pdf 0620_w16_ms_52.pdf
Question Paper 6, June 2016	
Question paper Mark scheme	0620_s16_qp_61.pdf 0620_s16_ms_61.pdf

Other past papers, Examiner Reports and other teacher support materials are available on the School Support Hub at www.cambridgeinternational.org/support

How to use this booklet

Example Candidate Response - high	Examiner comments
1 In this experiment, you will use a pendulum to determine a value for the acceleration of free fall g. Carry out the following instructions, referring to Figs. 1.1 and 1.2. Answers by real candidates in exam conditions. These show you the types of answers for each level. Discuss and analyse the answers with your learners in the classroom to improve their skills. \qquad along the el eye	Examiner annotations: Each response is annotated with clear explanation of where and why marks were awarded or omitted. In this way it is possible for you to understand what candidates have done to gain their marks. The candidate shows understanding of perpendicular viewing of the scale on the metre rule.

How the candidate could have improved the answer

(d) (ii) The candidate could have suggested two experiment using different lengths, repeating the repeating the timing of the 20 oscillations several that merely suggesting repeats, without specifyin

Examiner comments This explains how the candidate could have improved the answer. This helps you to interpret the standard of Cambridge exams and helps your learners to refine exam technique.

Common mistakes candidates made in this question

The most common mistakes were to miss the unit equation in part (c) (ii) and not to be able to sugges

Common mistakes a list of common mistakes candidates made in their answers for each question.

Assessment at a glance

All candidates take three papers.

Candidates who have studied the Core subject content, or who are expected to achieve a grade D or below, should be entered for Paper 1, Paper 3 and either Paper 5 or Paper 6. These candidates will be eligible for grades C to G.

Candidates who have studied the Extended subject content (Core and Supplement), and who are expected to achieve a grade C or above, should be entered for Paper 2, Paper 4 and either Paper 5 or Paper 6. These candidates will be eligible for grades A^{*} to G.

Core candidates take:	
Paper $\mathbf{1}$	45 minutes
Multiple Choice	30%
40 marks	
40 four-choice multiple-choice questions	
Questions will be based on the Core	
subject content	
Assessing grades C-G	
Externally assessed	

and Core candidates take:

Paper $3 \quad 1$ hour 15 minutes
Theory 50\%
80 marks
Short-answer and structured questions
Questions will be based on the Core
subject content

Assessing grades C-G
Externally assessed

All candidates take
either:
Paper 5 Practical Test 40 marks Questions will be based on the experimental skills in Section 4 Assessing grades A*-G Externally assessed

Extended candidates take:

Paper 2
 45 minutes

Multiple Choice 30\%
40 marks
40 four-choice multiple-choice questions
Questions will be based on the
Extended subject content (Core and
Supplement)
Assessing grades $A^{*}-G$
Externally assessed

and Extended candidates take:

Paper 4

1 hour 15 minutes
Theory
50\%
80 marks
Short-answer and structured questions
Questions will be based on the
Extended subject content (Core and
Supplement)
Assessing grades $A^{*}-G$
Externally assessed

or:	
Paper 6	1 hour
Alternative to Practical	20%
40 marks	
Questions will be based on the	
experimental skills in Section 4	
Assessing grades A*-G	
Externally assessed	

Teachers are reminded that the latest syllabus is available on our public website at www.cambridgeinternational.org and the School Support Hub at www.cambridgeinternational.org/support

Paper 5 - Practical Test

Question 1

Example candidate response - high

1 In this experiment, you will use a pendulum to determine a value for the acceleration of free fall g. Carry out the following instructions, referring to Figs. 1.1 and 1.2.

Fig. 1.1

Fig. 1.2

A pendulum has been set up for you as shown in Fig. 1.1.
(a) Adjust the pendulum until its length $l=50.0 \mathrm{~cm}$. The length l is measured to the centre of the bob.

Explain briefly how you avoided a parallax (line of sight) error when measuring the length l.

(b) Displace the pendulum bob slightly and release it so that it swings. Fig. 1.2 shows one complete oscillation of the pendulum.
(i) Measure the time t for 20 complete oscillations.

$$
t=28,3 \mathrm{~s}
$$

(ii) Calculate the period T of the pendulum. The period is the time for one complete oscillation.

$$
\begin{aligned}
\frac{28.3}{20} & =1.415 \\
& =1.425
\end{aligned}
$$

The candidate shows understanding of perpendicular viewing of the scale on the metre rule.

Mark awarded for (a) = 1 out of 1
(2) The time t is within the tolerance allowed, showing that the candidate has followed the instructions carefully, adjusting the pendulum to the required length and counting the correct number of oscillations.

Mark awarded for (b) (i) = 1 out of 1
(3) The calculation is correct and the unit s is used.

Mark awarded for (b) (ii) $=2$ out of 2
(iii) Measuring the time for a large number of oscillations, rather than for 1 oscillation, gives a more accurate value for T.

Suggest one practical reason why measuring the time for 200 oscillations, rather than 20 oscillations, may not be suitable.

(c) (i)
 a suitable number of significant figures for this experiment.

$$
\begin{aligned}
\frac{4 \pi^{2} \times 50}{2.0164} & =978.93 \ldots \\
& =979 \mathrm{~mm} / \mathrm{s}^{2} \\
& =9.79 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
g=\ldots \ldots \ldots . ~ m / \mathrm{s}^{2}[2] 6
$$

(d) A student checks the value of the acceleration of free fall g in a text book. The value in the book is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Suggest a practical reason why the result obtained from the experiment may be different.

(ii) Suggest two improvements to the experiment.
\qquad
\qquad
2.

8

The candidate makes a sensible suggestion. Note that the suggestion in this case does not necessarily have to be theoretically correct since that would require knowledge beyond the core curriculum.

Mark awarded for (b) (iii) = 1 out of 1
5 The candidate shows attention to detail and good understanding of units, giving s^{2} for the unit of T^{2}.

Mark awarded for (c) (i) = 1 out of 1

6 The candidate shows good attention to detail, converting from $\mathrm{cm} / \mathrm{s}^{2}$ to $\mathrm{m} / \mathrm{s}^{2}$ to arrive at a value, given to three significant figures, within the tolerance allowed.

Mark awarded for (c) (ii) $=2$ out of 2
(7) The candidate correctly identifies a possible reason related to reaction time.

Mark awarded for (d) (i) = 1 out of 1
(8) The candidate does not suggest any improvements.

Mark awarded for (d) (ii) $=0$ out of 2
Total mark awarded =9 out of 11

How the candidate could have improved the answer

(d) (ii) The candidate could have suggested two possible improvements. For example, repeating the experiment using different lengths, repeating the experiment using an increased number of oscillations, repeating the timing of the 20 oscillations several times and taking an average, using a fiducial marker. No credit is given for simply suggesting repeats without specifying details.

In this experiment, you will use a pendulum to determine a value for the acceleration of free fall g. Carry out the following instructions, referring to Figs. 1.1 and 1.2.

Fig. 1.1

Fig. 1.2

A pendulum has been set up for you as shown in Fig. 1.1.
(a) Adjust the pendulum until its length $l=50.0 \mathrm{~cm}$. The length l is measured to the centre of the bob.

Explain briefly how you avoided a parallax (line of sight) error when measuring the length l.
 s....

1

(b) Displace the pendulum bob slightly and release it so that it swings. Fig. 1.2 shows one complete oscillation of the pendulum.
(i) Measure the time t for 20 complete oscillations.
(2) $t=\ldots . .18$ seconds \qquad
(ii) Calculate the period T of the pendulum. The period is the time for one complete oscillation.

(3) $T=\ldots+3 .+3$
\qquad [2]

1 The candidate shows understanding of perpendicular viewing of the scale on the metre rule.

Mark awarded for (a) = 1 out of 1
(2) The time t is within the tolerance allowed. This shows the candidate has followed the instructions carefully, adjusting the pendulum to the required length and counting the correct number of oscillations.

Mark awarded for (b) (i) = 1 out of 1
(3) The calculation is correct and the unit s is used.

Mark awarded for (b) (ii) $=2$ out of 2
(iii) Measuring the time for a large number of oscillations, rather than for 1 oscillation, gives a more accurate value for T.

Suggest one practical reason why measuring the time for 200 oscillations, rather than 20 oscillations, may not be suitable.

for 200 oscillations

4
(c) (i) Calculate T^{2}.
(ii) Calculate the acceleration of free fall g using the equation $g=\frac{4 \pi^{2} l}{T^{2}}$. Give your answer to a suitable number of significant figures for this experiment.

$$
\begin{aligned}
\frac{4 \times \pi^{2} \times 0.5}{1.78^{2}} & =110.10 .386 \\
& =10.07
\end{aligned}
$$

6 The candidate shows good attention to detail using 0.5 m rather than 50 cm to arrive at a value, given to three significant figures, within the tolerance allowed.

Mark awarded for (c) (ii) $=2$ out of 2
(7) The candidate does not identify a good practical reason.

Mark awarded for (d) (i) = 0 out of 1
2. Measure the length from contrin..
[Total: 11]
This is too vague to score a mark.

Mark awarded for (b) (iii) $=0$ out of 1
(5) The candidate does not give the unit s^{2}.

Mark awarded for (c) (i) = 0 out of 1

\qquad
(ii) Suggest two improvements to the experiment.

1. Repeat the experiment to get the average.
\qquad

8 The candidate does not suggest suitable improvements.

Mark awarded for (d) (ii) $=0$ out of 2
Total mark awarded =6 out of 11

How the candidate could have improved the answer

(c) (i) The candidate should have included a unit and worked out that since the unit of time is s, the unit of a time squared must be s^{2}.
(b) (iii) and (d) (i) and (ii) The candidate could have used the experience of practical work gained during the IGCSE course to carefully consider the experiment and suggest suitable practical reasons for the difficulty in recording a very large number of oscillations, the experimental result being different to the accepted value and improvements to the experiment.

In this experiment, you will use a pendulum to determine a value for the acceleration of free fall g. Carry out the following instructions, referring to Figs. 1.1 and 1.2.

Fig. 1.1

Fig. 1.2

A pendulum has been set up for you as shown in Fig. 1.1.
(a) Adjust the pendulum until its length $l=50.0 \mathrm{~cm}$. The length l is measured to the centre of the bob.

Explain briefly how you avoided a parallax (line of sight) error when measuring the length l.
..........used.............ruler........bo.........ignn....the......iddle of...the.....606.
...tothe rule of............asurement.....as...this.... could a void.
.......error.
(1)
..........[1]
(b) Displace the pendulum bob slightly and release it so that it swings. Fig. 1.2 shows one complete oscillation of the pendulum.
(i) Measure the time t for 20 complete oscillations.

$$
\begin{equation*}
\text { (2) } t=37.0 \text { seconds. } \tag{1}
\end{equation*}
$$

(ii) Calculate the period T of the pendulum. The period is the time for one complete oscillation.

$$
\frac{37.0}{20} \mathrm{se}
$$

(3) $T=\ldots .1 .85$ \qquad
(1) The candidate writes just enough to convey the idea of using a horizontal straight edge.

Mark awarded for (a) (i)=1 out of 1
2 The time t is beyond the tolerance allowed, showing that the candidate has either adjusted the pendulum to the wrong length or counted the wrong number of oscillations.

Mark awarded for (b) (i) $=0$ out of 1
(3) The calculation is correct but the unit s is missing.

Mark awarded for (b) (ii) = 1 out of 2
(iii) Measuring the time for a large number of oscillations, rather than for 1 oscillation, gives a more accurate value for T.

Suggest one practical reason why measuring the time for 200 oscillations, rather than 20 oscillations, may not be suitable.
..I........ouldaccurate...... as..... apersons....ime..............

(c) (i) Calculate T^{2}.

$$
(1.85)^{2}=3.4225
$$

$(35 . F)$

$$
\begin{equation*}
\left(5 T^{T^{2}}=\ldots, 4225\right. \tag{1}
\end{equation*}
$$

\qquad
(ii) Calculate the acceleration of free fall g using the equation $g=\frac{4 \pi^{2} l}{T^{2}}$. Give your answer to
a suitable number of significant figures for this experiment.

$$
\begin{aligned}
g=\frac{4 \pi^{2} \times 50.0}{3.4225}= & 1831.584 \\
& 3(\mathrm{~s} . \mathrm{F}) \\
& =184 \\
& g=\ldots 1.8 .4
\end{aligned}
$$

(d) A student checks the value of the acceleration of free fall g in a text book. The value in the book is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Suggest a practical reason why the result obtained from the experiment may be different.
.......causs.......................value...............................laration..............
 to place.

7
(ii) Suggest two improvements to the experiment.

1. To ge........... accurate results we could have made..............................
 2. Den More number of of.......scillations....should be taken.
(4) The candidate does not give a valid practical reason.

Mark awarded for (b) (iii) $=0$ out of 1
(5) The unit s^{2} is missing.

Mark awarded for (c) (i) $=0$ out of 1

6 The value is outside the tolerance allowed but it is given to a sensible three significant figures.

Mark awarded for (c) (ii) $=1$ out of 2
(7) The candidate does not give a valid practical reason.

Mark awarded for (d) (i) $=0$ out of 1

8 The candidate gives one suitable suggestion.

Mark awarded for (d) (ii) = 1 out of 2
Total mark awarded = 4 out of 11

How the candidate could have improved the answer

The candidate could have paid more attention to the details of the experiment in order to obtain a value of t within tolerance and to use correct units throughout.
(b) (iii) and (d) (i) and (ii) The candidate could have used the experience of practical work gained during the IGCSE course to carefully consider the experiment and suggest suitable practical reasons for the difficulty in recording a very large number of oscillations, the experimental result being different to the accepted value.

Common mistakes candidates made in this question

- Missing the unit s^{2} for T^{2} (or using s).
- (c) (ii).Using 50 cm instead of 0.5 m in the equation.
- (d) (ii) Being unable to suggest suitable improvements to the experiment.

Question 2

Example candidate response - high
Examiner comments

2 In this experiment, you will investigate the cooling of water.
(a) - Pour $100 \mathrm{~cm}^{3}$ of the hot water provided into beaker \mathbf{A}.

- Measure the temperature θ_{H} of the water in beaker \mathbf{A}.

$$
\theta_{\mathrm{H}}=\ldots \ldots \ldots
$$

- Pour $100 \mathrm{~cm}^{3}$ of the cold water provided into beaker B.
- Measure the temperature θ_{C} of the water in beaker \mathbf{B}.

$$
\theta_{\mathrm{C}}=\ldots \ldots \ldots . \quad 30^{\circ} \mathrm{C}
$$

- Calculate the average temperature θ_{AV} using the equation $\theta_{\mathrm{AV}}=\frac{\theta_{\mathrm{H}}+\theta_{\mathrm{C}}}{2}$.

(b) Add the water from beaker B to the hot water in beaker A. Stir briefly.

Measure the temperature θ_{M} of the mixture.

(c) State one precaution that you took to ensure that the temperature readings are as reliable as possible.

(3)
(1) The candidate records temperature values within tolerance and correctly calculates the average temperature. The correct unit ${ }^{\circ} \mathrm{C}$ is used throughout.

Mark awarded for (a) = 3 out of 3
(2) The candidate records a temperature for the mixture that is within tolerance.

Mark awarded for (b) = 1 out of 1
(3) The candidate's wording is just sufficient to convey the idea of perpendicular viewing of the thermometer scale.

Mark awarded for (c) = 1 out of 1
(d) Empty both beakers.

You are provided with

- a lid, with a hole for the thermometer,
- some insulating material,
- two elastic bands.
(i) In the space below, draw a labelled diagram to show how you will use these items to reduce the loss of thermal energy when the procedure is repeated.

(ii) Using the improvements shown in your diagram, repeat the procedure in parts (a) and (b).

$\theta_{\mathrm{H}}=$	$69^{\circ} 73^{\circ} \mathrm{C}$
$\theta_{\mathrm{C}}=$	$31^{\circ} \mathrm{C}$
$\theta_{\text {AV }}=$	$52^{\circ} \mathrm{C}$
$\theta_{\text {M }}=$	$50^{\circ} \mathrm{C}$
	[1]

(iii) Comment on whether the improvements made to the apparatus have significantly changed the value of the temperature θ_{M}. Use your results to justify your answer.
..ignificanty...
 ...difference between to.......toth experiments....... 6
(iv) Suggest two conditions that should be kept constant for all parts of this experiment.

2. The room temperature must be maintanhed
(7)
[2]
[Total: 11]
(4) The diagram is clear.

Mark awarded for (d) (i) $=2$ out of 2
(5) The candidate records a realistic set of readings.

Mark awarded for (d) (ii) $=1$ out of 1

6 The candidate makes a clear statement and justifies it by reference to the results, correctly quoting the difference in the two values for θ_{M}.

Mark awarded for (d) (iii) = 1 out of 1
(7) The candidate gives two conditions that should be kept constant.

Mark awarded for (d) (iv) $=2$ out of 2
Total mark awarded = 11 out of 11

How the candidate could have improved the answer

This answer gained full marks. However, the answer to (c) includes the rather vague phrase 'from eye level'. This would be more clearly expressed as 'view the thermometer scale perpendicularly' or similar wording.

2 In this experiment, you will investigate the cooling of water.
(a) - Pour $100 \mathrm{~cm}^{3}$ of the hot water provided into beaker \mathbf{A}.

- Measure the temperature θ_{H} of the water in beaker \mathbf{A}.

$$
\theta_{\mathrm{H}}=\ldots . .7 .8^{\circ} \ldots
$$

- Pour $100 \mathrm{~cm}^{3}$ of the cold water provided into beaker \mathbf{B}.
- Measure the temperature θ_{C} of the water in beaker \mathbf{B}.

$$
\theta_{c}=\ldots \quad 32^{\circ}
$$

- Calculate the average temperature θ_{AV} using the equation $\theta_{\mathrm{AV}}=\frac{\theta_{\mathrm{H}}+\theta_{\mathrm{C}}}{2}$.

$$
\begin{aligned}
& \theta_{A V}=\frac{78+32}{2} \\
& \theta_{A V}=55
\end{aligned}
$$

$$
\begin{equation*}
\theta_{\mathrm{AV}}=\ldots55^{\circ} \ldots \tag{1}
\end{equation*}
$$

(b) Add the water from beaker \mathbf{B} to the hot water in beaker \mathbf{A}. Stir briefly.

Measure the temperature θ_{M} of the mixture.

$$
\theta_{\mathrm{M}}=\ldots . .52^{\circ}
$$

(c) State one precaution that you took to ensure that the temperature readings are as reliable as possible.

1 The candidate records temperature values within tolerance and correctly calculates the average temperature. An incorrect unit ${ }^{\circ}$ is used throughout.

Mark awarded for (a) = 2 out of 3
2 The candidate records a temperature for the mixture that is within tolerance.

Mark awarded for (b) = 1 out of 1
(3) The candidate does not answer the question. (This answer would have scored both marks if given for d (iv)).

Mark awarded for (c) $=0$ out of 1
(d) Empty both beakers.

You are provided with

- a lid, with a hole for the thermometer,
- some insulating material,
- two elastic bands.
(i) In the space below, draw a labelled diagram to show how you will use these items to reduce the loss of thermal energy when the procedure is repeated.

(ii) Using the improvements shown in your diagram, repeat the procedure in parts (a) and (b).

$$
\begin{aligned}
& \theta_{\mathrm{H}}=\ldots 77^{\circ} \\
& \theta_{\mathrm{C}}=\ldots . . .32^{\circ} \\
& \theta_{A V}=\ldots . . .545^{\circ} \\
& \theta_{M}=\ldots \ldots . .56^{\circ}
\end{aligned}
$$

(iii) Comment on whether the improvements made to the apparatus have significantly changed the value of the temperature θ_{M}. Use your results to justify your answer.
 56 Yes in has changed the value because le... Hets chang moreased by 4° from 52° to 56°
(iv) Suggest two conditions that should be kept constant for all parts of this experiment.
1...Intial temperature
2. room temperatue 7

The diagram is clear.
Mark awarded for (d) (i) $=2$ out of 2
(5) The candidate records a realistic set of readings.

Mark awarded for (d) (ii) $=1$ out of 1

6 The candidate identifies the change in value but does not state whether or not the change is significant.

Mark awarded for (d) (iii) $=0$ out of 1
(7) The candidate gives one condition that should be kept constant.

Mark awarded for (d) (iv) = 1 out of 2
Total mark awarded = 7 out of 11

How the candidate could have improved the answer

The candidate needed to use the correct temperature unit, ${ }^{\circ} \mathrm{C}$, not simply ${ }^{\circ}$ which is the unit of angle.
(c) The candidate should have read the question more carefully. The response given would have scored two marks had it been given as the answer to (d) (iv).
(d) (iii) The candidate should have stated that the change is significant, not merely stating that there is a change.
(d) (iv) The candidate should have specified that the initial temperature referred to is of either the hot water or the cold water (or both).

Common mistakes candidates made in this question

- (d) (iii) and (iv) Giving vague answers.

Example Candidate Responses: Paper 5

Question 3

3 In this experiment, you will investigate refraction using a transparent block.
Carry out the following instructions, using the separate ray-trace sheet provided. You may refer to Fig. 3.1 for guidance.

Fig. 3.1
(a) - Place the transparent block, largest face down, on the ray-trace sheet supplied. The block should be approximately in the middle of the paper. Draw the outline of the block ABCD.

- Remove the block and draw a normal at the centre of side $\mathbf{A B}$. Label the point \mathbf{E} where the normal crosses AB.
- Draw a line FE to the left of the normal and at an angle $i=20^{\circ}$ to the normal.
- Place a pin P on the line FE, at a suitable distance from the block for producing an accurate ray trace.
- There are vertical lines L_{1} and \mathbf{L}_{2} drawn on the block. Replace the block so that line \mathbf{L}_{1} is at point \mathbf{E}.
- Observe the images of L_{1} and P through side $C D$ of the block. Carefully move the block, keeping line L_{1} at point \mathbf{E}, until the vertical line L_{2} and the images of L_{1} and P appear one behind the other. This is indicated by the dashed position of the block shown in Fig. 3.1.
- Draw a line along side $\mathbf{A B}$ of the block to mark its new position.
- Remove the block.
- Measure the angle θ between the original position of $\mathbf{A B}$ and the new position of $\mathbf{A B}$, as indicated in Fig. 3.1.
- Record $i=20^{\circ}$ and θ in Table 3.1.
- Repeat the procedure using values of $i=30^{\circ}, 40^{\circ}, 50^{\circ}$ and 60°.

Table 3.1

$i /^{\circ}$	$\theta 1^{\circ}$
20	15
30	17
40	23
50	25
60	37

1 The ray-trace is carefully drawn and shows the rays correctly positioned with the first position for pin P about 8 cm from E . The candidate has sensibly placed the pin a large distance from the block. The angles recorded are within the tolerance allowed, showing that the candidate has used the protractor correctly. Some of the values show that the candidate has not carried out the experiment quite as accurately as required.

Mark awarded for (a) = 3 out of 4

Example Candidate Responses: Paper 5

Example candidate response - high, continued
Examiner comments

(b) Plot a graph of $\theta /^{\circ}(y$-axis $)$ against $i /^{\circ}(x$-axis $)$.

(c) Determine the gradient G of the graph. Show clearly on the graph how you obtained the necessary information.

$$
\begin{align*}
& g=\frac{v}{h} \quad=0.6666 .7 \ldots \\
& =\frac{43.5-17.5}{70-31} \tag{3}\\
& \text {. } 0.667 \\
& \text { (d) Referring to your graph, comment on the quality of your measurements. } \\
& \text { The me......neasurements.....are not................encurate be.......nanse.....they. } \\
& \text {...is...no.....equal.....distribution of.........nint.....on ...line......of....best.......t.......[1] }
\end{align*}
$$

Tie your ray-trace sheet into this Booklet between pages 8 and 9 .
[Total: 11]
(2) The graph axes are correctly set up with suitable scales and labelling. The plots are correctly positioned. The mark for the best-fit line is awarded because the candidate draws a sensible line although the results have produced a large scatter.

Mark awarded for (b) $=4$ out of 4
(3) The candidate draws a large triangle but the value obtained for the gradient is outside the tolerance allowed.

Mark awarded for $(\mathrm{c})=1$ out of 2
(4) The candidate successfully conveys the idea of the large scatter of plots around the best-fit line indicating the poor quality of the measurements.

Mark awarded for $(\mathrm{d})=1$ out of 1
Total mark awarded =9 out of 11

How the candidate could have improved the answer

The candidate needed to take more care lining up the pin and the lines on the block and keeping the block in the correct position in order to obtain accurate values for the angle θ.

Example Candidate Responses: Paper 5

3 In this experiment, you will investigate refraction using a transparent block.
Carry out the following instructions, using the separate ray-trace sheet provided. You may refer to Fig. 3.1 for guidance.

Fig. 3.1
(a) - Place the transparent block, largest face down, on the ray-trace sheet supplied. The block should be approximately in the middle of the paper. Draw the outline of the block ABCD.

- Remove the block and draw a normal at the centre of side $\mathbf{A B}$. Label the point \mathbf{E} where the normal crosses AB.
- Draw a line FE to the left of the normal and at an angle $i=20^{\circ}$ to the normal.
- Place a pin P on the line FE, at a suitable distance from the block for producing an accurate ray trace.
- There are vertical lines L_{1} and \mathbf{L}_{2} drawn on the block. Replace the block so that line \mathbf{L}_{1} is at point E.
- Observe the images of L_{1} and P through side $C D$ of the block. Carefully move the block, keeping line L_{1} at point E, until the vertical line L_{2} and the images of L_{1} and P appear one behind the other. This is indicated by the dashed position of the block shown in Fig. 3.1.
- Draw a line along side $\mathbf{A B}$ of the block to mark its new position.
- Remove the block.
- Measure the angle θ between the original position of $\mathbf{A B}$ and the new position of $\mathbf{A B}$, as indicated in Fig. 3.1.
- Record $i=20^{\circ}$ and θ in Table 3.1.
- Repeat the procedure using values of $i=30^{\circ}, 40^{\circ}, 50^{\circ}$ and 60°.

Table 3.1

$i /$	$\theta /^{\circ}$
20	21
30	24
40	40
50	48
60	55

Example Candidate Responses: Paper 5

Example candidate response - middle, continued
Examiner comments
The ray-trace is carefully drawn
Thd shows the rays correctly
ansitioned with the first position for
pin P at least 5 cm from E. The
angles recorded are within the
tolerance allowed, showing that the
candidate has used the protractor
correctly. Some of the values show
that the candidate has not carried
out the experiment quite as
accurately as required.
(b) Plot a graph of $\theta /^{\circ}\left(y\right.$-axis) against $i /^{\circ}(x$-axis $)$.

(c) Determine the gradient G of the graph. Show clearly on the graph how you obtained the necessary information.

$$
\begin{align*}
& (31,30)(50,48) \\
& x_{1}, \begin{array}{c}
\left(5 y_{1}\right. \\
x_{2}
\end{array} y_{2} \tag{3}\\
& G=\frac{x_{2}-x_{1}}{y_{2}-y_{1}}=\frac{50-31}{48-30}=1.0555 \\
& G=\ldots .1 .06
\end{align*}
$$

(d) Referring to your graph, comment on the quality of your measurements.

Accurate als....they haue.........................diffenence.............
...n betwepn.....tson......each cther...... 4
Tie your ray-trace sheet into this Booklet between pages 8 and 9 .
[Total: 11]

How the candidate could have improved the answer

The candidate needed to take more care lining up the pin and the lines on the block and keeping the block in the correct position in order to obtain accurate values for the angle θ.

The candidate should have used neat crosses instead of 'blobs' to plot the points on the graph.
A large triangle using at least half of the line should have been used for determining the gradient.
(d) The candidate needed to refer clearly to the scatter of points around the best-fit line, stating that the number of points not close to the line suggests poor quality measurements.

Example Candidate Responses: Paper 5

3 In this experiment, you will investigate refraction using a transparent block.
Carry out the following instructions, using the separate ray-trace sheet provided. You may refer to Fig. 3.1 for guidance.

Fig. 3.1
(a) - Place the transparent block, largest face down, on the ray-trace sheet supplied. The block should be approximately in the middle of the paper. Draw the outline of the block ABCD.

- Remove the block and draw a normal at the centre of side $\mathbf{A B}$. Label the point \mathbf{E} where the normal crosses AB.
- Draw a line FE to the left of the normal and at an angle $i=20^{\circ}$ to the normal.
- Place a pin P on the line FE, at a suitable distance from the block for producing an accurate ray trace.
- There are vertical lines L_{1} and \mathbf{L}_{2} drawn on the block. Replace the block so that line \mathbf{L}_{1} is at point E.
- Observe the images of L_{1} and P through side $C D$ of the block. Carefully move the block, keeping line L_{1} at point E, until the vertical line L_{2} and the images of L_{1} and P appear one behind the other. This is indicated by the dashed position of the block shown in Fig. 3.1.
- Draw a line along side $\mathbf{A B}$ of the block to mark its new position.
- Remove the block.
- Measure the angle θ between the original position of $\mathbf{A B}$ and the new position of $\mathbf{A B}$, as indicated in Fig. 3.1.
- Record $i=20^{\circ}$ and θ in Table 3.1.
- Repeat the procedure using values of $i=30^{\circ}, 40^{\circ}, 50^{\circ}$ and 60°.

Table 3.1

$i 1^{\circ}$	$\theta 1^{\circ}$
20	50
30	52
40	54
50	60
60	

Example Candidate Responses: Paper 5

(1) The ray-trace shows that the candidate has not followed the instructions with care. The incident rays are on the wrong side of the normal and lines showing the new positions of the block are inconsistent. The distance between the first position for pin P and the point \mathbf{E} is just within the tolerance allowed.

Mark awarded for (a) = 1 out of 4

(c) Determine the gradient G of the graph. Show clearly on the graph how you obtained the necessary information.

$$
\begin{gather*}
g=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \frac{60-20}{60-50}=\frac{40}{10} \\
G=\ldots \ldots \ldots . ~
\end{gather*}
$$

(d) Referring to your graph, comment on the quality of your measurements.

[Total: 11]

2 The graph axes are the wrong way round and the scale on the x-axis is inconsistent.
The i readings are equally spaced along the x -axis. This results in the candidate not being able to demonstrate plotting skills or judgement of the best-fit straight line.

Mark awarded for (b) $=0$ out of 4
(3) A large triangle is drawn but the value for G is outside the tolerance allowed.

Mark awarded for (c) = 1 out of 2
4 The candidate writes a vague statement and does not comment on the line or the plots.

Mark awarded for (d) = 0 out of 1
Total mark awarded =2 out of 11

How the candidate could have improved the answer
The candidate needed to follow the instructions step-by-step and with care.
The graph should have been plotted with the θ and i values on the correct axes and the scale on the i axis should have been continuous.
(d) The candidate needed to refer clearly to the scatter of points around the best-fit line.

Common mistakes candidates made in this question

- Taking insufficient care to keep the centre of the side $\mathbf{A B}$ of the block at point \mathbf{E} and to line up the pin and lines on the block to obtain accurate readings.
- (d) Giving vague answers instead of referring clearly to the scatter of points around the best-fit line.

Question 4

4 A student is investigating resistors connected in parallel.
The following apparatus is available to the student:
ammeter
voltmeter
power supply
variable resistor
switch
connecting leads
a box of identical resistors.
Plan an experiment to investigate how the combined resistance of the resistors, connected in parallel, depends on the number of resistors. You are not required to carry out this investigation.

You should:

- draw a diagram of the circuit you could use to determine the resistance of resistors connected in parallel (show only two resistors in your diagram)
- explain briefly how you would carry out the investigation
- draw a table or tables, with column headings, to show how you would display your readings. You are not required to enter any readings into the table.

(1) The circuit diagram is well drawn and correct in all respects. The concise method includes use of two resistors and measurement of current and voltage followed by repeats using an additional resistor each time.

Plot a graph for resistanco gaganst number of
\qquad
Number of Resistor.
(2) The table shows all the required elements - columns for the number of resistors, voltage and current with correct units. The candidate shows in the table and writes clearly that the resistance is calculated from the voltage and current readings.

3 The candidate uses five combinations of resistors and suggests a suitable graph that could be plotted.

Total mark awarded = 7 out of 7

How the candidate could have improved the answer

This answer gained full marks. The candidate understood the task and wrote a very clear and concise plan.

4 A student is investigating resistors connected in parallel.
The following apparatus is available to the student:

```
ammeter
voltmeter
power supply
variable resistor
switch
connecting leads
a box of identical resistors.
```

Plan an experiment to investigate how the combined resistance of the resistors, connected in parallel, depends on the number of resistors. You are not required to carry out this investigation

You should:

- draw a diagram of the circuit you could use to determine the resistance of resistors connected in parallel (show only two resistors in your diagram)
- explain briefly how you would carry out the investigation
- draw a table or tables, with column headings, to show how you would display your readings. You are not required to enter any readings into the table.

 Methad
 \qquad Marnabole \qquad ne..s.is.t.on...............

1 The circuit diagram is well drawn and correct in all respects. The method includes reference to repeating the measurements with different numbers of resistors.

[Total: 7]
(2) The table does not include a column for the number of resistors used. The candidate clearly states that the readings are used to calculate the combined resistance of the resistors. The candidate does not make any other points about the investigation to gain further credit.

Total mark awarded =5 out of $\mathbf{7}$

How the candidate could have improved the answer

The table required a column for the number of resistors used.
The candidate needed to make one more valid suggestion relating to precautions (e.g. using a low current to prevent resistors becoming too hot) or an aspect of good practice (e.g. using at least five different resistor combinations).

4 A student is investigating resistors connected in parallel.
The following apparatus is available to the student:

```
ammeter
voltmeter
power supply
variable resistor
switch
connecting leads
a box of identical resistors.
```

Plan an experiment to investigate how the combined resistance of the resistors, connected in parallel, depends on the number of resistors. You are not required to carry out this investigation.

You should:

- draw a diagram of the circuit you could use to determine the resistance of resistors connected in parallel (show only two resistors in your diagram)
- explain briefly how you would carry out the investigation
- draw a table or tables, with column headings, to show how you would display your readings. You are not required to enter any readings into the table.

Figl the sunitch on the power.
..ithen known Resistence)

1 The circuit diagram shows a voltmeter in parallel with a component. A variable resistor is wrongly shown in parallel with the fixed resistors. The voltmeter and ammeter symbols are not correct because they have lines through the middle. The method includes reference to repeating the measurements with different numbers of resistors.

```
...n parallel and connect a voltmeterin
......parallel as.......shown by..............Ne
```

..... record the A. readings on The ammeter.
......and voltmeter in the table loll ow and

Then we calculate the combined resistanceusing the formula Product of bor registrars Sum of both Resistor
Then we repeat the experiment by the Adding another resistor in parallel as slow n by fur e Fig u. Then we record the readings in re w. Table and record the calculate themined resistance by formula $\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$
(2) The table does not include a column for the number of resistors used. The candidate shows that the readings are used to calculate the combined resistance of the resistors. The candidate does not make any other points about the investigation to gain further credit.

Total mark awarded = $\mathbf{2}$ out of $\mathbf{1 1}$

How the candidate could have improved the answer

The candidate needed to take more care drawing the circuit diagram so that the voltmeter and ammeter did not have lines through the middle. Also the position of the variable resistor should not have been part of the parallel combination.

The table required a column for the number of resistors used and the current column should have been headed I / A.

The candidate needed to make one more valid suggestion relating to precautions (e.g. using a low current to prevent resistors becoming too hot) or an aspect of good practice (e.g. using at least five different resistor combinations).

Common mistakes candidates made in this question

- Describing a standard experiment to investigate the resistance of a resistor using a variable resistor to give a range of potential difference and current readings.
- Describing a combination of this type of standard experiment with the investigation stated in the question which resulted in a confusing account.

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

Example Candidate Responses
 Paper 6
 Cambridge IGCSE ${ }^{\text {TM }}$ Physics 0625

In order to help us develop the highest quality Curriculum Support resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of Cambridge Curriculum Support resources are very important to us.
https://surveymonkey.co.uk/r/GL6ZNJB

Do you want to become a Cambridge consultant and help us develop support materials?
Please follow the link below to register your interest.
http://cie.org.uk/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Contents

Introduction 4
Assessment at a glance 6
Paper 6 - Alternative to Practical 7
Question 1 7
Question 2 13
Question 3 19
Question 4 26
Question 5 32

Introduction

The main aim of this booklet is to exemplify standards for those teaching IGCSE Physics (0625), and to show how different levels of candidates' performance (high, middle and low) relate to the subject's curriculum and assessment objectives.

In this booklet candidate responses have been chosen to exemplify a range of answers. Each response is accompanied by a brief commentary explaining the strengths and weaknesses of the answers.

For each question, response is annotated with clear explanation of where and why marks were awarded or omitted. This, in turn, followed by examiner comments on how the answer could have been improved. In this way it is possible for you to understand what candidates have done to gain their marks and what they will have to do to improve their marks. At the end there is a list of common mistakes candidates made in their answers for each question.

This document provides illustrative examples of candidate work. These help teachers to assess the standard required to achieve marks, beyond the guidance of the mark scheme. Some question types where the answer is clear from the mark scheme, such as short answers and multiple choice, have therefore been omitted.

The questions, mark schemes and pre-release material used here are available to download from the School Support Hub. These files are:

Question Paper 3, June 2016	
Question paper Mark scheme	$\begin{aligned} & \text { 0625_s16_qp_31.pdf } \\ & \text { 0620_s16_ms_31.pdf } \end{aligned}$
Question Paper 4, June 2016	
Question paper Mark scheme	$\begin{aligned} & \text { 0620_s16_qp_41.pdf } \\ & \text { 0620_s16_ms_41.pdf } \end{aligned}$
Question Paper 5, November 2016	
Question paper Mark scheme	0620_w16_qp_52.pdf 0620_w16_ms_52.pdf
Question Paper 6, June 2016	
Question paper Mark scheme	$\begin{aligned} & \text { 0620_s16_qp_62.pdf } \\ & \text { 0620_s16_ms_62.pdf } \end{aligned}$

Other past papers, Examiner Reports and other teacher support materials are available on the School Support Hub at www.cambridgeinternational.org/support

How to use this booklet

Example Candidate Response - high	Examiner comments
1 In this experiment, you will use a pendulum to determine a value for the acceleration of free fall g. Carry out the following instructions, referring to Figs. 1.1 and 1.2. Answers by real candidates in exam conditions. These show you the types of answers for each level. Discuss and analyse the answers with your learners in the classroom to \qquad improve their skills. el eye	Examiner annotations: Each response is annotated with clear explanation of where and why marks were awarded or omitted. In this way it is possible for you to understand what candidates have done to gain their marks. The candidate shows understanding of perpendicular viewing of the scale on the metre rule.

How the candidate could have improved the answer

(d) (ii) The candidate could have suggested experiment using different lengths, repeating repeating the timing of the 20 oscillations sev that merely suggesting repeats, without spec

Examiner comments This explains how the candidate could have improved the answer. This helps you to interpret the standard of Cambridge exams and helps your learners to refine exam technique.

Common mistakes

The most common error for this question was the mistake constitutes an AlphabetAgency. Many responses incorre reforms, all legislation passed by the Roosevelt administr Commonplace was the inclusion of the Emergency Bankil

Common mistakes a list of common mistakes candidates made in their answers for each question.

Assessment at a glance

All candidates take three papers.

Candidates who have studied the Core subject content, or who are expected to achieve a grade D or below, should be entered for Paper 1, Paper 3 and either Paper 5 or Paper 6. These candidates will be eligible for grades C to G.

Candidates who have studied the Extended subject content (Core and Supplement), and who are expected to achieve a grade C or above, should be entered for Paper 2, Paper 4 and either Paper 5 or Paper 6. These candidates will be eligible for grades A^{*} to G.

Core candidates take:	
Paper $\mathbf{1}$	45 minutes
Multiple Choice	30%
40 marks	
40 four-choice multiple-choice questions	
Questions will be based on the Core	
subject content	
Assessing grades C-G	
Externally assessed	

```
and Core candidates take:
```

Paper $3 \quad 1$ hour 15 minutes

Theory
50\%
80 marks
Short-answer and structured questions
Questions will be based on the Core subject content

Assessing grades C-G
Externally assessed

```
All candidates take
either:
```

Paper 5
1 hour 15 minutes
Practical Test 20\%
40 marks
Questions will be based on the experimental skills in Section 4

Assessing grades $A^{*}-G$
Externally assessed

Extended candidates take:

Paper 2

45 minutes
Multiple Choice 30\%

40 marks
40 four-choice multiple-choice questions
Questions will be based on the
Extended subject content (Core and Supplement)
Assessing grades $A^{*}-G$
Externally assessed

and Extended candidates take:

Paper $4 \quad 1$ hour 15 minutes
Theory 50\%

80 marks
Short-answer and structured questions
Questions will be based on the
Extended subject content (Core and Supplement)

Assessing grades $A^{*}-G$
Externally assessed

or:

Paper 6

1 hour
Alternative to Practical 20\%
40 marks
Questions will be based on the experimental skills in Section 4

Assessing grades $\mathrm{A}^{*}-\mathrm{G}$
Externally assessed

Teachers are reminded that the latest syllabus is available on our public website at www.cambridgeinternational.org and the School Support Hub at www.cambridgeinternational.org/support

Paper 6 - Alternative to Practical

Question 1

Example candidate response - high

1 A student is investigating the stretching of a spring.
The apparatus is shown in Fig. 1.1.

Fig. 1.1
(a) On Fig. 1.1, measure the unstretched length l_{0} of the spring. Record l_{0} in the first row of Table 1.1.
(b) The student hangs a load L of 1.0 N on the spring and measures the new length. l of the spring. She repeats the measurements using loads of $2.0 \mathrm{~N}, 3.0 \mathrm{~N}, 4.0 \mathrm{~N}$ and 5.0 N . The readings are shown in Table 1.1.
(i) For each set of readings, calculate the extension e of the spring using the equation $e=\left(l-l_{0}\right)$. Record the values of e in the table.

Table 1.1

L / N	$/ / \mathrm{mm}$	e / mm
0.0	55	0
1.0	59	4
2.0	64	9
3.0	69	14
4.0	74	19
5.0	78	23

(ii) Explain briefly one precaution that you would take in order to obtain reliable readings. Wait for the spring to go back bo it's ariginal length..... ...) before taling the next reading. 3 .
(1) The candidate measures and records the length correctly.

Mark awarded for (a) = 1 out of 1

2 The values of extension have been successfully calculated.

Mark awarded for (b) (i) = 1 out of 1

3 The suggested procedure contradicts the description of the experiment.

Mark awarded for (b) (ii) = 0 out of 1
 She measures the length l of the spring.
(i) Calculate the extension e of the spring.

$$
\begin{align*}
& e=1-10 \\
& e=72-55=17 \quad e=\ldots \ldots \ldots . . .17 \mathrm{~mm} . \quad 5 \tag{1}
\end{align*}
$$

(ii) Use the graph to determine the weight W of the load \mathbf{X}. Show clearly on the graph how you obtained the necessary information.

$$
\begin{equation*}
w=3.6 \mathrm{~N} 6 \tag{2}
\end{equation*}
$$

[Total: 10]

4 The candidate draws a graph with the axes the right way round and correctly labels with a suitable scale. The plotting is accurate but a best-fit straight line has not been drawn. A line joins each point to the next.

Mark awarded for (c) $=3$ out of 4
(5) This is correct.

Mark awarded for (d) (i) = 1 out of 1

6 The method is clearly shown on the graph and obtains a value for W that is within the tolerance allowed and gives the correct unit N.

Mark awarded for (d) (ii) = 2 out of 2

Total mark awarded = 8 out of 10

How the candidate could have improved the answer

The candidate needed to write a relevant precaution describing how to read the rule to obtain a reliable reading.

The graph line should have been a best-fit straight line.

1 A student is investigating the stretching of a spring.
The apparatus is shown in Fig. 1.1.

Fig. 1.1
(a) On Fig. 1.1, measure the unstretched length l_{0} of the spring. Record l_{0} in the first row of Table 1.1.
(b) The student hangs a load L of 1.0 N on the spring and measures the new length l of the spring She repeats the measurements using loads of $2.0 \mathrm{~N}, 3.0 \mathrm{~N}, 4.0 \mathrm{~N}$ and 5.0 N . The readings are shown in Table 1.1. 1. ${ }^{\circ}$.
(i) For each set of readings, calculate the extension e of the spring using the equation $e=\left(l-l_{0}\right)$. Record the values of e in the table.

Table 1.1

L / N	L / mm	e / mm
0.0	55	0
1.0	59	4
2.0	64	-9
3.0	69	14
4.0	74	19
5.0	78	23

ii) Explain briefly one precaution that you would take in order to obtain reliable readings. I wont put any enternal force on the load as the length of ohe spring will change...3. 3 .1]
(1) The candidate measures and records the length correctly.

Mark awarded for (a)= 1 out of 1
(2) The values of extension have been correctly calculated.

Mark awarded for (b) (i) = 1 out of 1
(3) The candidate's suggestion is not a relevant precaution but a vague statement about avoiding carelessness.

Mark awarded for (b) (ii) = 0 out of 1

(c) Plot a graph of e / mm (y-axis) against L / N (x-axis). $10 \text { units }=5 \mathrm{~mm}$ Xaxis (d) The student removes the load from the spring and hangs an unknown load \mathbf{X} on the spring. She measures the length l of the spring. $l=$ \qquad 72 mm (i) Calculate the extension e of the spring. $e=$ \qquad (ii) Use the graph to determine the weight W of the load \mathbf{X}. Show clearly on the graph how you obtained the necessary information. $\begin{array}{rlrl} \text { gradient: } \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{15-10}{302-2.2} & w=14.6 \mathrm{~N} \\ & =5 \\ & 5=\frac{72-15}{x-3.2} & \Rightarrow 5 x-16=57 \\ & x=73 \\ & x=1406 \end{array}$	(4) The candidate draws a graph with the axes the right way round and correctly labels with a suitable scale. The plotting is accurate but the candidate does not draw a bestfit straight line. The candidate draws a line that joins each point to the next. Mark awarded for (c) = 3 out of 4 5 Extension has been calculated correctly. Mark awarded for (d) (i) = 1 out of 1 6 The candidate does not take a reading of W at the point on the graph where the extension $e=17 \mathrm{~mm}$, but calculates the gradient and then goes on to some further calculations. Mark awarded for (d) (ii) = 0 out of 2 Total mark awarded $=$ 6 out of 10

How the candidate could have improved the answer

The candidate needed to write a relevant precaution describing how to read the rule to obtain a reliable reading.

The graph line should have been a best-fit straight line.
The candidate needed to read the load from the graph at the point where the extension is 17 mm .

1 A student is investigating the stretching of a spring.
The apparatus is shown in Fig. 1.1

Fig. 1.1
(a) On Fig. 1.1, measure the unstretched length l_{0} of the spring. Record l_{0} in the first row of Table 1.1.
[1]
(b) The student hangs a load L of 1.0 N on the spring and measures the new length l of the spring. She repeats the measurements using loads of $2.0 \mathrm{~N}, 3.0 \mathrm{~N}, 4.0 \mathrm{~N}$ and 5.0 N . The readings are shown in Table 1.1.
(i) For each set of readings, calculate the extension e of the spring using the equation $e=\left(l-l_{0}\right)$. Record the values of e in the table.

Table 1.1

L / N	l / mm	e / mm
0.0	55	0
1.0	59	4
2.0	64	5
3.0	69	5
4.0	74	5
5.0	78	4

(1)
(2)
(ii) Explain briefly one precaution that you would take in order to obtain reliable readings.
 in this......s.gres..Increase. \qquad maybe the spring just decreasing itrange from original
(3) legit when put on weight

1 This is correct.

Mark awarded for (a) (i) = 1 out of 1

2 The candidate does not calculate the extension for each value of the load but calculates the change in extension for each value of load.

Mark awarded for (b) (i) = 0 out of 1
(3) The candidate makes a comment about 'the spring law' instead of writing a precaution.

Mark awarded for (b) (ii) = 0 out of 1
(c) Plot a graph of e / mm (y-axis) against $L / \mathrm{N}(x$-axis).

(d) The student removes the load from the spring and hangs an unknown load \mathbf{X} on the spring. She measures the length l of the spring.
\qquad
(i) Calculate the extension e of the spring.
\qquad

(ii) Use the graph to determine the weight W of the load \mathbf{X}. Show clearly on the graph how you obtained the necessary information.
$w=6.7 \mathrm{~N}$ \qquad
[Total: 10]
(4) The candidate plots $/ / \mathrm{mm}$ against L / N instead of $e / m m$ against L / N as instructed in the question. The axes are not labelled. The first plot is missing and the line is not a best-fit straight line.

Mark awarded for (c) = 0 out of 4

5 The extension is calculated correctly.

Mark awarded for (d) (i) = 1 out of 1
6. In spite of plotting the wrong graph, the candidate is able to use the graph correctly to obtain a value for W that is within the tolerance allowed and gives the correct unit, N.

Mark awarded for (d) (ii) = 2 out of 2

Total mark awarded = 4 out of 10

How the candidate could have improved the answer

The candidate should have understood what was meant by the extension of a spring to calculate the values correctly.

A relevant precaution describing how to read the rule should have been used to obtain a reliable reading.
The candidate should have plotted extension on the y-axis of the graph and then plot all the points accurately and draw a best-fit straight line.

Common mistakes candidates made in this question

- Writing a vague statement rather than a relevant precaution describing how to read the rule to obtain a reliable reading.
- Making a poor judgement of the best-fit straight line on the graph.

Question 2

Example candidate response - high

Examiner comments

2 A student is using a balancing method to determine the weight of a piece of soft modelling clay. The apparatus is shown in Fig. 2.1.

Fig. 2.1
P is a metal cube of weight $P=1.0 \mathrm{~N} . Q$ is the piece of soft modelling clay.
The student places the cube \mathbf{P} so that its weight acts at a distance x from the pivot.
He adjusts the position of \mathbf{Q} to balance the rule and measures the distance y from the centre of \mathbf{Q} to the pivot. He calculates the weight W of Q using the equation $W=\frac{P x}{y}$.
(a) On Fig. 2.1, mark clearly the distance x.
(b) Suggest a change to \mathbf{Q} that would make it easier to find the value of y accurately.
+Make the stape fo mere defined a.g: Squore, so you con find the center of the object 2
(c) It is difficult to achieve an exact balance of the metre rule in this type of experiment. This can make the result unreliable.

Explain how you would reduce the effect of this problem to improve the reliability of the experiment.

+ Use a solid object instead ot a modelling clay. + Make sure........bject P and Q......................over the Lines..... and numbers of the ruler. 3

1 The candidate correctly marks the distance x on Fig. 2.1.

Mark awarded for (a) = 1 out of 1

2 This is a good suggestion for the change to \mathbf{Q}.

Mark awarded for (b) = 1 out of 1

3 Exact balance has not been addressed but the candidate writes about precautions that are taken to obtain accurate distance readings.

Mark awarded for (c) $=0$ out of 1
(d) The metal cube \mathbf{P} is larger than the width of the metre rule.

Explain briefly how you would determine the reading of the metre rule scale at the position of

(e) Before starting the experiment, the student determines the position of the centre of mass of the metre rule.

Explain briefly how you would do this.

+ Bybalanaing the ruler on the Pivet
tor by honging it from two sides.....nd then drawing
a line, wherethe phomb falls. wherethe two lines a sine, wherethe plumb falls. wherethe two lines
intersect is the centre of mass, 5
[Total: دfer each side

4 Clear diagram has been drawn which explains the procedure well.

Mark awarded for (d) = 2 out of 2

5 Balancing the rule on the pivot has been written correctly. The alternative method, added unnecessarily, is too complex and not very practical but has not been penalised.

Mark awarded for (e) = 1 out of 1

Total mark awarded $=$ 5 out of 6

How the candidate could have improved the answer

(c) The candidate should have used the experience gained during the course to describe what was done in this type of experiment. For example moving \mathbf{Q} slowly one way until the rule just tips, then moving \mathbf{Q} the other way until the rule tips back and taking the reading between these two positions of \mathbf{Q}.
(e) Although the candidate was awarded the mark, it would have been better to have written only about balancing the rule on the pivot and not to add a second, rather impractical method.

Example candidate response - middle

Examiner comments

2 A student is using a balancing method to determine the weight of a piece of soft modelling clay. The apparatus is shown in Fig. 2.1.

Fig. 2.1
P is a metal cube of weight $P=1.0 \mathrm{~N}$. \mathbf{Q} is the piece of soft modelling clay.
The student places the cube \mathbf{P} so that its weight acts at a distance x from the pivot
He adjusts the position of \mathbf{Q} to balance the rule and measures the distance y from the centre of \mathbf{Q} to the pivot. He calculates the weight W of \mathbf{Q} using the equation $W=\frac{P x}{y}$.
(a) On Fig. 2.1, mark clearly the distance x.
(b) Suggest a change to \mathbf{Q} that would make it easier to find the value of y accurately

Give an appropriate measuneel shape to the modelling day 2
(c) It is difficult to achieve an exact balance of the metre rule in this type of experiment. This can make the result unreliable.

Explain how you would reduce the effect of this problem to improve the reliability of the experiment.
By repeating the experiment \qquad Several times and taking average 3. 3
(1) The candidate shows the distance to one edge of the cube, not the centre.

Mark awarded for (a) = 0 out of 1

2 This is a vague answer.
Mark awarded for (b) = 0 out of 1
(3) The answer suggests repeating the experiment several times and taking the average.

Mark awarded for (c) = 1 out of 1
(d) The metal cube \mathbf{P} is larger than the width of the metre rule.

Explain briefly how you would determine the reading of the metre rule scale at the position of the centre of mass of \mathbf{P}. You may draw a diagram.

......By dividing the mass squally on froth sides...

(e) Before starting the experiment, the student determines the position of the centre of mass of the metre rule.

Explain briefly how you would do this.
By placing the metre vale on pivot and By seeing the point when it balances equally. IT
(5) [Total: 6]
(4) The candidate indicates a correct method but the response is too vague to gain both marks.

Mark awarded for (d) = 1 out of 2
(5) This is correct.

Mark awarded for (e) = 1 out of 1

Total mark awarded =

 3 out of 11
How the candidate could have improved the answer

(a) The distance x to the centre of the block should have been shown.
(b) The candidate should have suggested an appropriate shape (e.g. a cube).
(d) Writing should have been clearer that the block width must be measured.

Example Candidate Response - low

Examiner comments

2 A student is using a balancing method to determine the weight of a piece of soft modelling clay. The apparatus is shown in Fig. 2.1.

Fig. 2.1
P is a metal cube of weight $P=1.0 \mathrm{~N}$. Q is the piece of soft modelling clay
The student places the cube P so that its weight acts at a distance x from the pivot.
He adjusts the position of \mathbf{Q} to balance the rule and measures the distance y from the centre of \mathbf{Q} to the pivot. He calculates the weight W of \mathbf{Q} using the equation $W=\frac{P x}{y}$.
(a) On Fig. 2.1, mark clearly the distance x.
(b) Suggest a change to \mathbf{Q} that would make it easier to find the value of y accurately.

(c) It is difficult to achieve an exact balance of the metre rule in this type of experiment. This can make the result unreliable.

Explain how you would reduce the effect of this problem to improve the reliability of the experiment.

1 The candidate does not mark the distance x clearly.

Mark awarded for (a) = 0 out of 1

2 This does not answer the question.

Mark awarded for (b) = 0 out of 1

3 The candidate correctly suggests repeating the experiment several times and taking the average.

Mark awarded for (c) = 1 out of 1
(d) The metal cube \mathbf{P} is larger than the width of the metre rule.

Explain briefly how you would determine the reading of the metre rule scale at the position of the centre of mass of \mathbf{P}. You may draw a diagram.

(e) Before starting the experiment, the student determines the position of the centre of mass of the metre rule

Explain briefly how you would do this.

[Total: 6]

4 This does not answer the question.

Mark awarded for (d) = 0 out of 2

5 This is correct.
Mark awarded for (e) = 1 out of 1

Total mark awarded = 2 out of 6

How the candidate could have improved the answer

(a) The candidate should have shown the distance x from the pivot to the centre of the block.
(b) An appropriate shape should have been suggested (e.g. a cube).
(c) The candidate needed to explain that the width of the cube must be measured and then the block positioned so that half the width lays either side of the required position. A diagram makes it much easier for the candidate to describe this.

Common mistakes candidates made in this question

Writing vague responses to parts (c) and (d). Candidates should realise that they are being asked to write from their own experience of carrying out similar experiments during their course.

Question 3

3 A student is investigating the magnification of images produced by a lens.
The apparatus is shown in Fig. 3.1.

Fig. 3.1
The student places a screen at a distance $D=80.0 \mathrm{~cm}$ from an illuminated object. The screen and the illuminated object remain in the same positions throughout the experiment.
(a) She places the lens close to the illuminated object. She moves the lens until she sees a sharply focused, enlarged image of the object on the screen.

She measures the distance a from the illuminated object to the centre of the lens.

She measures the distance b from the centre of the lens to the screen.
\qquad
Calculate the magnification m_{1} of the image, using the equation $m_{1}=\frac{b}{a}$.

$$
m_{1}=\ldots, \quad 2,94
$$

(1) The calculation is correct.

Mark awarded for (a) = 1 out of 1
(b) The student then moves the lens towards the screen until a smaller, sharply focused image of the object is seen on the screen.

She measures the distance x from the illuminated object to the centre of the lens.
\qquad
She measures the distance y from the centre of the lens to the screen.

(c) A student suggests that $m_{1} \times m_{2}$ should equal 1 .

State whether the results support this suggestion. Justify your answer by reference to the results.

(d) State two precautions that you would take in this experiment to obtain reliable results. 1. Keep the object, lens and screen at the sare height.

Do the experiment in a dark room. (4
.
\qquad
(e) Suggest one reason why it is difficult, in this type of experiment, to decide on the best position of the lens to obtain a sharply focused image on the screen.

[Total: 7]

2 The calculation is correct.

Mark awarded for (b) = 1 out of 1

3 The statement is correct and the justification is clearly explained.

Mark awarded for (c) $=2$ out of 2
(4) The candidate suggests two sensible precautions.

Mark awarded for $(\mathrm{d})=2$ out of 2

5 The candidate does not give a convincing reason, showing a lack of familiarity with this type of experiment.

Mark awarded for (e) = 0 out of 1
Total mark awarded = 6 out of 7

How the candidate could have improved the answer

(e) The candidate should have explained that the image could appear equally well focused over a range of lens positions.

Example candidate response - middle

3 A student is investigating the magnification of images produced by a lens.
The apparatus is shown in Fig. 3.1.

Fig. 3.1
The student places a screen at a distance $D=80.0 \mathrm{~cm}$ from an illuminated object. The screen and the illuminated object remain in the same positions throughout the experiment.
(a) She places the lens close to the illuminated object. She moves the lens until she sees a sharply focused, enlarged-image of the object on the screen.

She measures the distance a from the illuminated object to the centre of the lens.
\qquad
She measures the distance b from the centre of the lens to the screen.

$$
\text { Calculate the magnification } m_{1} \text { of the image, using the equation } m_{1}=\frac{b}{a} .
$$

$$
\begin{equation*}
m_{1}=\ldots . .2 .94 . . . \tag{1}
\end{equation*}
$$

1 The calculation is correct.

Mark awarded for (a) = 1 out of 1
(b) The student then moves the lens towards the screen until a smaller, sharply focused image of the object is seen on the screen.

She measures the distance x from the illuminated object to the centre of the lens.
\qquad

She measures the distance y from the centre of the lens to the screen.
$y=\ldots .$.
Calculate the magnification m_{2} of the image, using the equation $m_{2}=\frac{y}{x}$.

$$
\begin{equation*}
m_{2}=\ldots \tag{1}
\end{equation*}
$$

(c) A student suggests that $m_{1} \times m_{2}$ should equal 1 .

State whether the results support this suggestion. Justify your answer by reference to the results.

(d) State two precautions that you would take in this experiment to obtain reliable results.
 2. make the experiment in or dark rom 4
\qquad
(e) Suggest one reason why it is difficult, in this type of experiment, to decide on the best position of the lens to obtain a sharply focused image on the screen.
ffult 5
[Total: 7]

How the candidate could have improved the answer

(c) The candidate should have realised that the results support the suggestion within the limits of experimental accuracy.
(e) The candidate needed to show familiarity with this type of experiment by explaining that the image can appear equally well focused over a range of lens positions.

3 A student is investigating the magnification of images produced by a lens.
The apparatus is shown in Fig. 3.1

Fig. 3.1
The student places a screen at a distance $D=80.0 \mathrm{~cm}$ from an illuminated object. The screen and the illuminated object remain in the same positions throughout the experiment.
(a) She places the lens close to the illuminated object. She moves the lens until she sees a sharply focused, enlarged image of the object on the screen.

She measures the distance a from the illuminated object to the centre of the lens.
$a=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
She measures the distance b from the centre of the lens to the screen.
Calculate the magnification m_{1} of the image, using the equation $m_{1}=\frac{b}{a}$. $m_{1}=$ \qquad $\times 2.94$
 $\begin{array}{r}\times 1.941 \\ \hline\end{array}$

1 The calculation is correct.
Mark awarded for (a) = 1 out of 1
(b) The student then moves the lens towards the screen until a smaller, sharply focused image of the object is seen on the screen.

She measures the distance x from the illuminated object to the centre of the lens.
\qquad
She measures the distance y from the centre of the lens to the screen.

Calculate the magnification m_{2} of the image, using the equation $m_{2}=\frac{y}{x}$.
(c) A student suggests that $m_{1} \times m_{2}$ should equal 1 .

State whether the results support this suggestion. Justify your answer by reference to the results.

(d) State two precautions that you would take in this experiment to obtain reliable results.

\qquad

\qquad
(e) Suggest one reason why it is difficult, in this type of experiment, to decide on the best position of the lens to obtain a sharply focused image on the screen.
H1s heowe the lusus andurd py hand. 5 3 \qquad

2 The calculation is correct but not given to 2 or 3 significant figures.

Mark awarded for (b) = 0 out of 1
(3) The candidate does not state or explain that the results support the suggestion, within the limits of experimental accuracy.

Mark awarded for (c) = 0 out of 2
(4) These are alternative answers for one correct response.

Mark awarded for $(\mathrm{d})=1$ out of 2
(5) The candidate does not give a convincing reason, showing a lack of familiarity with this type of experiment.

Mark awarded for (e) $=0$ out of 1
Total mark awarded = 2 out of 7

How the candidate could have improved the answer

(b) The answer should have been given to 2 or 3 significant figures.
(c) The candidate should have realised that the results support the suggestion within the limits of experimental accuracy.
(d) A second valid suggestion should have been made.
(e) Familiarity with this type of experiment should have been shown by explaining that the image can appear equally well focused over a range of lens positions.

Common mistakes candidates made in this question

Failure to realise the significance of results being within the limits of experimental accuracy.
Writing vague responses to part (e). Candidates should realise that they are being asked to write from their own experience of carrying out similar experiments during their course.

Question 4

Example candidate response - high

4 A student is investigating how the resistance of a wire depends on the length of the wire. The student aims to plot a graph.

The following apparatus is available to the student:

ammeter

voltmeter
power supply
variable resistor
switch
connecting leads
resistance wires of different lengths
metre rule.
Plan an experiment to investigate how the resistance of a wire depends on the length of the wire.
You should

- draw a diagram of the circuit you could use to determine the resistance of each wire
- explain briefly how you would carry out the investigation
- suggest suitable lengths of wire
- state the key rariables that you would control
- draw a table, or tables, with column headings to show how you would display your readings. You are not required to enter any readings in the table

1
..Sterps.: © According to the diagrans....connect the circmit. . with the... …) apparatus....and connect a 10 "om resistance wire. (llength measurved (2) Close the switch read the current on the ammeter. I and the pectential difference on the wtmeter, V and
…) recoro.............nto. the table
(3) Use the formula, ressistance $R=\frac{p . d}{\text { current }}$.....alculate... the resistance of this wirie r and recors the data
4 repeat the experiment, only change the wires with different lengths, marmer moterm, $20 \mathrm{~cm}, 25 \mathrm{~cm}, .30 \mathrm{~cm}$, 35 cm . 40 cm seperately, calculate their resistance and recurla
…) (keep the pouer supply constant.). (2)
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
(2) The method includes taking readings of current and potential difference using at least five different lengths. The range of different lengths is appropriate.
(3) The candidate draws a suitable table with headings for length, current, potential difference and resistance, each with the correct unit.

Total mark awarded =

 6 out of 7How the candidate could have improved the answer
The candidate needed to state any key variables to control.

Example Candidate Responses: Paper 6

Example candidate response - middle

4 A student is investigating how the resistance of a wire depends on the length of the wire. The student aims to plot a graph.

The following apparatus is available to the student:
ammeter
voltmeter
power supply
variable resistor
switch
connecting leads
resistance wires of different lengths
metre rule.

Plan an experiment to investigate how the resistance of a wire depends on the length of the wire.
You should

- draw a diagram of the circuit you could use to determine the resistance of each wire
- explain briefly how you would carfy out the investigation
- suggest suitable lengths of wire
- state the key variables that you would control
- draw a table, or tables, with column headings to show how you would display your readings. You are not required to enter any readings in the table

1 The candidate draws a workable circuit diagram including the correct circuit symbols.

First tonstect the tixcuzt
The length of wire should be 50 mm cong:
First, connect the connecting lead.... \cdots on the wire and connect the wisent. x Record the length of the wire which is connect into the linn ex and the wo rage and the current Use $R=\frac{V}{I}$ to get the resistance of the wive Then change the position at the connecting In the experiment, you should not change the or ard the sectional area of the wren and the wo rage af the battery 2
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

2 The method does not include taking readings of current and potential difference using at least five different lengths.

The candidate correctly suggests that the cross-sectional area of the wire is a variable that should be kept constant.

Total mark awarded = 4 out of 7

How the candidate could have improved the answer
The candidate should have written a clear, brief method to include taking readings of current and voltage, using five or more lengths of wire and suggesting a suitable range of different lengths. Also the candidate should have drawn a table as specified in the question.

Example Candidate Responses: Paper 6

Example candidate response - low

4 A student is investigating how the resistance of a wire depends on the length of the wire. The student aims to plot a graph

The following apparatus is available to the student:

> ammeter
> voltmeter
> power supply
> variable resistor
> switch
> connecting leads
> resistance wires of different lengths
> metre rule.

Plan an experiment to investigate how the resistance of a wire depends on the length of the wire. investigate
You should

- draw a diagram of the circuit you could use to determine the resistance of each wire
- explain briefly how you would carry out the investigation
- suggest suitable lengths of wire
- state the key variables that you would control
- draw a table, or tables, with column headings to show how you would display your readings. You are not required to enter any readings in the table

1 The candidate draws an incomplete circuit, but the circuit symbols are correct.
 wire at the sompesting leads....each one teest...fre . twice by . .hang. the resistance... c. variable resistor..., record the ammeter and ..vatmeter reading.... measure. its.... .length after testing in . the ...tract..
 but. different considerable resistance., the other one ...till need to... test........ these.. .twa...eesistance..
Then caculate. 2
\qquad

2 The candidate mentions taking readings of current and voltage but there are no other important aspects of the method given.

The candidate does not state any key variables to control.

Total mark awarded = 2 out of 7

How the candidate could have improved the answer

The candidate should have drawn a complete circuit then written a clear brief method including taking readings of current and voltage, using five or more lengths of wire and suggesting a suitable range of different lengths. Also the candidate should have drawn a table as specified in the question.

Any key variables to control should have been mentioned.

Common mistakes candidates made in this question

Writing a vague method that did not address the task set in the question, drawing an incomplete table (e.g. with units missing) and missing out the description of key variables to control.

Question 5

Example candidate response - high

5 A student is investigating the cooling of water.

Some of the apparatus is shown in Fig. 5.1.

Fig. 5.1
(a) The student pours $200 \mathrm{~cm}^{3}$ of hot water into a $250 \mathrm{~cm}^{3}$ insulated beaker labelled \mathbf{A}. He covers the top of the beaker with a lid.

The student takes a temperature reading. every 30 s as the water cools. The readings are shown in Table 5.1.
(i) Complete the column headings in the table.
(ii) The starting temperature θ of the hot water in beaker \mathbf{A} is shown on Fig. 5.1.

Record this temperature in the table at time $t=0 \mathrm{~s}$.
Table 5.1

	beaker A insulation and lid	beaker B inṣulation, no lid	beaker \mathbf{C} lid, no insulation
t / S	$\theta /{ }^{\circ} \mathrm{C}$	$\theta /{ }^{\circ} \mathrm{C}$	$\theta /^{\circ} \mathrm{C}$ (1)
0	83	85	78
30	80	79	74
60	77	74	71
90	75	70	68
120	73	67	66
150	71	64	64

1) The column headings are correct.
(2) The temperature reading is correct.

Mark awarded for (a) (i) = 1 out of 1
Mark awarded for (a) (ii) = 1 out of 1

Example candidate response - high, continued

(b) The student repeats the procedure using a. $250 \mathrm{~cm}^{3}$ beaker labelled B . This beaker is insulated but has no lid.

He repeats the procedure again using a $250 \mathrm{~cm}^{3}$ beaker labelled C . This beaker has a lid but no insulation.

All the readings are shown in Table 5.1.
(i) Tick the statement that best describes the results of the investigation.Removing the lid speeds up the rate of cooling significantly more than removing the insulation.Removing the insulation speeds up the rate of cooling significantly more than removing the lid.There is no significant difference between removing the lid and removing the insulation. 3
(ii) Justify your answer by reference to the readings.
\qquad
 \qquad
\qquad

(c) State two of the conditions that shouid be kept the same in this experiment in order for the

\qquad
2. \qquad
 5
(d) Suggest a suitable material for the lid. Give a reason for your choice of material.
materialunvoct. \qquad
reason
 He beker offickety 6

3 The candidate has not ticked the first box.

Mark awarded for (b) (i) $=0$ out of 1

4 The answer given in part (i) is incorrect so the justification is also incorrect.

Mark awarded for (b) (ii) = 0 out of 1
(5) Two appropriate conditions that should be kept constant have been suggested.

Mark awarded for (c) $=2$ out of 2

6 The candidate makes a sensible suggestion for the material of the lid and gives a good reason for the choice.

Mark awarded for $(\mathrm{d})=2$ out of 2
(e) Describe briefly how a measuring cylinder is read in order to obtain a reliable value for the volume of water. You may draw a diagram.

\qquad ... level of water.......... 7
\qquad

7 The candidate draws a clear and correct diagram giving all the necessary information - measuring to the bottom of the meniscus and viewing the scale at right angles.

Mark awarded for (e) $=2$ out of 2

Total mark awarded = 8 out of 10

How the candidate could have improved the answer
(b) The candidate needed to draw the correct conclusion from the results and then justify that conclusion.

5 A student is investigating the cooling of water
Some of the apparatus is shown in Fig. 5.1.

Fig. 5.1
(a) The student pours $200 \mathrm{~cm}^{3}$ of hot water into a $250 \mathrm{~cm}^{3}$ insulated beaker labelled \mathbf{A}. He covers the top of the beaker with a lid.

The student takes a temperature reading every 30 s as the water coois. The readings are shown in Table 5.1.
(i) Complete the column headings in the tabie.
(ii) The starting temperature θ of the hot water in beaker \mathbf{A} is shown on Fig. 5.1.

Record this temperature in the table at time $t=0 \mathrm{~s}$.
Table 5.1

	beaker \mathbf{A} insulation and lid	beaker \mathbf{B} insulation, no lid	beaker \mathbf{C} lid, no insulation
t / S°	$\theta /^{\circ} \mathrm{C}$	$\theta /^{\circ} \mathrm{C}$	$\theta /{ }^{\circ} \mathrm{C}$ (1)
0	83	85	78
30	80	79	74
60	77	74	71
90	75	70	68
120	73	67	66
150	71	64	64

1 The column headings are correct.

2 The temperature reading is correct.

Mark awarded for (a) (i) = 1 out of 1

Mark awarded for (a) (ii) = 1 out of 1
(b) The student repeats the procedure using a $250 \mathrm{~cm}^{3}$ beaker labelled \mathbf{B}. This beaker is insulated but has no lid.

He repeats the procedure again using a $250 \mathrm{~cm}^{3}$ beaker labelled \mathbf{C}. This beaker has a lid but no insulation.

All the readings are shown in Table 5.1.
(i) Tick the statement that best describes the results of the investigation.Removing the lid speeds up the rate of cooling significantly more than removing the insulation.Removing the insulation speeds up the rate of cooling significantly more than removing the lid.There is no significant difference between removing the lid and removing the insulation. 3
[1]
(ii) Justify your answer by reference to the readings.

(c) State two of the conditions that should be kept the same in this experiment in order for the comparison to be fair.
\qquad
\qquad
2. Initial temperature fonder 5
\qquad
(d) Suggest a suitable material for the lid. Give a reason for your choice of material.
material ...Rubber
reason ...Good insulator 6
\qquad

3 The first box should have been ticked.

Mark awarded for (b) (i) = 0 out of 1
(4) The answer given in part (i) is incorrect so the justification is also incorrect.

Mark awarded for (b)(ii) $=0$ out of 1
(5) The candidate suggests one appropriate condition (the initial temperature of the water) that should be kept constant.

Mark awarded for (c) = 1 out of 2

6 The candidate makes a sensible suggestion for the material of the lid and gives a good reason for the choice.

Mark awarded for $(\mathrm{d})=2$ out of 2
(e) Describe briefly how a measuring cylinder is read in order to obtain a reliable value for the volume of water. You may draw a diagram.

The point at which the top of the water is,
is read in the scale provided 60 in this....
case the volume of the water is $9 \mathrm{~cm}^{3} 7$
[Total: 10]

How the candidate could have improved the answer
(b) The correct conclusion should have been drawn from the results and then justified that conclusion.
(c) Second valid conclusion should have been stated.
(e) The candidate should have shown in the diagram or description how to obtain a reliable reading for the volume.

5 A student is investigating the cooling of water.
Some of the apparatus is shown in Fig. 5.1.

Fig. 5.1
(a) The student pours $200 \mathrm{~cm}^{3}$ of hot water into a $250 \mathrm{~cm}^{3}$ insulated beaker labelled \mathbf{A}. He covers the top of the beaker with a lid.

The student takes a temperature reading every 30 s as the water cools. The readings are shown in Table 5.1.
(i) Complete the column headings in the table,
(ii) The starting temperature θ of the hot water in beaker \mathbf{A} is shown on Fig. 5.1.

Record this temperature in the table at time $t=0 \mathrm{~s}$.
Table 5.1

	beaker A insulation and lid.	beaker B insulation, no lid	beaker C lid, no insulation
t / S	θ / cm	θ / cm	θ / cm (1)
0	832	85	78
30	80	79	74
60	77	74	71
90	75	70	68
120	73	67	66
150	71	64	64

(1) The time unit is correct but the candidate writes cm as the unit for temperature.
(2) The temperature reading is correct.

Mark awarded for (a) (i) = 0 out of 1
Mark awarded for (a) (ii) = 1 out of 1

Example candidate response - low, continued

(b) The student repeats the procedure using a $250 \mathrm{~cm}^{3}$ beaker labelled \mathbf{B}. This beaker is insulated but has no lid.

He repeats the procedure again using a $250 \mathrm{~cm}^{3}$ beaker labelled \boldsymbol{C}. This beaker has a lid but no insulation.

All the readings are shown in Table 5.1.
(i) Tick the statement that best describes the results of the investigation.
Removing the lid speeds up the rate of cooling significantly more than removing
the insulation.
Removing the insulation speeds up the rate of cooling significantly more than
removing the lid.
\square There is no significant difference between removing the lid and removing the
insulation.
(ii) Justify your answer by reference to the readings.

Because in beaker C, you can see The results and temperature going down much faster than Beaker B. 4
(c) State two of the conditions that should be kept the same in this experiment in order for the comparison to be fair.

1. F Surrounding temperature should be wept -..) same/normal at all Fires.
2. Siqe.....p...
is used. 5
(d) Suggest a suitable material.for the lid. Give a reason for your choice of material.
meat glass \qquad reason On -expensive and it also catcheswater droplets.......................................

3 The candidate has not ticked the correct box.

Mark awarded for (b) (i) $=0$ out of 1

4 The answer given in part (i) is incorrect so the justification is also incorrect.

Mark awarded for (b) (ii) = 0 out of 1

5 The candidate suggests one appropriate condition (room temperature) that should be kept constant.

Mark awarded for (c) = 1 out of 2

6 The candidate does not suggest a suitable material in the context of the experiment in a school laboratory.

Mark awarded for $(\mathrm{d})=1$ out of 2
(e) Describe briefly how a measuring cylinder is read in order to obtain a reliable value for the volume of water. You may draw a diagram.

Water is filled inside measuring
...cylinder. The readings will be given and there are proper divisions in the cylinder You you to obtain a much more accurate reading [Total: 10]

7 The candidate does not show in the diagram or description how to obtain a reliable reading for the volume.

Mark awarded for (e) $=0$ out of 2
Total mark awarded = 3 out of 10

How the candidate could have improved the answer

(a) The unit of temperature ${ }^{\circ} \mathrm{C}$ was required.
(b) The candidate should have arrived at the correct conclusion from the results and then justify that conclusion.
(c) Second valid condition was not stated.
(d) The candidate should have suggested a suitable material and reason, in the context of a school laboratory.
(e) The candidate needed to show in the diagram or description how to obtain a reliable reading for the volume.

Common mistakes candidates made in this question

- Drawing the wrong conclusion in part (b).
- Writing a vague answer for one of the conditions that should be kept the same.

Cambridge Assessment International Education
The Trianlge Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org

