

Interactive Example Candidate Responses
Paper 3 (May / June 2016), Question 1

Cambridge IGCSE[™]
Biology 0610

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

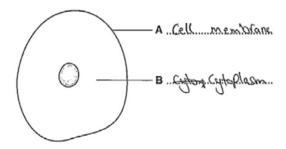


Fig. 1.1

(a)	(i)	Name the features labelled A and B.	
		Write your answers on Fig. 1.1.	[2]
	(ii)	The nucleus of living cells contains genetic material.	
		Name the chemical that this genetic material is made from.	
		Chlomosomes	[1]
(b)	The	cell in Fig. 1.1 carries out aerobic respiration.	
		me one chemical that diffuses into an animal cell and one chemical that diffuses out of during aerobic respiration.	a
	che	mical that diffuses inCXX3.e.v	•••
	che	mical that diffuses outCarbond?axde	 [2]
(c)	The	process of active transport occurs in some cells.	
	Out	tline one way in which diffusion is different to active transport.	
		tramsvan b 22423-ton Re transvan 25 rose249 ia	
	Ω	setDe stalus trasloag radiothersona rundo bishurshara t	[1]
	ڡ	the sport gradient of molecules against concentrating	
		.,.	

Select page

	Your Mark
1(a)(i)	

1(a)(ii)

1(b)

1(c)

1(d)(i)

1(d)(ii)

Q1	Mark scheme
(a)(i)	A – membrane/cell membrane/plasma membrane ; B – cytoplasm ;
(a)(ii)	DNA; 1 mark
(b)	diffuses in: oxygen/glucose; diffuses out: carbon dioxide/water; 2 marks
(c)	(diffusion) does not need oxygen/respiration/energy (but active transport does); A diffusion is passive (diffusion) involves movement (of particles) from high to low concentration/down a concentration gradient (but opposite for active transport); 1 mark

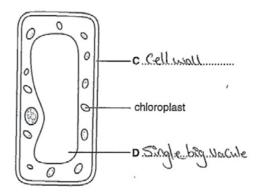


Fig. 1.2

(d) (i) Name the features labelled C and D.
Write your answers on Fig. 1.2.

[2]

(ii) Name the process carried out by the chloroplasts and explain why all animal life depends on this process,

2924txy2otod.Q essong to eman	
explanationChloloplastsCarteir gleen flyments	skich
absollo Sunlight and Change & light everg	
Chemacos energy cod marke photosynthesis	J ,
pladuce (take Carbondioxible, water and light	. ^
Diaduce glucose for tox & there & food	
exyrpenall anshold defend an photo plants	
Mutaton, florits are the froducer of all	t.ua2
Oxygen duling Photosynthesis, oxygenis lesto	0.000 plc.16
Calbardioxide	[Total: 13]

Select page

	Your Mark
(a)(i)	
(a)(ii)	
1(b)	
1(c)	
(d)(i)	
d)(ii)	

Q1	Mark scheme	
(d)(i)	C – cell wall; R cell membrane	
	D – vacuole; 2 ma	arks
(d)(ii)	process: <pre>photosynthesis ; AW throughout. Mark independently.</pre> <pre>l other named process</pre> 1 m	nark
	animal dependence: 1 (chloroplasts contain chlorophyll) absorb/use/trap, light/energy; If respiration/another process is named, mark the explanation and award points relating to photosynthesis sun (alone)	6
	2 (to) produce glucose/carbohydrate/food, or plants are producers;)
	3 (photosynthesis) removes carbon dioxide (from atmosphere) or adds oxygen (to the atmosphere);	
	4 primary consumers/herbivores/animals, gain energy food/as they eat plants/producers; I reference to food chain/web unqualified	or
	5 secondary consumers/carnivores eat herbivores/ primary consumers/other animals; mp 2 and 3 (only) can be obtained from an equation.	
	6 (animals) need/use oxygen for respiration; chemical equation must be correct and balanced 4 ma	arks

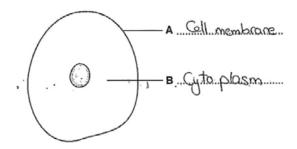


Fig. 1.1

(a)	(i)	Name the features labelled A and B.	
		Write your answers on Fig. 1.1.	[2]
	(ii)	The nucleus of living cells contains genetic material.	
		Name the chemical that this genetic material is made from.	
		CH-SP DNA	[1]
(b)	The	cell in Fig. 1.1 carries out aerobic respiration.	
		me one chemical that diffuses into an animal cell and one chemical that diffuses out of during aerobic respiration.	fá
	che	mical that diffuses in	
	che	mical that diffuses out9190000	 [2]
(c)	The	process of active transport occurs in some cells.	
		tline one way in which diffusion is different to active transport.	
	!	diffusion is movement of gas particles from high	
		Concentration gradient to low Concentration gradient	[1]

Select page

	Your Mark
1(a)(i)	
l(a)(ii)	
1(b)	

1(c)

1(d)(i)

1(d)(ii)

Q1	Mark scheme
(a)(i)	A – membrane/cell membrane/plasma membrane ; B – cytoplasm ; 2 marks
(a)(ii)	DNA; 1 mark
(b)	diffuses in: oxygen/glucose; diffuses out: carbon dioxide/water; 2 marks
(c)	(diffusion) does not need oxygen/respiration/energy (but active transport does); A diffusion is passive (diffusion) involves movement (of particles) from high to
	low concentration/down a concentration gradient (but opposite for active transport); 1 mark

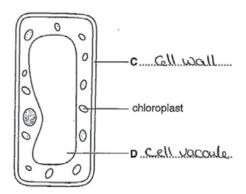


Fig. 1.2

(d) (i) Name the features labelled C and D.
Write your answers on Fig. 1.2.

[2]

(ii) Name the process carried out by the chloroplasts and explain why all animal life depends on this process.

name of process Photo thensis
explanation when Photo themsis is produced in plant
herbivours eat it and then Camirours eat
the herbicours so it is the main food Supply
because of of wasn't present herbivours and
Omnivours would decrease in number too tea
Leading to decrease in number of cornivours.
out the state of t

[Total: 13]

[5]

Select page

	Mark
(a)(i)	
a)(ii)	
1(b)	
1(c)	
(d)(i)	
d)(ii)	

Q1	Mark scheme
(d)(i)	C – cell wall; R cell membrane
	D – vacuole; 2 marks
(d)(ii)	process: photosynthesis; AW throughout. Mark independently. I other named process 1 mark
	animal dependence: 1 (chloroplasts contain chlorophyll) absorb/use/trap, light/energy; If respiration/another process is named, mark the explanation and award points relating to photosynthesis I sun (alone)
	2 (to) produce glucose/carbohydrate/food, or plants are producers;
	3 (photosynthesis) removes carbon dioxide (from atmosphere) or adds oxygen (to the atmosphere);
	4 primary consumers/herbivores/animals, gain energy or food/as they eat plants/producers; I reference to food chain/web unqualified
	5 secondary consumers/carnivores eat herbivores/ primary consumers/other animals; mp 2 and 3 (only) can be obtained from an equation.
	6 (animals) need/use oxygen for respiration; chemical equation must be correct and balanced 4 marks

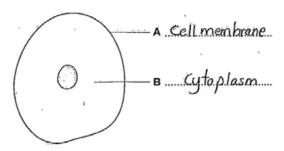


Fig. 1.1

(a)	(i)	Name the features labelled A and B.	
		Write your answers on Fig. 1.1.	2].
	(ii)	The nucleus of living cells contains genetic material.	
		Name the chemical that this genetic material is made from.	
		protein]
(b)	The	cell in Fig. 1.1 carries out aerobic respiration.	
	cell	ne one chemical that diffuses into an animal cell and one chemical that diffuses out of during aerobic respiration.	
	che	mical that diffuses in	
	che	mical that diffuses in	 2]
(c)	The	process of active transport occurs in some cells.	
		line one way in which diffusion is different to active transport. Diffusion is movement from high Concentration to	

Select page

Your
Mark

1(a)(i)

1(a)(ii)

1(b)

1(c)

1(d)(i)

1(d)(ii)

Q1	Mark scheme	
(a)(i)	A – membrane/cell membrane/plasma membrane; B – cytoplasm; 2 n	narks
(a)(ii)	DNA;	mark
(b)	diffuses in: oxygen/glucose; diffuses out: carbon dioxide/water; 2 n	narks
(c)	(diffusion) does not need oxygen/respiration/energy (but active transport does); A diffusion is passive (diffusion) involves movement (of particles) from high low concentration/down a concentration gradient (but opposite for active transport);	

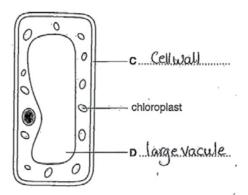


Fig. 1.2

(d) (i) Name the features labelled C and D.
Write your answers on Fig. 1.2.

[2]

(ii) Name the process carried out by the chloroplasts and explain why all animal life depends on this process.

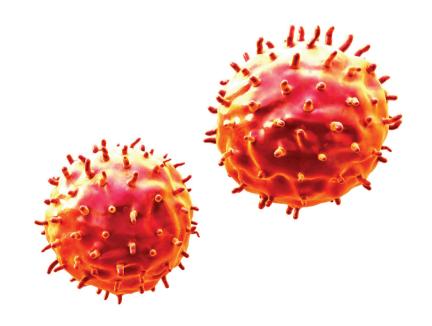
[Total: 13]

Select page

	Your Mark
(a)(i)	
(a)(ii)	
1(b)	
1(c)	
1(6)	
(d)(i)	
(d)(ii)	

Q1	Mark scheme
(d)(i)	C – cell wall; R cell membrane
	D – vacuole; 2 marks
(d)(ii)	process: photosynthesis; AW throughout. Mark independently. I other named process 1 mark animal dependence:
	1 (chloroplasts contain chlorophyll) absorb/use/trap, light/energy; If respiration/another process is named, mark the explanation and award points relating to photosynthesis I sun (alone)
	2 (to) produce glucose/carbohydrate/food, or plants are producers;
	3 (photosynthesis) removes carbon dioxide (from atmosphere) or adds oxygen (to the atmosphere);
	4 primary consumers/herbivores/animals, gain energy or food/as they eat plants/producers; I reference to food chain/web unqualified
	5 secondary consumers/carnivores eat herbivores/ primary consumers/other animals; mp 2 and 3 (only) can be obtained from an equation.
	6 (animals) need/use oxygen for respiration; chemical equation must be correct and balanced 4 marks

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554


Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 3 (May / June 2016), Question 2

Cambridge IGCSE[™]
Biology 0610

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Fig. 2.1

(a) Gorillas are mammals and have characteristics that are **only** found in mammals, and not in any other vertebrate group.

State:

Ole	ne.
(i)	one mammalian characteristic visible in Fig. 2.1
(ii)	two mammalian characteristics not visible in Fig. 2.1 1SUCKIE
	2 External ears [2]

Select page

2(b)(iii)

2(b)(iv)

Your Mark	Q2	Mark scheme	
!(a)(i)	(a)(i)	fur/hair; (external) ears; mammary glands;	1 mark
(a)(ii)	(a)(ii)	give birth (to live young); suckle young/feed young on milk; 3 inner ear ossicles; differentiated teeth; 2 sets of teeth (deciduous and permanent) / AW; diaphragm; sweat glands; sebaceous glands;	2 marks
(b)(i)		possesses glantes (
b)(ii)			

(b) Fig. 2.2 shows the average body mass and Table 2.1 shows the average lifespan of males in six species of mammal.

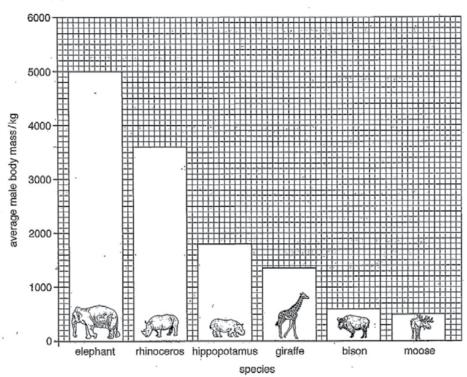


Fig. 2.2

Table 2.1

spécies	average male lifespan/years
elephant	70
rhinoceros	48
hippopotamus	42
giraffe	25
bison	23
moose	21

Select page

	Your Mark	
2(a)(i)		
2(a)(ii)		
2(b)(i)		
2(b)(ii)		
2(b)(iii)		
2(b)(iv)		
2(c)		

(b)(i) bison; (b)(ii) 3600 (kg); (b)(iii) number between 1300–1400 (kg); (b)(iv) the larg(er) the body mass, the long(er ora; A positive correlation I proportional unqualified R directly proportional (c) A AW throughout A examples of the categories I healthy life-style I good/stressful/hostile environment to access to food/no famine; 2 adequate food supply/balanced diaccess to food/no famine; 3 medical facilities/doctors/hospital 4 personal hygiene; 5 sanitation/sewage treatment/rem	1 mark 1 mark 1 mark 1 mark 1 mark
(b)(iii) number between 1300–1400 (kg); (b)(iv) the larg(er) the body mass, the long(er ora; A positive correlation I proportional unqualified R directly proportional (c) A AW throughout A examples of the categories I healthy life-style I good/stressful/hostile environment under the categories of the categories 1 water/potable/clean/drinkable; 2 adequate food supply/balanced diaccess to food/no famine; 3 medical facilities/doctors/hospital 4 personal hygiene; 5 sanitation/sewage treatment/rem	1 mark
(b)(iv) the larg(er) the body mass, the long(er ora; A positive correlation I proportional unqualified R directly proportional (c) A AW throughout A examples of the categories I healthy life-style I good/stressful/hostile environment to access to food/no famine; 2 adequate food supply/balanced diaccess to food/no famine; 3 medical facilities/doctors/hospital personal hygiene; 5 sanitation/sewage treatment/rem	
ora; A positive correlation I proportional unqualified R directly proportional (c) A AW throughout A examples of the categories I healthy life-style I good/stressful/hostile environment users adequate food supply/balanced diaccess to food/no famine; a medical facilities/doctors/hospital personal hygiene; sanitation/sewage treatment/rem) the life span/AW
A examples of the categories I healthy life-style I good/stressful/hostile environment u water/potable/clean/drinkable; adequate food supply/balanced diaccess to food/no famine; medical facilities/doctors/hospital personal hygiene; sanitation/sewage treatment/rem	1 mark
6 exercise facilities/taking regular ex 7 shelter from elements/housing; 8 absence of pollution/safe or clean 9 use of modern technology; 10 improved education/schools; 11 avoidance of smoking/alcohol/dru 12 avoidance of hazardous behaviour, activities/crime/no war; I avoid natural disasters/diseases 13 reduction in poverty;	et/eating healthily/ ls/treatments; noval of rubbish; xercise; environment;

	·(i)	Name the mammal that has an average lifespan of 23 years. [1]
		(1)
	(ii)	State the average body mass of a male rhinoceros.
		3600 kg [1]
	(iii)	State the average body mass of the mammal that has an average lifespan of 25 years.
		1350kg [1]
	(iv)	Describe the relationship between average body mass and average lifespan shown in Fig. 2.2 and Table 2.1.
		As the average body mass increases, the
		average lifeston increases:
		[1]
(c)	The Sug	average lifespan of a human male can vary from 40 years to 85 years. lifespan partly depends on the things available in the country where the man lives, gest three things that would increase the chance of a man having a longer lifespan.
	2	Less discoves
	3	Increased health care
	•••••	[3]
		· · ·
		[Total: 10]

Select page

	Your Mark
2(a)(i)	
(a)(ii)	
2(b)(i)	
(b)(ii)	
b)(iii)	
b)(iv)	

Q2	Mark scheme	
(b)(i)	bison;	1 mark
(b)(ii)	3600 (kg);	1 mark
(b)(iii)	number between 1300-1400 (kg);	1 mark
(b)(iv)	the larg(er) the body mass, the long(er) the life spora; A positive correlation I proportional unqualified R directly proportional	an/AW 1 mark
(c)	A AW throughout A examples of the categories I healthy life-style I good/stressful/hostile environment unqualified 1 water/potable/clean/drinkable; 2 adequate food supply/balanced diet/eating haccess to food/no famine; 3 medical facilities/doctors/hospitals/treatmen4 4 personal hygiene; 5 sanitation/sewage treatment/removal of rub 6 exercise facilities/taking regular exercise; 7 shelter from elements/housing; 8 absence of pollution/safe or clean environme9 9 use of modern technology; 10 improved education/schools; 11 avoidance of smoking/alcohol/drugs; 12 avoidance of hazardous behaviour/promiscuit activities/crime/no war; I avoid natural disasters/diseases	nts; bish; ent;
	13 reduction in poverty;	3 marks

Fig. 2.1

(a) Gorillas are mammals and have characteristics that are **only** found in mammals, and not in any other vertebrate group.

State:

(i) one mammalian characteristic visible in Fig. 2.1

(ii) two mammalian characteristics not visible in Fig. 2.1

1 tair of legs.

Select page

Your	
Mark	

2(a)(i)

2(a)(ii)

2(b)(i)	

2(b)(ii)

2(b)(iii)

2(b)(iv)

02	Mark scheme	
(a)(i)	fur/hair; (external) ears; mammary glands;	1 mark
(a)(ii)	give birth (to live young); suckle young/feed young on milk; 3 inner ear ossicles; differentiated teeth; 2 sets of teeth (deciduous and permanent) / AW; diaphragm; sweat glands;	
	sebaceous glands ;	2 marks

(b) Fig. 2.2 shows the average body mass and Table 2.1 shows the average lifespan of males in six species of mammal.

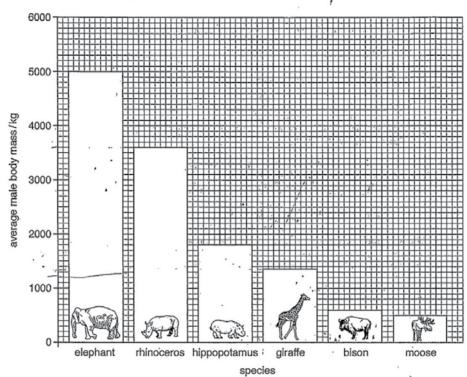


Fig. 2.2

Table 2.1

species	average male lifespan/years
elephant	70
rhinoceros	48
hippopotamus	42
giraffe	25
bison	23
moose	21

Select page

	Your Mark
2(a)(i)	
2(a)(ii)	
2(b)(i)	
2(b)(ii)	
2(b)(iii)	
2(b)(iv)	

Q2	Mark scheme	
(b)(i)	bison;	1 mark
(b)(ii)	<u>3600</u> (kg) ;	1 mark
(b)(iii)	number between 1300–1400 (kg) ;	1 mark
(b)(iv)	the larg(er) the body mass, the long(er) the life span ora; A positive correlation I proportional unqualified R directly proportional	n/AW
(c)	A AW throughout A examples of the categories I healthy life-style I good/stressful/hostile environment unqualified water/potable/clean/drinkable; adequate food supply/balanced diet/eating heacess to food/no famine; medical facilities/doctors/hospitals/treatments personal hygiene; sanitation/sewage treatment/removal of rubbic exercise facilities/taking regular exercise; shelter from elements/housing; absence of pollution/safe or clean environments use of modern technology; improved education/schools; avoidance of smoking/alcohol/drugs; avoidance of hazardous behaviour/promiscuity activities/crime/no war; I avoid natural disasters/diseases	s; sh; t;

	(i)	Name the mammal that has an average lifespan of 23 years.
		<u>bison</u> [1]
	(ii)	State the average body mass of a male rhinoceros.
	. ,	3600kg [1]
		Ng [1]
((iii)	State the average body mass of the mammal that has an average lifespan of 25 years.
		1850 kg [1]
((iv)	Fig. 2.2 and Table 2.1.
		as awage body mass decreases overage lifes for decrease. They are aline of 19 Proportional [1]
		overage life sAm decrease. They are
		alina of the propertional
,		11 SX 12 CX 14 W 10 DEOX 1200 (CCX
(c)		average lifespan of a human male can vary from 40 years to 85 years. lifespan partly depends on the things available in the country where the man lives.
		igest three things that would increase the chance of a man having a longer lifespan.
	1	No Pollution
		•
-		L-1 A ? A
	2	balanced eliet
	3	
		•
		[3]
		[Total: 10]
		The state of the s

Select page

	Your Mark	
2(a)(i)		
?(a)(ii)		
2(b)(i)		
(b)(ii)		
b)(iii)		
b)(iv)		

Q2	Mark cchama	
	Mark scheme	
(b)(i)	bison;	1 mark
(b)(ii)	<u>3600</u> (kg);	1 mark
(b)(iii)	number between 1300–1400 (kg) ;	1 mark
(b)(iv)	the larg(er) the body mass, the long(er) the life spans ora; A positive correlation I proportional unqualified R directly proportional	n/AW
(c)	A AW throughout A examples of the categories I healthy life-style I good/stressful/hostile environment unqualified water/potable/clean/drinkable; adequate food supply/balanced diet/eating heacess to food/no famine; medical facilities/doctors/hospitals/treatment personal hygiene; sanitation/sewage treatment/removal of rubb exercise facilities/taking regular exercise; shelter from elements/housing; absence of pollution/safe or clean environment use of modern technology; improved education/schools; avoidance of smoking/alcohol/drugs; avoidance of hazardous behaviour/promiscuity activities/crime/no war; I avoid natural disasters/diseases	s; ish; it;

Fig. 2.1

(a) Gorillas are mammals and have characteristics that are **only** found in mammals, and not in any other vertebrate group.

State:

·(i)	one mammalian characteristic visible in Fig. 2.1
	Have baic [1]
(ii)	two mammalian characteristics not visible in Fig. 2.1
	1 Finger toes
	2 flagpy eats.
	0 / / (/ [2]

Select page

2(b)(iii)

2(b)(iv)

Your Mark	Q2	Mark scheme	
2(a)(i)	(a)(i)	fur/hair; (external) ears; mammary glands;	1 mark
2(a)(ii)	(a)(ii)	give birth (to live young); suckle young/feed young on milk; 3 inner ear ossicles; differentiated teeth; 2 sets of teeth (deciduous and permanent) / AW; diaphragm; sweat glands; sebaceous glands;	2 marks
2(b)(i)			
2(b)(ii)			

(b) Fig. 2.2 shows the average body mass and Table 2.1 shows the average lifespan of males in six species of mammal.

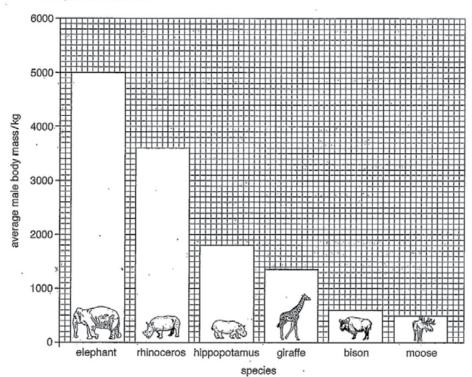


Fig. 2.2

Table 2.1

species	average male lifespan/years
elephant	70
rhinoceros	48
hippopotamus	42
giraffe	25
bison	23
· · moose	21

Select page

	Your Mark
2(a)(i)	
2(a)(ii)	
2(b)(i)	
2(b)(ii)	
2(b)(iii)	
2(b)(iv)	
2(c)	

Q2	Mark scheme	
(b)(i)	bison;	1 mark
(b)(ii)	<u>3600</u> (kg) ;	1 mark
(b)(iii)	number between 1300–1400 (kg) ;	1 mark
(b)(iv)	the larg(er) the body mass, the long(er) the life span ora; A positive correlation I proportional unqualified R directly proportional	n/AW
(c)	A AW throughout A examples of the categories I healthy life-style I good/stressful/hostile environment unqualified water/potable/clean/drinkable; adequate food supply/balanced diet/eating heacess to food/no famine; medical facilities/doctors/hospitals/treatments personal hygiene; sanitation/sewage treatment/removal of rubbic exercise facilities/taking regular exercise; shelter from elements/housing; absence of pollution/safe or clean environments use of modern technology; improved education/schools; avoidance of smoking/alcohol/drugs; avoidance of hazardous behaviour/promiscuity activities/crime/no war; I avoid natural disasters/diseases	s; sh; t;

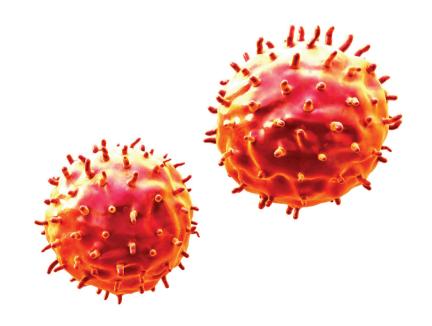
	(i)	Name the mammal that has an average lifespan of:23 years.
	(1)	
		Bisen [1]
	(ii)	State the average body mass of a male rhinoceros.
		3.060 kg [1]
	(iii),	State the average body mass of the mammal that has an average lifespan of 25 years.
		kg [1]
	(iv)	Describe the relationship between average body mass and average lifespan shown in Fig. 2.2 and Table 2.1.
		Directly proportional as by increasing the average
		like span of years the average body mass
		_\acceases[1]
(c)	The	average lifespan of a human male can vary from 40 years to 85 years. lifespan partly depends on the things available in the country where the man lives, gest three things that would increase the chance of a man having a longer lifespan.
	1	No disease spread
	2	No produktore Houing clean water
		and food and eating healthy food
	3	- Exercising
		. [3]
		[Total: 10]

Select page

	Your Mark
2(a)(i)	
(a)(ii)	
2(b)(i)	
(b)(ii)	
b)(iii)	
b)(iv)	

Q2	Mark scheme	
(b)(i)	bison;	1 marl
(b)(ii)	3600 (kg);	1 marl
(b)(iii)	number between 1300-1400 (kg);	1 mar
(b)(iv)	the larg(er) the body mass, the long(er) the life s ora; A positive correlation I proportional unqualified R directly proportional	span/AW
(c)	A AW throughout A examples of the categories I healthy life-style I good/stressful/hostile environment unqualifie water/potable/clean/drinkable; adequate food supply/balanced diet/eating access to food/no famine; medical facilities/doctors/hospitals/treatmaterial personal hygiene; sanitation/sewage treatment/removal of ruse exercise facilities/taking regular exercise; shelter from elements/housing; absence of pollution/safe or clean environmy use of modern technology; mimproved education/schools; avoidance of smoking/alcohol/drugs; avoidance of hazardous behaviour/promiscus activities/crime/no war; I avoid natural disasters/diseases	healthily/ ents; bbish; nent;
	13 reduction in poverty;	3 mark

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554


Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 3 (May / June 2016), Question 3

Cambridge IGCSE[™]
Biology 0610

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

3 Fig. 3.1 shows a section through the skin.

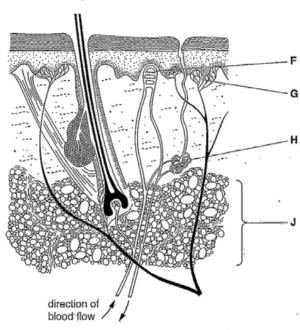


Fig. 3.1

(a) Name the structures labelled in Fig. 3.1 and outline a function in the skin for each one.

Write your answers in Table 3.1.

An example has been done for you.

Table 3.1

structure	name of structure	function in the skin
F	apillary loop	diables and constricts to control the blood flow
G	sensory newrones	detects stimulus
н	sweat gland	produces sweat for cooling the body
J [.]	fatty Hissue	insulation for the skin.

Select page

	Your Mark	Q3	Mark so	heme	
2/0\		(a)	label	name	function
3(a)			F	capillary;	transports blood/heat/ supplies oxygen glucose to cells/removes carbon dioxide; I vein/artery
3(b)(i)			G	receptors/sensory neurone;	detect changes in external environment/stimulus/ touch/pressure/ temperature; R detects temperature of the blood I responds to
			Н		
B(b)(ii)			J	adipose tissue/fat/fatty tissue;	insulation/prevention of heat loss/keeps body warm/shock absorber/ energy store; I fatty acids I dermis
		(b)(i)	with no	back-pack 6 (arbitrary	
		(6)(1)		g back-pack 13 (arbitra	
- C / N		(b)(ii)	more/in	creased volume of, sv	weat produced; 1 mark
3(c)		(c)	I ref. to h 2 (of) wa 3 (idea o I sweat a 4 (heat/h body/sk	ater/sweat ; of) need for heat/later absorbs heat unqualif	

The results are shown in Fig. 3.2.

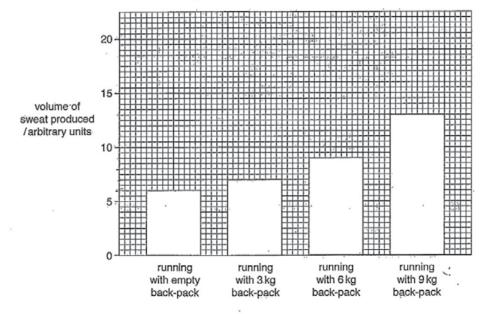


Fig. 3.2

Select page

3(b)

Your Mark	Q3	Mark s	cheme			
2/0)	(a)	label	name	function		
3(a)		F	capillary;	transports blood/h supplies oxygen g to cells/removes d dioxide; I vein/artery	lucose	
3(b)(i)		G	receptors/sensory neurone;	detect changes in environment/stim touch/pressure/ temperature; R detects temperature blood I responds to	ulus/	
		Н				
3(b)(ii)		J	adipose tissue/fat/fatty tissue;	insulation/prevent heat loss/keeps b warm/shock abso energy store; I fatty acids I dermis	ody	
	(b)(i)	with no	back-pack 6 (arbitrary	unital:	o marks	
	(5)(1)		g back-pack 13 (arbitra		3 marks	
0(1)	(b)(ii)	more/increased volume of, sweat produced; 1 ma				
3(c)	(c)	1 ref. to evaporation; I ref. to heat loss by conduction/convection/radiation 2 (of) water/sweat; 3 (idea of) need for heat/latent heat/energy; I sweat absorbs heat unqualified 4 (heat/latent heat/energy for evaporation) taken from body/skin/blood;				
		boola c	carries heat ;		3 marks	

	(i)	Use Fig. 3.2 to state:						
		the volume of sweat produced when running with an empty back-pack						
		the volume of sweat produced when running with a 9 kg back-pack						
		arbitrary units						
		Use these two volumes to calculate the percentage increase in sweat production when running with a $9\mathrm{kg}$ back-pack.						
		Give your answer to the nearest whole number.						
		Show your working large increase = $\frac{(3-6)}{0.3} \times \frac{100}{0.3} = 53.846$						
		Decentage increase = $\frac{(13-6)}{13} \times 100 \times = 53.846$						
		•						
		5H %						
	(ii)	This investigation was carried out when the air temperature was 10 °C.						
		Predict the effect of carrying out the same investigation if the air temperature was 15°C. The Whome of Sweet produced will						
		Increase: [1]						
(c)	Wh	en the student was at rest the volume of sweat produced was 2 arbitrary units.						
	The	e volume increases during exercise as the body needs to keep cool.						
	Exp	plain how this cooling takes place.						
	5	sweet is released at the top of the skin, the						
		water in the sweat evaporates, evaporation needs						
		reat energy from the body so heat energy						
	B	removed from the body so the body						
	(ools.						
		[3]						
		[Total: 13]						

Select page

Your	
Mark	

3(a)

3(b)(i)

3(b)(ii)

Mark scheme

Q3

(a)	label	name	function				
	F	capillary;	transports blood/heat/ supplies oxygen glucose to cells/removes carbon dioxide; I vein/artery				
	G	receptors/sensory neurone;	detect changes in external environment/stimulus/ touch/pressure/ temperature; R detects temperature of the blood I responds to				
	Н						
	J	adipose tissue/fat/fatty tissue;	insulation/prevention of heat loss/keeps body warm/shock absorber/ energy store; I fatty acids I dermis				
	6 marks						

3(c)

(b)(i)

(b)(ii)

(c)

117(%); **I** 116.6%

more/increased volume of, sweat produced; 1 mark

1 ref. to evaporation;
I ref. to heat loss by conduction/convection/radiation

2 (of) water/sweat; 3 (idea of) need for heat/latent heat/energy;

with no back-pack 6 (arbitrary units);

with 9 kg back-pack 13 (arbitrary units);

I sweat absorbs heat unqualified

4 (heat/latent heat/energy for evaporation) taken from/body/skin/blood;

5 blood carries heat;

3 marks

3 Fig. 3.1 shows a section through the skin.

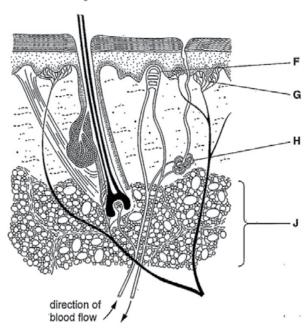


Fig. 3.1

(a) Name the structures labelled in Fig. 3.1 and outline a function in the skin for each one.

Write your answers in Table 3.1.

An example has been done for you.

Table 3.1

structure	name of structure	function in the skin
F	blood capillines	take in and \$out blood.
G	receptors	transport signals.
н	sweat gland	produces sweat for cooling the body
J	Spongy mesophyll	for gas exchange

Select page

	Your					
	Mark	Q 3	Mark so	cheme		
3(a)		(a)	label	name	function	
3(a)			F	capillary;	transports blood/hea supplies oxygen gluc to cells/removes carl dioxide; I vein/artery	ose
3(b)(i)			G	receptors/sensory neurone;	detect changes in extension environment/stimulutouch/pressure/temperature; R detects temperature the blood I responds to	s/
			Н			
8(b)(ii)			J	adipose tissue/fat/fatty tissue;	insulation/prevention heat loss/keeps body warm/shock absorbe energy store; I fatty acids I dermis	y er/
		(1) (1)	**1			marks
		(b)(i)		back-pack 6 (arbitrary g back-pack 13 (arbitra	ry units);	marks
-1.		(b)(ii)	more/in	creased volume of, sv	weat produced;	1 mark
3(c)		(c)	I ref. to h 2 (of) wa 3 (idea o I sweat a 4 (heat/l body/sk	ater/sweat; If) need for heat/later absorbs heat unqualif latent heat/energy fo in/blood;	ied r evaporation) taken fro	om/
			5 blood	carries heat ;	3	marks

The results are shown in Fig. 3.2.

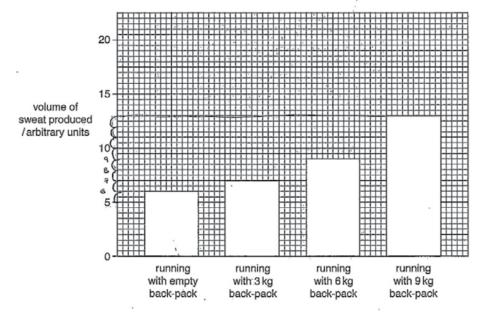


Fig. 3.2

Select page

ır rk 03	Mark s	cheme	
(a)	label	name	function
	F	capillary;	transports blood/heat/ supplies oxygen glucose to cells/removes carbon dioxide; I vein/artery
	G	receptors/sensory neurone;	detect changes in external environment/stimulus/ touch/pressure/ temperature; R detects temperature of the blood I responds to
	Н		
	J	adipose tissue/fat/fatty tissue;	insulation/prevention of heat loss/keeps body warm/shock absorber/ energy store; I fatty acids I dermis
			6 mark
(b)(i)			
(b)(ii)	more/ir	ncreased volume of, s	weat produced; 1 mar
(c)	I ref. to 2 (of) w 3 (idea I sweat 4 (heat,	rater/sweat; of) need for heat/later absorbs heat unqualit	

5 blood carries heat;

	(i)	Use Fig. 3.2 to state:
		the volume of sweat produced when running with an empty back-pack
		6arbitrary units
		the volume of sweat produced when running with a 9 kg back-pack
		13
		Use these two volumes to calculate the percentage increase in sweat production when running with a 9kg back-pack.
		Give your answer to the nearest whole number.
		Show your working.
		€ XI∞
		. 16.
		4 66%
	(ii)	This investigation was carried out when the air temperature was 10 °C.
		Predict the effect of carrying out the same investigation if the air temperature was 15 °C.
		Different volumes of sweat produced.
		[1]
c)	Whe	en the student was at rest the volume of sweat produced was 2 arbitrary units.
	The	volume increases during exercise as the body needs to keep cool.
	Exp	lain how this cooling takes place.
		Cooling takes space by evaporating of water
	.m	uscles need more energy to contract, more loss
		sweat and sweat goes out to keep the
	v	ody temperature cool and that constant
		[3]
		[Total: 13]

Select page

Your	
Mark	

3(a)

3(b)(i)

3(b)(ii)

Q3	Mark so	cheme			
(a)	label	name	function		
	F	capillary;	transports blood/heat/ supplies oxygen glucose to cells/removes carbon dioxide; I vein/artery		
	G receptors/sensory neurone;		detect changes in external environment/stimulus/touch/pressure/temperature; R detects temperature of the blood I responds to		
	Н				
	J	adipose tissue/fat/fatty tissue;	insulation/prevention of heat loss/keeps body warm/shock absorber/energy store; I fatty acids I dermis		
(1-) (:)			6 marks		
(b)(i)		back-pack 6 (arbitrary g back-pack 13 (arbitra			
(b)(ii)	more/in	creased volume of, sv	weat produced; 1 mark		
(c)	1 ref. to evaporation; I ref. to heat loss by conduction/convection/radiation 2 (of) water/sweat; 3 (idea of) need for heat/latent heat/energy; I sweat absorbs heat unqualified 4 (heat/latent heat/energy for evaporation) taken from/body/skin/blood; 5 blood carries heat; 3 marks				

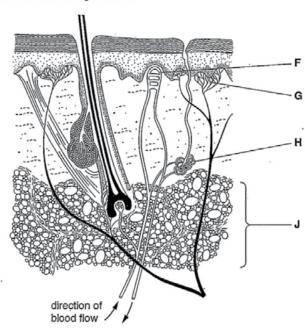


Fig. 3.1

(a) Name the structures labelled in Fig. 3.1 and outline a function in the skin for each one.

Write your answers in Table 3.1.

An example has been done for you.

Table 3.1

structure	name of structure	function in the skin
F	Vein	Support Skin with blood Blood Supply
G	Nervs	control movement.
н	sweat gland	produces sweat for cooling the body
J	Tissue (group of eeus)	Respiration in skin

Select page

Your Mark	23	Mark so	heme	
(a	a)	label	name	function
3(a)		F	capillary ;	transports blood/heat/ supplies oxygen glucose to cells/removes carbon dioxide; I vein/artery
3(b)(i)		G	receptors/sensory neurone;	detect changes in external environment/stimulus/ touch/pressure/ temperature; R detects temperature of the blood I responds to
		Н		
3(b)(ii)		J	adipose tissue/fat/fatty tissue;	insulation/prevention of heat loss/keeps body warm/shock absorber/ energy store; I fatty acids I dermis
<u></u>	o)(i)	with no l	pack-pack 6 (arbitrary	
(6	5/(1/		back-pack 13 (arbitra	
	o)(ii)	more/in	creased volume of, sv	weat produced; 1 mark
3(c) (c	e)	I ref. to h 2 (of) wa 3 (idea o I sweat a 4 (heat/I	iter/sweat; f) need for heat/laten absorbs heat unqualifi atent heat/energy for	G ,
			in/blood ; carries heat ;	3 marks

The results are shown in Fig. 3.2.

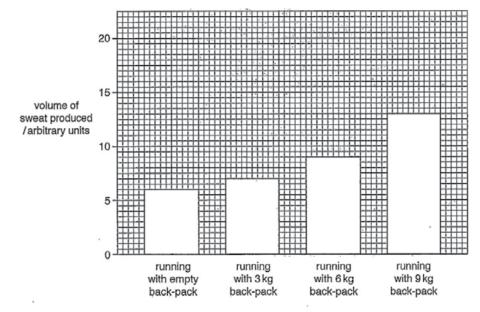


Fig. 3.2

Select page

Your Mark	Q3	Mark so	heme		
3(a)	(a)	label	name	function	
3(a)		F	capillary;	transports blood/heat/ supplies oxygen glucose to cells/removes carbon dioxide; I vein/artery	
3(b)(i)		G	receptors/sensory neurone;	detect changes in externa environment/stimulus/ touch/pressure/ temperature; R detects temperature of the blood I responds to	I
		Н			
3(b)(ii)		J	adipose tissue/fat/fatty tissue;	insulation/prevention of heat loss/keeps body warm/shock absorber/ energy store; I fatty acids I dermis	rks
	(b)(i)		back-pack 6 (arbitrary g back-pack 13 (arbitra		
		I 116.6%)	3 mai	rks
0()	(b)(ii)	more/in	creased volume of, sv	weat produced; 1 ma	ark
3(c)	(c)	1 ref. to evaporation; I ref. to heat loss by conduction/convection/radia 2 (of) water/sweat; 3 (idea of) need for heat/latent heat/energy; I sweat absorbs heat unqualified 4 (heat/latent heat/energy for evaporation) taken			
			in/blood ; carries heat ;	3 mai	ks

	(i)	Use Fig. 3.2 to state:
		the volume of sweat produced when running with an empty back-pack
		the volume of sweat produced when running with a 9kg back-pack
		Use these two volumes to calculate the percentage increase in sweat production when running with a 9kg back-pack.
		Give your answer to the nearest whole number.
		Show your working. Number xloo 170 tad xloo 13 x 100
	٠.	· · · · · ·
		· at
		4.6
	(ii)	This investigation was carried out when the air temperature was 10 °C.
		Predict the effect of carrying out the same investigation if the air temperature was 15 °C.
		volume of Sweat produced increase
		[1]
c)	Whe	en the student was at rest the volume of sweat produced was 2 arbitrary units.
	The	volume increases during exercise as the body needs to keep cool.
	Ехр	lain how this cooling takes place.
		By sweating mare as when sweat
,	U.	olume increases that means that the
	b	ody is working an maintainning a
	(ody is working on maintainning a
		[3]
		[Total: 13]

Select page

Your	
Mark	

3(a)

3(b)(i)

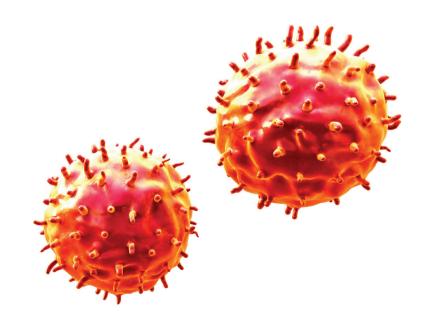
3(b)(ii)

3(c)

meurone; environment/stimulus/touch/pressure/temperature; R detects temperature of the blood I responds to H J adipose tissue/fat/fatty tissue; insulation/prevention of heat loss/keeps body warm/shock absorber/energy store; I fatty acids I dermis 6 mai (b)(i) with no back-pack 6 (arbitrary units); with 9 kg back-pack 13 (arbitrary units); 117(%); I 116.6% 3 mai (b)(ii) more/increased volume of, sweat produced; 1 mai (c) 1 ref. to evaporation; I ref. to heat loss by conduction/convection/radiation 2 (of) water/sweat; 3 (idea of) need for heat/latent heat/energy; I sweat absorbs heat unqualified 4 (heat/latent heat/energy for evaporation) taken from/	Q3	Mark s	scheme			
supplies oxygen glucose to cells/removes carbon dioxide; I vein/artery G receptors/sensory neurone; adetect changes in externate environment/stimulus/touch/pressure/temperature; R detects temperature of the blood I responds to H J adipose insulation/prevention of heat loss/keeps body warm/shock absorber/energy store; I fatty acids I dermis 6 mai (b)(ii) with no back-pack 6 (arbitrary units); with 9 kg back-pack 13 (arbitrary units); 117(%); I 116.6% 3 mai (b)(iii) more/increased volume of, sweat produced; 1 mai (c) 1 ref. to evaporation; I ref. to heat loss by conduction/convection/radiation 2 (of) water/sweat; 3 (idea of) need for heat/latent heat/energy; I sweat absorbs heat unqualified 4 (heat/latent heat/energy for evaporation) taken from/	(a)	label	I name function			
neurone; environment/stimulus/ touch/pressure/ temperature; R detects temperature of the blood I responds to H J adipose insulation/prevention of heat loss/keeps body warm/shock absorber/ energy store; I fatty acids I dermis 6 mai (b)(i) with no back-pack 6 (arbitrary units); with 9 kg back-pack 13 (arbitrary units); 117(%); I 116.6% 3 mai (b)(ii) more/increased volume of, sweat produced; 1 ref. to evaporation; I ref. to heat loss by conduction/convection/radiation 2 (of) water/sweat; 3 (idea of) need for heat/latent heat/energy; I sweat absorbs heat unqualified 4 (heat/latent heat/energy for evaporation) taken from/		F	capillary;	supplies oxygen glucose to cells/removes carbon dioxide;		
dipose tissue/fat/fatty tissue; insulation/prevention of heat loss/keeps body warm/shock absorber/energy store; I fatty acids I dermis 6 mai (b)(i) with no back-pack 6 (arbitrary units); with 9 kg back-pack 13 (arbitrary units); 117(%); I 116.6% 3 mai (b)(ii) more/increased volume of, sweat produced; 1 mai (c) 1 ref. to evaporation; I ref. to heat loss by conduction/convection/radiation 2 (of) water/sweat; 3 (idea of) need for heat/latent heat/energy; I sweat absorbs heat unqualified 4 (heat/latent heat/energy for evaporation) taken from/		G	1	touch/pressure/ temperature; R detects temperature of the blood		
tissue/fat/fatty tissue; heat loss/keeps body warm/shock absorber/energy store; I fatty acids I dermis 6 mai (b)(i) with no back-pack 6 (arbitrary units); with 9 kg back-pack 13 (arbitrary units); 117(%); I 116.6% 3 mai (b)(ii) more/increased volume of, sweat produced; 1 mai (c) 1 ref. to evaporation; I ref. to heat loss by conduction/convection/radiation 2 (of) water/sweat; 3 (idea of) need for heat/latent heat/energy; I sweat absorbs heat unqualified 4 (heat/latent heat/energy for evaporation) taken from/		Н				
(b)(i) with no back-pack 6 (arbitrary units); with 9 kg back-pack 13 (arbitrary units); 117(%); I 116.6% 3 mail (b)(ii) more/increased volume of, sweat produced; 1 mail (c) 1 ref. to evaporation; I ref. to heat loss by conduction/convection/radiation 2 (of) water/sweat; 3 (idea of) need for heat/latent heat/energy; I sweat absorbs heat unqualified 4 (heat/latent heat/energy for evaporation) taken from/		J	tissue/fat/fatty	heat loss/keeps body warm/shock absorber/ energy store; I fatty acids		
with 9 kg back-pack 13 (arbitrary units); 117(%); I 116.6% 3 mai (b)(ii) more/increased volume of, sweat produced; 1 ref. to evaporation; I ref. to heat loss by conduction/convection/radiation 2 (of) water/sweat; 3 (idea of) need for heat/latent heat/energy; I sweat absorbs heat unqualified 4 (heat/latent heat/energy for evaporation) taken from/		6 marks				
(c) 1 ref. to evaporation; I ref. to heat loss by conduction/convection/radiation 2 (of) water/sweat; 3 (idea of) need for heat/latent heat/energy; I sweat absorbs heat unqualified 4 (heat/latent heat/energy for evaporation) taken from/	(b)(i)	with 9 kg back-pack 13 (arbitrary units); 117(%);				
I ref. to heat loss by conduction/convection/radiation 2 (of) water/sweat; 3 (idea of) need for heat/latent heat/energy; I sweat absorbs heat unqualified 4 (heat/latent heat/energy for evaporation) taken from/	(b)(ii)	more/increased volume of, sweat produced; 1 mark				
body/skin/blood;	(c)	I ref. to heat loss by conduction/convection/radiation 2 (of) water/sweat; 3 (idea of) need for heat/latent heat/energy; I sweat absorbs heat unqualified				

5 blood carries heat;

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554


Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 3 (May / June 2016), Question 4

Cambridge IGCSE[™]
Biology 0610

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

 ${\bf 4} \quad \hbox{ Choose words from the list to complete the sentences about hormones.}$

Each word may be used once, more than once, or not at all.

adrenaline	blood	decrease	glands
increase	insulin	nerves	mạin
saliva	system	target	urine

Hormones are chemicals produced by achemolishes glords				
Hormones are carried round the body by theblood				
A hormone affects the activity of one part of the body called the				
After a person has eaten a meal the pancreas releases the hormone\\Su\h\n				
One of the effects of this hormone is to lower the glucose level in the				
[Total: 5]				

Select page

Your Mark

.

Q4	Mark scheme	
	glands; blood; target; insulin;	
	<u>blood</u> ;	5 marks

4 Choose words from the list to complete the sentences about hormones.

Each word may be used once, more than once, or not at all.

adrenaline	plood.	decrease	glands
increase	insulin	nerves	mạin
saliva	system	target	urine

Hormones are carried round the body by the	
Hormones are carried round the body by the	
A hormone affects the activity of one part of the body called the	
After a person has eaten a meal the pancreas releases the hormoneins.ulin	
One of the effects of this hormone is to lower the glucose level in the\u00c4	[5]

[Total: 5]

Select page

Your Mark

.

Q4	Mark scheme	
	glands ;	
	blood; target;	
	<u>insulin</u> ;	
	blood;	5 marks

4 Choose words from the list to complete the sentences about hormones.

Each word may be used once, more than once, or not at all.

adrenaline	blood	decrease	glands
increase	insulin	nerves	main
saliva	system	target	urine

Hormones are chemicals produced by <u>b\ດອ</u>	
Hormones are carried round the body by the 🙀 🦼	
A hormone affects the activity of one part of the body called the	
After a person has eaten a meal the pancreas releases the hormone	
One of the effects of this hormone is to lower the glucose level in the\dag{\dag{\dag{\lambda}} \dag{\dag{\dag{\dag{\dag{\dag{\dag{	[5]

Select page

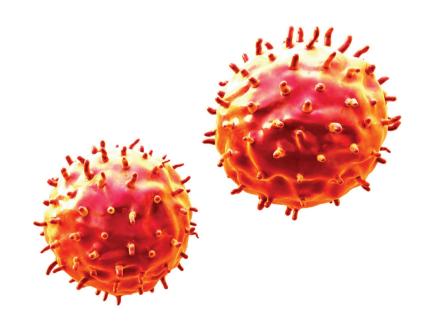
Your Mark

.

[Total: 5]

Q4	Mark scheme	
	glands; blood; target; insulin;	
	blood;	5 marks

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554


Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 3 (May / June 2016), Question 5

Cambridge IGCSE[™]
Biology 0610

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

5 Fig. 5.1 shows some apparatus used to investigate transpiration.

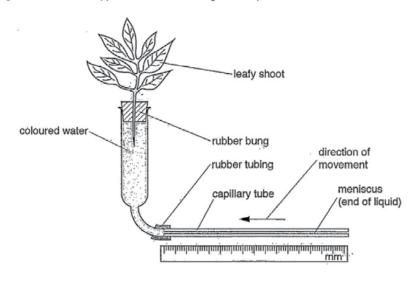


Fig. 5.1

The rate of transpiration can be calculated by measuring how far the meniscus moves in five minutes.

(a) Name the tissue that transports water from the roots to the leaves in a plant.

	[1
,	L.

Select page

	Your Mark
5(a)	
5(b)(i)	
5(b)(ii)	
5(c)(i)	

Q5	Mark scheme	
(a)	xylem;	1 mark
(b)(i)	rate of transpiration increases as temperature rises A positive correlation rate of increase becomes faster as temperature ris I efficiency the higher the temperature the greater the distance by the meniscus ora; R incorrect causal relationship in an ora	es/ ora ;
(b)(ii)	1 enzymes will be destroyed/cease to function; A enzymes denatured 2 shoot/plant/leaf/cells die/no transpiration; 3 water loss greater than water intake; A wilting 4 difficulty in achieving temperature (in lab);	2 marks
(c)(i)	less transpiration/(meniscus) will not move as fast far/slower rate of movement/less water loss/less uptake; I smaller/lower results	
(c)(ii)	1 smaller leaves; 2 fewer leaves; 3 less surface area (for transpiration); 4 fewer stomata (through which transpiration can c	occur) ; 2 marks
(d)	humidity; A air movement/light (intensity)/carbon dioxide concentration	1 mark

5(d)	
o(u)	

5(c)(ii)

Table 5.1 shows the results recorded using the apparatus shown in Fig. 5.1.

Table 5.1

temperature/°C	distance moved by meniscus in five minutes/mm
10	28
20	32 .
30.	37
40	44
50	53

(i)	State one conclusion that can be drawn from the results in Table 5.1 about the effect of temperature on the rate of transpiration.
	when he tempreture increase, the
	rate of transpication increases [1]
(ii)	Suggest why the investigation was not continued at temperatures above 50 °C.
	because the enzymes in the plant in the
	denouticed from high temprature.
	[2]

Select	
page	

Your Mark	Q5	Mark scheme	
Mark	(a)	xylem;	1 mark
5(a) 5(b)(i)	(b)(i)	rate of transpiration increases as temperature rise A positive correlation rate of increase becomes faster as temperature ri I efficiency the higher the temperature the greater the distant by the meniscus ora; R incorrect causal relationship in an ora	ses/ ora ;
5(b)(ii)	(b)(ii)	1 enzymes will be destroyed/cease to function; A enzymes denatured 2 shoot/plant/leaf/cells die/no transpiration; 3 water loss greater than water intake; A wilting 4 difficulty in achieving temperature (in lab);	2 marks
	(c)(i)	less transpiration/(meniscus) will not move as fas far/slower rate of movement/less water loss/less uptake; I smaller/lower results	
5(c)(i)	(c)(ii)	1 smaller leaves; 2 fewer leaves; 3 less surface area (for transpiration); 4 fewer stomata (through which transpiration can	occur) ; 2 marks
5(c)(ii)	(d)	humidity; A air movement/light (intensity)/carbon dioxide concentration	1 mark

	l
	l
וחומ	l
J(4/	

Fig. 5.2

	(i)	Predict how these results would be different to the results shown in Table 5.1.
		The results viu be less than than the
		resuls in table 5.1 [1]
	(ii)	Give two reasons why the results would be different.
		be cause this lealy shoot is smaller
		than the other and has less leaves
		Han the other, so the amount of cater moved
		E) PC 1/25
(d)	Sta	te one factor, other than temperature, that can affect the rate of transpiration.
		humidity.
		[1]
		[Total: 8]

Select page

5(d)

Your Mark	Q5	Mark scheme
	(a)	xylem; 1 mark
5(a) 5(b)(i)	(b)(i)	rate of transpiration increases as temperature rises/ora; A positive correlation rate of increase becomes faster as temperature rises/ora; I efficiency the higher the temperature the greater the distance moved by the meniscus ora; R incorrect causal relationship in an ora 1 mark
5(b)(ii)	(b)(ii)	1 enzymes will be destroyed/cease to function; A enzymes denatured 2 shoot/plant/leaf/cells die/no transpiration; 3 water loss greater than water intake; A wilting 4 difficulty in achieving temperature (in lab); 2 marks
	(c)(i)	less transpiration/(meniscus) will not move as fast or as far/slower rate of movement/less water loss/less water uptake; I smaller/lower results 1 mark
5(c)(i)	(c)(ii)	1 smaller leaves; 2 fewer leaves; 3 less surface area (for transpiration); 4 fewer stomata (through which transpiration can occur); 2 marks
5(c)(ii)	(d)	humidity; A air movement/light (intensity)/carbon dioxide concentration 1 mark

5 Fig. 5.1 shows some apparatus used to investigate transpiration.

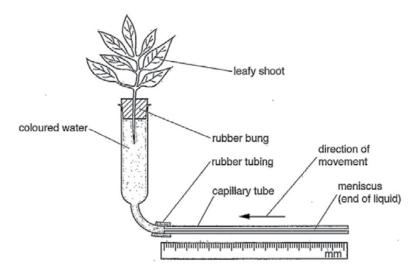


Fig. 5.1

The rate of transpiration can be calculated by measuring how far the meniscus moves in five minutes.

(a) Name the tissue that transports water from the roots to the leaves in a plant.

√ u	1.	100 .	
_ ^ 7	1Pm -	Gill 17	Γ
	************		 L

Select page

	Your Mark
5(a)	
5(b)(i)	
5(b)(ii)	
5(c)(i)	

Q5	Mark scheme	
(a)	xylem;	1 mark
(b)(i)	rate of transpiration increases as temperature rise A positive correlation rate of increase becomes faster as temperature ri I efficiency the higher the temperature the greater the distant by the meniscus ora; R incorrect causal relationship in an ora	ses/ ora ;
(b)(ii)	1 enzymes will be destroyed/cease to function; A enzymes denatured 2 shoot/plant/leaf/cells die/no transpiration; 3 water loss greater than water intake; A wilting 4 difficulty in achieving temperature (in lab);	2 marks
(c)(i)	less transpiration/(meniscus) will not move as fas far/slower rate of movement/less water loss/less uptake; I smaller/lower results	
(c)(ii)	1 smaller leaves; 2 fewer leaves; 3 less surface area (for transpiration); 4 fewer stomata (through which transpiration can	occur) ; 2 marks
(d)	humidity; A air movement/light (intensity)/carbon dioxide concentration	1 mark

5(d)	
0(01)	

5(c)(ii)

Table 5.1 shows the results recorded using the apparatus shown in Fig. 5.1.

Table 5.1

temperature/°C	distance moved by meniscus in five minutes/mm
10	28
20	32
30	37
40	44
50	53

(i)	State one conclusion that can be drawn from the results in Table 5.1 about the effect of temperature on the rate of transpiration. AS Lewise And Live in Crease the Association for the conclusion of the conclus
(ii)	Suggest why the investigation was not continued at temperatures above 50 °C.
	Belowse above 50°C Courses the air
	to be Southwated with water whour (humidity)
	Soft vate of transpiration will decrease
	ros.

Select	
page	

Your Mark

5(a)

5(b)(i)

5(b)(ii)

5(c)(i)

5(c)(ii)

Q5	Mark scheme	
(a)	xylem;	1 marl
(b)(i)	rate of transpiration increases as temperature rise A positive correlation rate of increase becomes faster as temperature ri I efficiency the higher the temperature the greater the distant by the meniscus ora; R incorrect causal relationship in an ora	ses/ora
(b)(ii)	1 enzymes will be destroyed/cease to function; A enzymes denatured 2 shoot/plant/leaf/cells die/no transpiration; 3 water loss greater than water intake; A wilting 4 difficulty in achieving temperature (in lab);	2 marks
(c)(i)	less transpiration/(meniscus) will not move as fas far/slower rate of movement/less water loss/less uptake; I smaller/lower results	t or as
(c)(ii)	1 smaller leaves; 2 fewer leaves; 3 less surface area (for transpiration); 4 fewer stomata (through which transpiration can	occur) ; 2 mark s
(d)	humidity; A air movement/light (intensity)/carbon dioxide concentration	1 marl

מומו	l
JIGI	
- 4 - 7	l

Fig. 5.2

	(i)	Predict how these results would be different to the results shown in Table 5.1. The diffance moved by the meniscus in 5 minute will decrease. [1]
	(ii)	Give two reasons why the results would be different.
		OBECanse few leaves are used
		@ Beause the vate of transpiration 2)
(d)		te one factor, other than temperature, that can affect the rate of transpiration.
	\	numidity
		[1]
		[Total: 8]

Select page

Your Mark	Q5	Mark scheme	
	(a)	xylem;	1 mark
5(a) 5(b)(i)	(b)(i)	rate of transpiration increases as temperature rises/ A positive correlation rate of increase becomes faster as temperature rise I efficiency the higher the temperature the greater the distance by the meniscus ora; R incorrect causal relationship in an ora	s/ora;
5(b)(ii)	(b)(ii)	1 enzymes will be destroyed/cease to function; A enzymes denatured 2 shoot/plant/leaf/cells die/no transpiration; 3 water loss greater than water intake; A wilting 4 difficulty in achieving temperature (in lab); 2	! marks
	(c)(i)	less transpiration/(meniscus) will not move as fast of far/slower rate of movement/less water loss/less vuptake; I smaller/lower results	
5(c)(i)	(c)(ii)	1 smaller leaves; 2 fewer leaves; 3 less surface area (for transpiration); 4 fewer stomata (through which transpiration can oc	ccur) ;
5(c)(ii)	(d)	humidity; A air movement/light (intensity)/carbon dioxide concentration	1 mark

5 Fig. 5.1 shows some apparatus used to investigate transpiration.

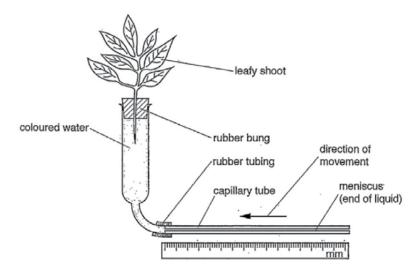


Fig. 5.1

The rate of transpiration can be calculated by measuring how far the meniscus moves in five minutes,

(a) Name the tissue that transports water from the roots to the leaves in a plant.

X4	l'em	۲.
	, , , , , , , , , , , , , , , , , , , ,	ŀ

Select page

	Your Mark
5(a)	
5(b)(i)	
6(b)(ii)	
5(c)(i)	

Q5	Mark scheme	
(a)	xylem; 1 ma	ark
(b)(i)	rate of transpiration increases as temperature rises/ora A positive correlation rate of increase becomes faster as temperature rises/or I efficiency the higher the temperature the greater the distance mov by the meniscus ora; R incorrect causal relationship in an ora 1 ma	'a ;
(b)(ii)	1 enzymes will be destroyed/cease to function; A enzymes denatured 2 shoot/plant/leaf/cells die/no transpiration; 3 water loss greater than water intake; A wilting 4 difficulty in achieving temperature (in lab); 2 mai	rks
(c)(i)	less transpiration/(meniscus) will not move as fast or as far/slower rate of movement/less water loss/less water uptake; I smaller/lower results 1 ma	
(c)(ii)	1 smaller leaves; 2 fewer leaves; 3 less surface area (for transpiration); 4 fewer stomata (through which transpiration can occur) 2 mai	
(d)	humidity; A air movement/light (intensity)/carbon dioxide concentration 1 ma	arl

5(d)	
Jul	

5(c)(ii)

Table 5.1 shows the results recorded using the apparatus shown in Fig. 5.1.

Table 5.1

temperature/°C	distance moved by meniscus in five minutes/mm
10	28
20	32
30	37
40	44
50	53

(i)	State one conclusion that can be drawn from the results in Table 5.1 about the effect of temperature on the rate of transpiration.
	as temprature increases the distrac
	moved by Meniscus & increases [1]
(ii)	
	because it would have been too hot for the
	meniscus to move and the theremoneter
	wouldn't record because it has reached
	the end of its scale [2]

Select	
page	

5(a)

5(b)(i)

5(b)(ii)

5(c)(i)

5(c)(ii)

Your			
Mark	Q5	Mark scheme	
	(a)	xylem;	1 mar
(b)(i)	rate of transpiration increases as temperature rises/ora; A positive correlation rate of increase becomes faster as temperature rises/ora I efficiency the higher the temperature the greater the distance moved by the meniscus ora; R incorrect causal relationship in an ora 1 mark		
	(b)(ii)	1 enzymes will be destroyed/cease to function; A enzymes denatured 2 shoot/plant/leaf/cells die/no transpiration; 3 water loss greater than water intake; A wilting 4 difficulty in achieving temperature (in lab);	2 mark
(c)(i)	(c)(i)	less transpiration/(meniscus) will not move as fas far/slower rate of movement/less water loss/less uptake; I smaller/lower results	
	(c)(ii)	1 smaller leaves; 2 fewer leaves; 3 less surface area (for transpiration); 4 fewer stomata (through which transpiration can	occur) ; 2 mark
	(d)	humidity; A air movement/light (intensity)/carbon dioxide concentration	1 mar

5(d)	

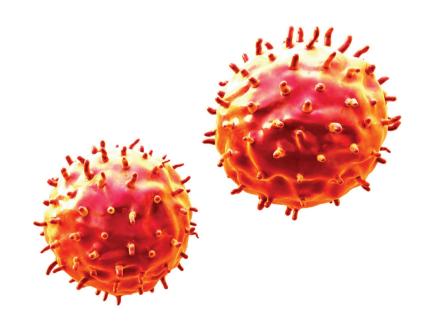
Fig. 5.2

(i) Predict how these results would be different to the results shown in Table 5.1.
acaxale[1]
(ii) Give two reasons why the results would be different.
diffrent conditions. diffrent appointes
used:
[2]
(d) State one factor, other than temperature, that can affect the rate of transpiration.
humidity and amount of rain fall
[1]
[Total: 8]

Select page

Your Mark	Q5	Mark scheme
	(a)	xylem; 1 mark
5(a) 5(b)(i)	(b)(i)	rate of transpiration increases as temperature rises/ora; A positive correlation rate of increase becomes faster as temperature rises/ora; I efficiency the higher the temperature the greater the distance moved by the meniscus ora; R incorrect causal relationship in an ora 1 mark
5(b)(ii)	(b)(ii)	1 enzymes will be destroyed/cease to function; A enzymes denatured 2 shoot/plant/leaf/cells die/no transpiration; 3 water loss greater than water intake; A wilting 4 difficulty in achieving temperature (in lab); 2 marks
	(c)(i)	less transpiration/(meniscus) will not move as fast or as far/slower rate of movement/less water loss/less water uptake; I smaller/lower results 1 mark
5(c)(i)	(c)(ii)	1 smaller leaves; 2 fewer leaves; 3 less surface area (for transpiration); 4 fewer stomata (through which transpiration can occur); 2 marks
5(c)(ii)	(d)	humidity; A air movement/light (intensity)/carbon dioxide concentration 1 mark

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554


Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 3 (May / June 2016), Question 6

Cambridge IGCSE[™]
Biology 0610

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

6 (a) Define the term genetic engineering.

femous of a certain from chromosomes
of a species and for section it into another aitherent species to
obtain desirable characteristic

(b) State two examples of genetic engineering.

For each example, outline how it benefits humans.

Write your answers in Table 6.1.

Table 6.1

example	benefit to humans	
Forking genes of Production of insulin from humans and midding it to backeria inserting	insulin produced by bacteria will be taken and prescribed to people who have problems with secretion of insulin inbod	
taking geness from a micro-organism that is not affected by insectiside and adding it to Plants	plant crops will not be harmed by insecticides to have a healthier crops if insecticide affat soil	

[4]

[Total: 6]

Select page

Your
Mark

6(a)

Q6	Mark scheme		
(a)	change the genetic material (of an organism); by removing/changing/inserting (individual) genes; from one organism/species to another; 2 marks		
(b)	I references to artificial select mark as a pair, but benefit mu		
	example	benefit	
	to make (bacteria) produce insulin ;	treat diabetes/cheaper method of production;	
	crop plants resistant to herbicides/pesticides;	kill weeds/other pests without killing plant so more food produced;	
	crop plants resistant to insects;	less of plant eaten by insect – more food produced ;	
	crop plants produce more vitamins ;	fewer cases of vitamin deficiency;	
	any valid example;	any valid benefit ;	
		4	

4 marks

6 (a) Define the term genetic engineering.

table a gene from a species and put

it in and their species by backeria as it produce

rapidly to developits characteristics.

[2]

(b) State two examples of genetic engineering.

For each example, outline how it benefits humans.

Table 6.1

Write your answers in Table 6.1.

example	benefit to humans
Selective breading	having Cattles with more most and milk
Pas insulin	taking insulin andput with bacteria where bacteria where bacteria where bacteria willing increase.

[4]

[Total: 6]

Select page

You	r
Mai	rk

6(a)

Q6	Mark scheme		
(a)	change the genetic material (of an organism); by removing/changing/inserting (individual) genes; from one organism/species to another; 2 marks		
(b)	I references to artificial select mark as a pair, but benefit mu	· - · ·	
	example	benefit	
	to make (bacteria) produce insulin ;	treat diabetes/cheaper method of production ;	
	crop plants resistant to herbicides/pesticides;	kill weeds/other pests without killing plant so more food produced;	
	crop plants resistant to insects;	less of plant eaten by insect – more food produced ;	
	crop plants produce more vitamins ;	fewer cases of vitamin deficiency;	
	any valid example ;	any valid benefit ;	
		4 marks	

(b) State two examples of genetic engineering.

For each example, outline how it benefits humans.

Write your answers in Table 6.1.

Table 6.1

example	benefit to humans
DNA	help to know the person type
hotero Zygoize	it's the gene that 200 more Jifferent gene

[4]

[Total: 6]

Select page

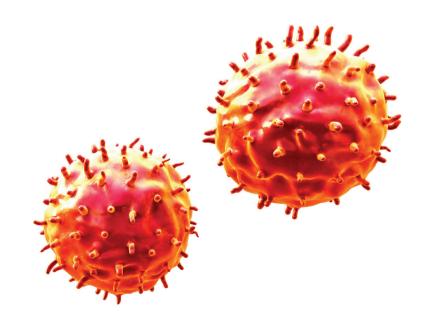
Your Mark

6(a)

-	

Q6	Mark scheme		
(a)	change the genetic material (of an organism); by removing/changing/inserting (individual) genes; from one organism/species to another; 2 marks		
(b)	I references to artificial selection mark as a pair, but benefit must match example		
	example	benefit	
	to make (bacteria) produce insulin ;	treat diabetes/cheaper method of production ;	
	crop plants resistant to herbicides/pesticides;	kill weeds/other pests without killing plant so more food produced;	
	crop plants resistant to insects;	less of plant eaten by insect – more food produced ;	
	crop plants produce more vitamins ;	fewer cases of vitamin deficiency ;	
	any valid example ;	any valid benefit ;	
		4 marks	

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554


Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 3 (May / June 2016), Question 7

Cambridge IGCSE[™]
Biology 0610

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

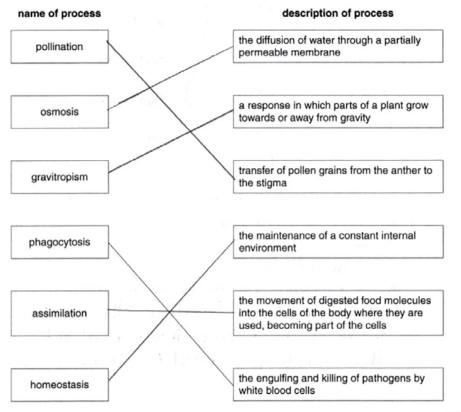
Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

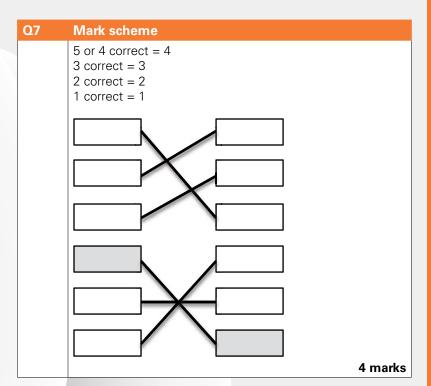

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

7 The boxes on the left contain the names of some processes taking place in living organisms.

The boxes on the right contain descriptions of these processes.

Draw **one** straight line from each box on the left to a box on the right to link the name of the process with its description.

An example has been done for you.

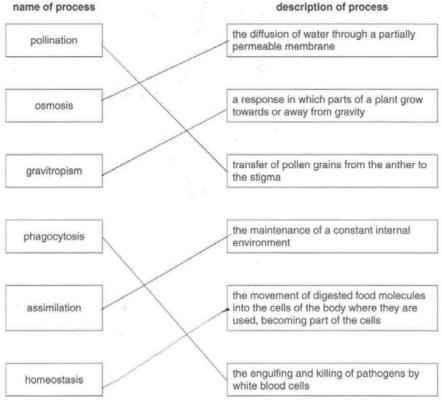

[4]

[Total: 4]

Select page

Your Mark

7

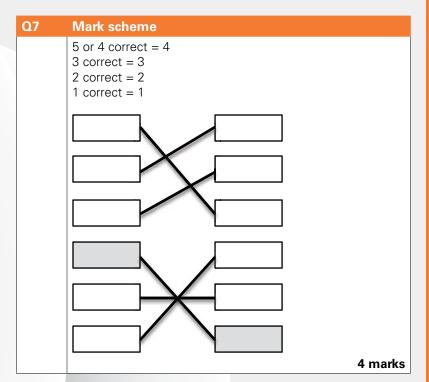


7 The boxes on the left contain the names of some processes taking place in living organisms.

The boxes on the right contain descriptions of these processes.

Draw **one** straight line from each box on the left to a box on the right to link the name of the process with its description.

An example has been done for you.


[4]

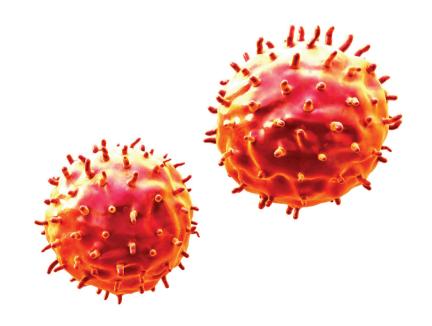
[Total: 4]

Select page

Your Mark

7

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554


Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 3 (May / June 2016), Question 8

Cambridge IGCSE[™]
Biology 0610

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

8 Fig. 8.1 shows the structures that produce urine and excrete it from the body.

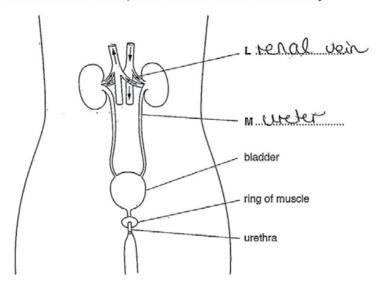


Fig. 8.1

(a) (i) Name the structures labelled L and M.
Write your answers on Fig. 8.1.

[2]

(ii) Urea is excreted in the urine.

Name the organ that produces urea and suggest how urea is transferred to the kidneys.

Urea is	made	to the	liver	
Urea 15				
Kilolneys	ABU \$	in W	e bloom	[2]
()	Q		the state of the s	رع

Select page

Your Mark

8(a)(i)

8(a)(ii)

8(b)

Q8	Mark scheme
(a)(i)	L – renal artery; M – ureter; 2 marks
(a)(ii)	produced by: liver; transferred in: blood/plasma/blood vessels/circulation; 2 marks
(b)	1 student drank less water/ate fewer foods, containing water; ignore numbered lines 2 student sweated more/AW; A student had diarrhoea; student vomited; student lost a lot of blood; 3 (as) it was a hotter day; 4 (as) student exercised/student had a fever; I renal failure on that day/student cried 5 student ate a lot of salty food; 6 lower humidity so water (vapour) lost in exhalation; 3 marks
(c)	1 screening/removal of large solids/twigs/plastic/etc.; 2 settling out/grit settles to bottom of tank; 3 microbes/bacteria decompose (digest) organic material; 4 digestion of materials in liquid by (aerobic) microorganisms; 5 aeration; 6 materials in sludge digested by (anaerobic) bacteria; 7 filtration; A filtration once only unless qualified 8 chlorination or sterilisation/use of disinfectants/

3 marks

(b) In an investigation, the volume of urine produced by a student each day is measured.

The results are shown in Table 8.1.

Table 8.1

day	volume of urine /cm ³ per day
1	1440
2	1510
3	1410
4	1445
5	910
6	1445
7	1500

	day 5. 1 Low water into lower volume or unine produced by the student on
	2 High temperative
	3 Large amont of sweat produced
	[3]
(c)	Outline three processes used in the treatment of sewage to make the water it contains safe for human use. 1 Filtening for removed of insolvble porticles
	2 Adding chlorine to kill bucterla and pathogens (chlorination)
	3 Distillation 3
	[3]

Select page

Your
Mark

8(a)(i)

8(a)(ii)

[Total: 10]

00	
Q8	Mark scheme
(a)(i)	L - renal artery; M - ureter; 2 marks
(a)(ii)	produced by: liver; transferred in: blood/plasma/blood vessels/circulation; 2 marks
(b)	1 student drank less water/ate fewer foods, containing water; ignore numbered lines 2 student sweated more/AW; A student had diarrhoea; student vomited; student lost a lot of blood; 3 (as) it was a hotter day; 4 (as) student exercised/student had a fever; I renal failure on that day/student cried 5 student ate a lot of salty food; 6 lower humidity so water (vapour) lost in exhalation; 3 marks
(C)	1 screening/removal of large solids/twigs/plastic/etc.; 2 settling out/grit settles to bottom of tank; 3 microbes/bacteria decompose (digest) organic material; 4 digestion of materials in liquid by (aerobic) microorganisms; 5 aeration; 6 materials in sludge digested by (anaerobic) bacteria; 7 filtration; A filtration once only unless qualified 8 chlorination or sterilisation/use of disinfectants/ bactericides/bacteria killed; 3 marks

8 Fig. 8.1 shows the structures that produce urine and excrete it from the body.

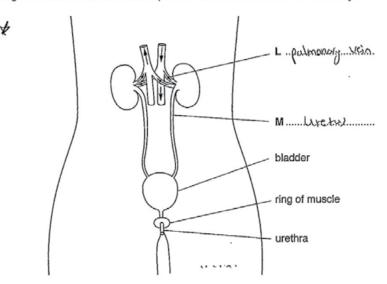


Fig. 8.1

(a) (i) Name the structures labelled L and M.

Write your answers on Fig. 8.1.

[2]

(ii) Urea is excreted in the urine.

Name the organ that produces urea and suggest how urea is transferred to the kidneys.

Urea is produced	in the	liver and	the un	a
,				
4 transteres	to the Ki	gućapid		
		0 0		
				[2]

Select page

Your
Mark

8(a)(i)

8(a)(ii)

8(b)

8(c)

Q8	Mark scheme
(a)(i)	L – renal artery; M – ureter; 2 marks
(a)(ii)	<pre>produced by: liver; transferred in: blood/plasma/blood vessels/circulation;</pre> 2 marks
(b)	1 student drank less water/ate fewer foods, containing water; ignore numbered lines 2 student sweated more/AW; A student had diarrhoea; student vomited; student lost a lot of blood; 3 (as) it was a hotter day; 4 (as) student exercised/student had a fever; I renal failure on that day/student cried 5 student ate a lot of salty food; 6 lower humidity so water (vapour) lost in exhalation; 3 marks
(c)	1 screening/removal of large solids/twigs/plastic/etc.; 2 settling out/grit settles to bottom of tank; 3 microbes/bacteria decompose (digest) organic material; 4 digestion of materials in liquid by (aerobic) microorganisms; 5 aeration; 6 materials in sludge digested by (anaerobic) bacteria; 7 filtration; A filtration once only unless qualified 8 chlorination or sterilisation/use of disinfectants/

3 marks

The results are shown in Table 8.1.

Table 8.1

day	volume of urine /cm ³ per day
1	1440
2	1510
3	1410
4	1445
5	910
6	1445
7	1500

Suggest three possible reasons for the lower volume of urine produced by the student on day 5.

1 The Student comment except extensied very
hard on that day.
2 The student god a problem in his Kidney on
the think
that day
3 The day was very hot.
-kmpercuture is that

(c) Outline three processes used in the treatment of sewage to make the water it contains safe for human use.

1 bacteriacides are used to remove ony
backnia forms in water.
2 Chloring is used for the Chlorination of water
produce fore water
3

[3] [Total: 10]

Select page

Your
Mark

8(a)(i)

8(a)(ii)

(b)

B(c)

Q8	Mark scheme
(a)(i)	L – renal artery ; M – ureter ; 2 marks
(a)(ii)	produced by: <u>liver</u> ; transferred in: blood/plasma/blood vessels/circulation; 2 mark
(b)	1 student drank less water/ate fewer foods, containing water; ignore numbered lines 2 student sweated more/AW; A student had diarrhoea; student vomited; student lost a lot of blood; 3 (as) it was a hotter day; 4 (as) student exercised/student had a fever; I renal failure on that day/student cried 5 student ate a lot of salty food; 6 lower humidity so water (vapour) lost in exhalation; 3 mark
(c)	1 screening/removal of large solids/twigs/plastic/etc.; 2 settling out/grit settles to bottom of tank; 3 microbes/bacteria decompose (digest) organic material; 4 digestion of materials in liquid by (aerobic) microorganisms; 5 aeration; 6 materials in sludge digested by (anaerobic) bacteria; 7 filtration; A filtration once only unless qualified 8 chlorination or sterilisation/use of disinfectants/

3 marks

8 Fig. 8.1 shows the structures that produce urine and excrete it from the body.

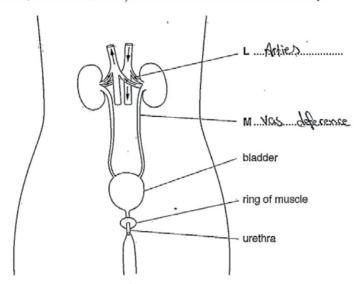


Fig. 8.1

(a) (i) Name the structures labelled L and M.
Write your answers on Fig. 8.1.

[2]

(ii) Urea is excreted in the urine.

Name the organ that produces urea and suggest how urea is transferred to the kidneys.

Liver, the bile (with the processes and the parameter of the parameter and the parameter and the parameter (2)

Select page

Your Mark

8(a)(i)

8(a)(ii)

8(b)

B(c)

Q8	Mark scheme
(a)(i)	L – renal artery ; M – ureter ; 2 marks
(a)(ii)	produced by: liver; transferred in: blood/plasma/blood vessels/circulation; 2 marks
(b)	1 student drank less water/ate fewer foods, containing water; ignore numbered lines 2 student sweated more/AW; A student had diarrhoea; student vomited; student lost a lot of blood; 3 (as) it was a hotter day; 4 (as) student exercised/student had a fever; I renal failure on that day/student cried 5 student ate a lot of salty food; 6 lower humidity so water (vapour) lost in exhalation; 3 marks
(c)	1 screening/removal of large solids/twigs/plastic/etc.; 2 settling out/grit settles to bottom of tank; 3 microbes/bacteria decompose (digest) organic material; 4 digestion of materials in liquid by (aerobic) microorganisms; 5 aeration; 6 materials in sludge digested by (anaerobic) bacteria; 7 filtration; A filtration once only unless qualified 8 chlorination or sterilisation/use of disinfectants/

3 marks

(b) In an investigation, the volume of urine produced by a student each day is measured. The results are shown in Table 8.1.

Table 8.1

day	volume of urine /cm ³ per day
1	1440
. 2	1510
3	1410
'4	1445
5	910
6	1445
7	1500

	Suggest three possible reasons for the lower volume of urine produced by the student on day 5.
	1 Due to the law (a) amount of water in the body.
	2 Sulight
	3
	[3]
(c)	Outline three processes used in the treatment of sewage to make the water it contains safe for human use.
	1 put observe in mater
	2 pass it through pipes to filter it
	3
	,
	[3]

Select page

Your	
Mark	

8(a)(i)

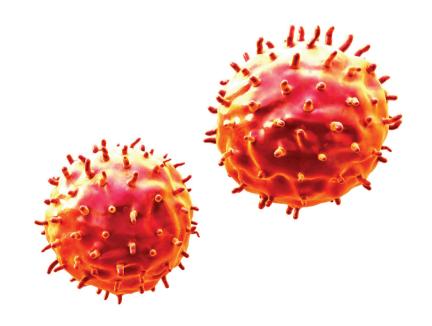
8(a)(ii)

[Total: 10]

00	
28	Mark scheme
(a)(i)	L – renal artery; M – ureter; 2 marks
a)(ii)	produced by: <u>liver</u> ; transferred in: blood/plasma/blood vessels/circulation; 2 marks
b)	1 student drank less water/ate fewer foods, containing water; ignore numbered lines 2 student sweated more/AW; A student had diarrhoea; student vomited; student lost a lot of blood; 3 (as) it was a hotter day; 4 (as) student exercised/student had a fever; I renal failure on that day/student cried 5 student ate a lot of salty food; 6 lower humidity so water (vapour) lost in exhalation; 3 marks
c)	1 screening/removal of large solids/twigs/plastic/etc.; 2 settling out/grit settles to bottom of tank; 3 microbes/bacteria decompose (digest) organic material; 4 digestion of materials in liquid by (aerobic) microorganisms; 5 aeration; 6 materials in sludge digested by (anaerobic) bacteria; 7 filtration; A filtration once only unless qualified 8 chlorination or sterilisation/use of disinfectants/

3 marks

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554


Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 3 (May / June 2016), Question 9

Cambridge IGCSE[™]
Biology 0610

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

9 (a) (i) Table 9.1 contains examples of components of a balanced diet and foods that contain a high proportion of the component.

Complete Table 9.1 by filling in the blank spaces.

Table 9.1

component of balanced diet	food containing a high proportion of the component		
fat	olive oil		
protein	meat		
car bohydrat	pasta		
fibre (roughage)	unpolished rice		

ii)	Name two other components of a balanced diet that are no	ot listed in Table 9.1.
	vitamine c	
	- Calcium	[2
	- Iron	

Select page

Your

Mark

9(a)(i)

9(a)(ii)

9(b)

[3]

Q9	Mark scheme	
(a)(i)	component	food
	Protein ;	
	Carbohydrate;	
		any example of plant cell wall material/ any fruit or vegetable ;
		3 marks
(a)(ii)	A ecf from table minerals/ions/navitamins/named	
	water;	2 marks

Fig. 9.1

The use of modern technology has increased the amount of food produced.

State two examples of modern technology and explain how each has contributed to the amount of plants grown for food.

example	explanation of technology
watering by	small pours in the a pipe over the cross that, water plants in
bropping brophs of water	We without alst of Water and this
chemical	substances conforming an polassium nitrogen, phosphorus that increase
fartiliser	crop yield and size. Make soil

[4]

(c) On modern farms crop plants can be grown as large-scale monocultures.

Suggest two negative impacts on an ecosystem for this method of food production.

1	ggorpp	gHNgbi	AMBI (CH No. LA ANG) How Sic	13 6 W.	A Sum HAVIA	gtoppe	
U	MY HOT	#in#/p/#	de Balli	ik 4004	lchainsc	and.webs.u	Ill be
2	They.	Could	so die	a.5/	ack of t	East and	ļ
fo	r Ho	oftert	of pest	sides o	n. them		,
	1010		,			,	[2]

[Total: 11]

Select page

	Your Mark
9(a)(i)	
(a)(ii)	
9(b)	

Q9	Mark scheme
(b)	example and improvement must match A increased yields for any of the explanations A explanations in terms of increased speed or efficiency and I references to an example being easier 1 use of agricultural machinery/tractors/trucks; improved efficiency/greater land area cultivated/plant more seeds/harvest more of the crop/harvest faster/spray pesticides/irrigate the crop; 2 use of (artificial) fertilisers; improved yields/grow faster; 3 use of herbicides/pesticides/insecticides; no competition from weeds/pests or increases yields; 4 selective breeding; improve quality/quantity of produce; 5 use of glass houses/poly-tunnels; protect crops from adverse environment/provide optimum growing environment/grow out of season/increased yields; 6 any valid example; with improvement; 4 marks
(c)	1 death of organisms; 2 disrupts food chains/webs/eutrophication; 3 habitat destruction/soil erosion; A deforestation 4 changes in precipitation; A reduced biodiversity 2 marks

9 (a) (i) Table 9.1 contains examples of components of a balanced diet and foods that contain a high proportion of the component.

Complete Table 9.1 by filling in the blank spaces.

Table 9.1

component of balanced diet	food containing a high proportion of the component
fat	olive oil
Protein	meat
Carbohydrates state	pasta
fibre (roughage)	Carrot

(ii)	Name two other components of a balanced diet that are not listed in Table 9.1.
	water water
	minerals [2

Select page

our/			
Vlark	Q9	Mark scheme	
	(a)(i)	component	food
		Protein ; Carbohydrate ;	
		Carbonyarate ,	any example of plant cell wall material/ any fruit or vegetable ;
			3 marks
	(a)(ii)	A ecf from table minerals/ions/na vitamins/named	·
		water;	2 marks

9	(b)		
-	(\mathbf{N})	1	

9(a)(i)

9(a)(ii)

9(c)

Fig. 9.1

The use of modern technology has increased the amount of food produced.

State **two** examples of modern technology **and** explain how each has contributed to the amount of **plants** grown for food.

example	explanation of technology			
Fer tilbers	It increased the amount of			
herbicides	poured over the form which increase the food production and Kill insect.			

(c) On modern farms crop plants can be grown as large-scale monocultures.

Suggest two negative impacts on an ecosystem for this method of food production.

1 1	Vi Very	hor)	a control		My Kan Sa	AIC
	Clob blover					
o & Th	Crop plans	Au cial	harmel	by is	Decet in	λ
		- 0		9		Q
	sconima.l.s.:					[2]

[Total: 11]

[4]

Select page

9(a)(i)	Your Mark
9(a)(ii)	
0/5)	
9(b)	

Q9	Mark scheme
(b)	example and improvement must match A increased yields for any of the explanations A explanations in terms of increased speed or efficiency and I references to an example being easier 1 use of agricultural machinery/tractors/trucks; improved efficiency/greater land area cultivated/plant more seeds/harvest more of the crop/harvest faster/spray pesticides/irrigate the crop; 2 use of (artificial) fertilisers; improved yields/grow faster; 3 use of herbicides/pesticides/insecticides; no competition from weeds/pests or increases yields; 4 selective breeding; improve quality/quantity of produce; 5 use of glass houses/poly-tunnels; protect crops from adverse environment/provide optimum growing environment/grow out of season/increased yields; 6 any valid example; with improvement; 4 marks
(c)	1 death of organisms; 2 disrupts food chains/webs/eutrophication; 3 habitat destruction/soil erosion; A deforestation 4 changes in precipitation; A reduced biodiversity 2 marks

9 (a) (i) Table 9:1 contains examples of components of a balanced diet and foods that contain a high proportion of the component.

Complete Table 9.1 by filling in the blank spaces.

Table 9.1

component of balanced diet	food containing a high proportion of the component		
fat	olive oil		
prohien	meat		
carbohydrate	pasta ·		
fibre (roughage)	Ruits		

		[3]
i)	Name two other components of a balanced diet that are not listed in Table 9.1.	
		[2]

Select page

9(b)

Your			
Mark	Q9	Mark scheme	
9(a)(i)	(a)(i)	component	food
3(a)(l)			
		Protein ;	
		Carbohydrate;	
			any example of plant cell wall material/ any fruit or vegetable;
			3 marks
9(a)(ii)	(a)(ii)	A ecf from table minerals/ions/navitamins/named	•
		water;	2 marks

Fig. 9.1

The use of modern technology has increased the amount of food produced.

State **two** examples of modern technology **and** explain how each has contributed to the amount of **plants** grown for food.

example	explanation of technology
Truck machire	It throws seeds and sallelicers & in the whole farm

(c) On modern farms crop plants can be grown as large-scale monocultures.

Suggest two negative impacts on an ecosystem for this method of food production.
Many grosshoppers will Seed and
ik O
, some poisons Silhetiners are four
to kill needs which also rakes the 800d
Produced containing poisnut substance. [2]
[Total: 11]

Select page

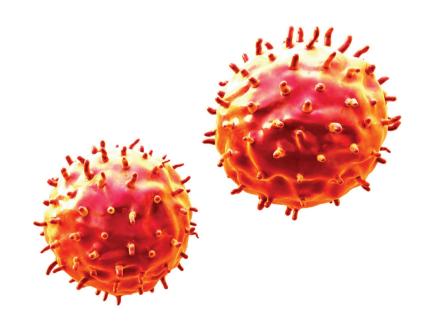
Your Mark	Q9	Mark scheme	
a)(i)	(b)	example and improvement must match A increased yields for any of the explanations A explanations in terms of increased speed or e and I references to an example being easier 1 use of agricultural machinery/tractors/trucks; improved efficiency/greater land area cultivated more seeds/harvest more of the crop/harvest f spray pesticides/irrigate the crop; 2 use of (artificial) fertilisers; improved yields/grow faster; 3 use of herbicides/pesticides/insecticides; no competition from weeds/pests or increases yie 4 selective breeding; improve quality/quantity of use of glass houses/poly-tunnels; protect crops from adverse environment/provid growing environment/grow out of season/increyields; 6 any valid example; with improvement;	/plant aster/ lds; f produce;
9(b)	(c)	1 death of organisms; 2 disrupts food chains/webs/eutrophication; 3 habitat destruction/soil erosion; A deforestation 4 changes in precipitation; A reduced biodiversity	2 marks

9(c)

[4]

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org


Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 4 (May / June 2016), Question 1

Cambridge IGCSE[™]
Biology 0610

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

1 (a) Fig. 1.1 shows the human heart and the main blood vessels. The functions of the parts of the heart and some of the blood vessels are given in Table 1.1.

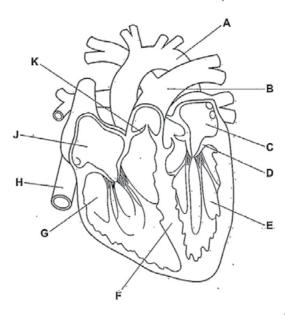


Fig. 1.1

Select page

Your Mark	Q1	Mark scheme		
a)	(a)	Function	Letter on Fig 1.1	Name
		structure that separates oxygenated and deoxygenated blood	F	septum;
		structure that prevents backflow of blood from ventricle to atrium	D	bicuspid / mitral / atrioventricular, valve A 'AV valve' R right atrioventricular valve
i)		blood vessel that carries oxygenated blood	Α	aorta
		blood vessel that carries deoxygenated blood	B H	pulmonary artery vena cava ;
		structure that prevents backflow of blood from pulmonary artery to right ventricle	К	semilunar valve ;
		chamber of the heart that contains oxygenated blood	C E	left atrium left ventricle ;
		chamber of the heart that pumps deoxygenated blood	G J	right atrium right ventricle ;
			,	6 mai

Complete Table 1.1.

One row has been done for you.

Table 1.1

Table 1.1		
function	letter on Fig. 1.1	name
structure that separates oxygenated and deoxygenated blood	F ;	septum
structure that prevents backflow of blood from ventricle to atrium	0.	atrioventricular valv
blood vessel that carries oxygenated blood	Α ,	aorta
blood vessel that carries deoxygenated blood	H,B	vena cava, pulmonary arter
structure that prevents backflow of blood from pulmonary artery to right ventricle	K :	semilunar valve
chamber of the heart that contains oxygenated blood	C.E	left arium, left ventricle
chamber of the heart that contains deoxygenated blood	J, G	right arrium, right ventricle.

[6]

1(b)(i)

1(b)(ii)

Select page

Your Mark	Q1	Ma
	(a)	F

Q1	Mark scheme		
(a)	Function	Letter on Fig 1.1	Name
	structure that separates oxygenated and deoxygenated blood	F	septum;
	structure that prevents backflow of blood from ventricle to atrium	D	bicuspid / mitral / atrioventricular, valve ; A 'AV valve' R right atrioventricular valve
	blood vessel that carries oxygenated blood	Α	aorta
	blood vessel that carries deoxygenated blood	B H	pulmonary artery vena cava ;
	structure that prevents backflow of blood from pulmonary artery to right ventricle	К	semilunar valve ;
	chamber of the heart that contains oxygenated blood	C E	left atrium left ventricle ;
	chamber of the heart that pumps deoxygenated blood	G	right atrium right ventricle ;
			6 marks

(b) A group of students used a heart monitor to record the pulse rate of an athlete during a 5000 metre race. The recordings started just before the race began and ended just after it had finished, as shown in Fig. 1.2.

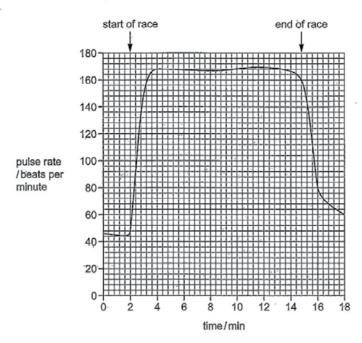


Fig. 1.2

(i) Use data from Fig. 1.2 to describe the effect of exercise on the pulse rate of the athlete.

Pulse rate, increases from 44 to beats per minute to 168 beats per minute in the first 2 minutes of the race. It remains constant at 168 beats per minute for the next 10 minutes before graduo KII the end of the race. After race is over, it begins to decrease.

Select page

Your		
Mark	Q1	Mark scheme
1(a)	(b)(i)	units must be used pulse rate increases and remains constant; immediate / sudden / steep / rapid / AW, increase in pulse rate; R exponential increases from 44–48 bpm to 164–170 bpm; increases by 120–126 bpm / by 3.5 to 4 times or approx. 4
		maximum / 164–170 bpm, at, 4 min(utes) / 2 min(utes) after race starts; 3 marks
b)(i)	(b)(ii)	adrenaline stimulates increase in, heart / pulse, rate; increase in blood, carbon dioxide (concentration) / acidity, detected; A decrease in pH
		nerves stimulate heart to beat faster;
		ref to muscle contraction / AW; 'more' / 'increases', is only needed once
		muscles require more energy / muscles are doing more work; (rate of aerobic) respiration increases; R 'produce energy' once only
b)(ii)		increase demand for, oxygen / glucose; ref to removal of, carbon dioxide / lactic acid / heat; more, blood / carbon dioxide, to lungs (per unit time); more, blood / oxygen / glucose, to muscles;
		AVP ; e.g. ref to ATP / vasodilation in muscles 4 marks

(ii) Explain the change in pulse rate between 2 minutes and 3 minutes after the recordings started.

During exercise, muscles need more energy

And contraction so aerobic respiration

increases. Pulse rate increases to increase

blood flow to the muscles to supply them

with oxygen fast enough for increased

respiration, remove carbon dioxide that is

being produced as a result of respiration

and prevent anaerobic respiration and the

build up of lactic acid. CO2 lowers blood

pH which is detected by reapports in the

brain and it increases, frequency of

inpulses to the heart

[Total: 13]

Select page

our Iark 01	Mark scheme
(b)	pulse rate increases and remains constant; immediate / sudden / steep / rapid / AW, increase in pulse rate; R exponential increases from 44–48 bpm to 164–170 bpm; increases by 120–126 bpm / by 3.5 to 4 times or approx. 4
	maximum / 164–170 bpm, at, 4 min(utes) / 2 min(utes) after race starts; 3 mark
(b)	adrenaline stimulates increase in, heart / pulse, rate; increase in blood, carbon dioxide (concentration) / acidity, detected; A decrease in pH
	nerves stimulate heart to beat faster;
	ref to muscle contraction / AW ; 'more' / 'increases', is only needed once
	muscles require more energy / muscles are doing more work; (rate of aerobic) respiration increases; R 'produce energy' once only increase demand for, oxygen / glucose; ref to removal of, carbon dioxide / lactic acid / heat; more, blood / carbon dioxide, to lungs (per unit time); more, blood / oxygen / glucose, to muscles;

AVP; e.g. ref to ATP / vasodilation in muscles

1 (a) Fig. 1.1 shows the human heart and the main blood vessels. The functions of the parts of the heart and some of the blood vessels are given in Table 1.1.

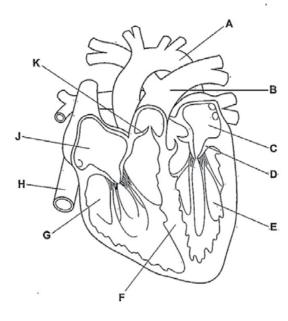


Fig. 1.1

Select page

Your Mark	Q1	Mark scheme		
1(a)	(a)	Function	Letter on Fig 1.1	Name
		structure that separates oxygenated and deoxygenated blood	F	septum;
		structure that prevents backflow of blood from ventricle to atrium	D	bicuspid / mitral / atrioventricular, valve; A 'AV valve' R right atrioventricular valve
1(b)(i)		blood vessel that carries oxygenated blood	Α	aorta
		blood vessel that carries deoxygenated blood	B H	pulmonary artery vena cava ;
		structure that prevents backflow of blood from pulmonary artery to right ventricle	К	semilunar valve ;
I(b)(ii)		chamber of the heart that contains oxygenated blood	C E	left atrium left ventricle ;
		chamber of the heart that pumps deoxygenated blood	J G	right atrium right ventricle ;
				6 mark

Complete Table 1.1.

One row has been done for you.

Table 1.1

Table 1.1		
function	letter on Fig. 1.1	name
structure that separates oxygenated and deoxygenated blood	F	Septurn
structure that prevents backflow of blood from ventricle to atrium	KD	Atrioventicular volve
blood vessel that carries oxygenated blood	À	aorta
blood vessel that carries deoxygenated blood	TH	Vena caua
structure that prevents backflow of blood from pulmonary artery to right ventricle	KG	Semi-Unar valves
chamber of the heart that contains oxygenated blood	E SE	Left chambes
chamber of the heart that contains deoxygenated blood	G	Right chamber

[6]

Select page

our ark	Mark scheme		
(8	Function	Letter on Fig 1.1	Name
	structure that separates oxygenated and deoxygenated blood	F	septum;
	structure that prevents backflow of blood from ventricle to atrium	D	bicuspid / mitral / atrioventricular, valve; A 'AV valve' R right atrioventricular valve
	blood vessel that carries oxygenated blood	A	aorta
	blood vessel that carries deoxygenated blood	B H	pulmonary artery vena cava ;
	structure that prevents backflow of blood from pulmonary artery to right ventricle	К	semilunar valve ;
	chamber of the heart that contains oxygenated blood	C E	left atrium left ventricle ;
	chamber of the heart that pumps	J G	right atrium right ventricle ;

deoxygenated blood

(b) A group of students used a heart monitor to record the pulse rate of an athlete during a 5000 metre race. The recordings started just before the race began and ended just after it had finished, as shown in Fig. 1.2.

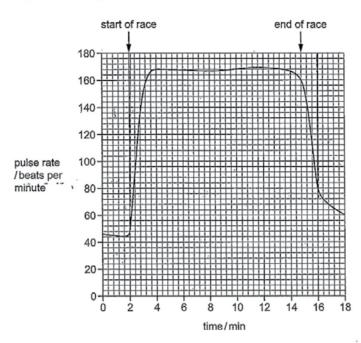


Fig. 1.2

(i) Use data from Fig. 1.2 to describe the effect of exercise on the pulse rate of the athlete.

Lithen the athlete was at rest his pulse rate was about 44.5 pulse/minute.

When the race stanted the pulse rate increasing at regular at an average of 20 pulse r until it peaked at about 168 pulse perminute."

Select page

VALIF		
Your Mark	Q1	Mark scheme
1(a)	(b)(i)	units must be used pulse rate increases and remains constant; immediate / sudden / steep / rapid / AW, increase in pulse rate; R exponential increases from 44–48 bpm to 164–170 bpm; increases by 120–126 bpm / by 3.5 to 4 times or approx. 4
		maximum / 164–170 bpm, at, 4 min(utes) / 2 min(utes) after race starts; 3 marks
b)(i)	(b)(ii)	adrenaline stimulates increase in, heart / pulse, rate; increase in blood, carbon dioxide (concentration) / acidity, detected; A decrease in pH
		nerves stimulate heart to beat faster;
		ref to muscle contraction / AW; 'more' / 'increases', is only needed once muscles require more energy / muscles are doing more
o)(ii)		work; (rate of aerobic) respiration increases; R 'produce energy' once only increase demand for, oxygen / glucose; ref to removal of, carbon dioxide / lactic acid / heat; more, blood / carbon dioxide, to lungs (per unit time); more, blood / oxygen / glucose, to muscles;
		AVP; e.g. ref to ATP / vasodilation in muscles 4 marks

(ii) Explain the change in pulse rate between 2 minutes and 3 minutes after the recordings started.

The athlete's breathing rote was increasing as he was applying effort and so needed more blood to be po supplied to his body so that "more oxygen could be used for for respiration to provide him with sufficient energy to run during the race. The heart rate fumped at which the oxygen was used up was increasing and so to compensate the heard was kepting faster. [4]

[Total: 13]

Select page

Your Mark	Q1	Mark scheme
Mark	(b)(i)	units must be used pulse rate increases and remains constant; immediate / sudden / steep / rapid / AW, increase in pulse rate; R exponential increases from 44–48 bpm to 164–170 bpm; increases by 120–126 bpm / by 3.5 to 4 times or approx. 4
		maximum / 164–170 bpm, at, 4 min(utes) / 2 min(utes) after race starts; 3 mark
)(i)	(b)(ii)	adrenaline stimulates increase in, heart / pulse, rate; increase in blood, carbon dioxide (concentration) / acidity, detected; A decrease in pH
		nerves stimulate heart to beat faster;
		ref to muscle contraction / AW; 'more' / 'increases', is only needed once muscles require more energy / muscles are doing more work;
ii)		(rate of aerobic) respiration increases; R 'produce energy' once only increase demand for, oxygen / glucose; ref to removal of, carbon dioxide / lactic acid / heat; more, blood / carbon dioxide, to lungs (per unit time); more, blood / oxygen / glucose, to muscles;

AVP; e.g. ref to ATP / vasodilation in muscles

1 (a) Fig. 1.1 shows the human heart and the main blood vessels. The functions of the parts of the heart and some of the blood vessels are given in Table 1.1.

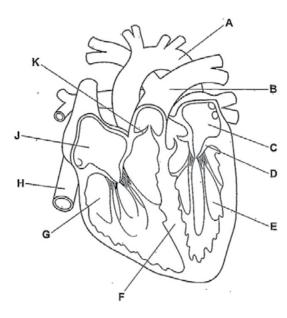


Fig. 1.1

Select page

a)	Structure that	Letter on Fig 1.1	Name
		F	
	separates oxygenated and deoxygenated blood	'	septum;
	structure that prevents backflow of blood from ventricle to atrium	D	bicuspid / mitral / atrioventricular, valv A 'AV valve' R right atrioventricu valve
)(i)	blood vessel that carries oxygenated blood	A	aorta
	blood vessel that carries deoxygenated blood	B H	pulmonary artery vena cava ;
	structure that prevents backflow of blood from pulmonary artery to right ventricle	K	semilunar valve ;
(ii)	chamber of the heart that contains oxygenated blood	C E	left atrium left ventricle ;
	chamber of the heart that pumps deoxygenated blood	J G	right atrium right ventricle ;

Complete Table 1.1.

One row has been done for you.

Table 1.1		
function	letter on Fig. 1.1	name
structure that separates oxygenated and deoxygenated blood	F	Septum
structure that prevents backflow of blood from ventricle to atrium	C	Tricus pid valve
blood vessel that carries oxygenated blood	Α	aorta
blood vessel that carries deoxygenated blood	н	Vena cava
structure that prevents backflow of blood from pulmonary artery to right ventricle	IC	Bicaspid valve
chamber of the heart that contains oxygenated blood	B	1894 Arrium
chamber of the heart that contains deoxygenated blood	٥.	Right Atrium

[6]

Select page

V				
Your Mark	Q 1	Mark scheme		
1(a)	(a)	Function	Letter on Fig 1.1	Name
		structure that separates oxygenated and deoxygenated blood	F	septum;
		structure that prevents backflow of blood from ventricle to atrium	D	bicuspid / mitral / atrioventricular, valve; A 'AV valve' R right atrioventricular valve
1(b)(i)		blood vessel that carries oxygenated blood	A	aorta
		blood vessel that carries deoxygenated blood	B H	pulmonary artery vena cava ;
		structure that prevents backflow of blood from pulmonary artery to right ventricle	К	semilunar valve ;
1(b)(ii)		chamber of the heart that contains oxygenated blood	C E	left atrium left ventricle ;
		chamber of the heart that pumps deoxygenated blood	J G	right atrium right ventricle ;

(b) A group of students used a heart monitor to record the pulse rate of an athlete during a 5000 metre race. The recordings started just before the race began and ended just after it had finished, as shown in Fig. 1.2.

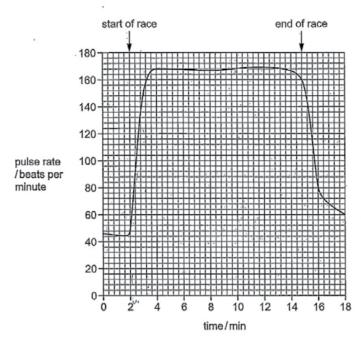


Fig. 1.2

(i) Use data from Fig. 1.2 to describe the effect of exercise on the pulse rate of the athlete. AS you for can See On the graph the student tept on runni had a fact speed per about 50 Seconds and than he go + . clow et & st siow and as he went on he kept on reducing hels speed.

Select page

1(b)

Mark	Q1	Mark scheme
1(a)	(b)(i)	units must be used pulse rate increases and remains constant; immediate / sudden / steep / rapid / AW, increase in pulse rate; R exponential increases from 44–48 bpm to 164–170 bpm; increases by 120–126 bpm / by 3.5 to 4 times or approx. 4 maximum / 164–170 bpm, at, 4 min(utes) / 2 min(utes) after race starts: 3 mark
1(b)(i)	(b)(ii)	after race starts; adrenaline stimulates increase in, heart / pulse, rate; increase in blood, carbon dioxide (concentration) / acidity, detected; A decrease in pH nerves stimulate heart to beat faster;
1(b)(ii)		ref to muscle contraction / AW; 'more' / 'increases', is only needed once muscles require more energy / muscles are doing more work; (rate of aerobic) respiration increases; R 'produce energy' once only increase demand for, oxygen / glucose; ref to removal of, carbon dioxide / lactic acid / heat; more, blood / carbon dioxide, to lungs (per unit time);

more, blood / oxygen / glucose, to muscles;

AVP; e.g. ref to ATP / vasodilation in muscles

3 marks

Explain the change in pulse rate between 2 minutes and 3 minutes after the recordings started.
The Pulse rote on 3 minutes was
Light that than it was at 2 minuster
this is because he ran and as he
fan he took deel breathband that
the reason to chy help pulse rele
g.o.t.,.,.high:
[4]
[Total: 13]
** 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
and the second s

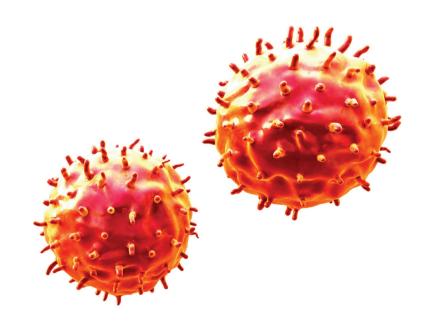
Select page

∕our Vlark	Q1	Mark scheme
	(b)(i)	units must be used pulse rate increases and remains constant; immediate / sudden / steep / rapid / AW, increase in pulse rate; R exponential increases from 44–48 bpm to 164–170 bpm; increases by 120–126 bpm / by 3.5 to 4 times or approx. 4
		maximum / 164–170 bpm, at, 4 min(utes) / 2 min(utes) after race starts; 3 mark
	(b)(ii)	adrenaline stimulates increase in, heart / pulse, rate; increase in blood, carbon dioxide (concentration) / acidity, detected; A decrease in pH
		nerves stimulate heart to beat faster;
		ref to muscle contraction / AW; 'more' / 'increases', is only needed once
		muscles require more energy / muscles are doing more work;
		(rate of aerobic) respiration increases ; R 'produce energy' once only
		increase demand for, oxygen / glucose; ref to removal of, carbon dioxide / lactic acid / heat; more, blood / carbon dioxide, to lungs (per unit time); more, blood / oxygen / glucose, to muscles;

AVP; e.g. ref to ATP / vasodilation in muscles

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org


Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 4 (May / June 2016), Question 2

Cambridge IGCSE[™]
Biology 0610

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

- 2 The nervous system coordinates the responses of animals to changes in their environment.
 - (a) Fig. 2.1 shows the arrangement of the nervous system in a mammal.

Complete Fig. 2.1 by writing the names of the missing parts of the mammalian nervous system in the boxes.

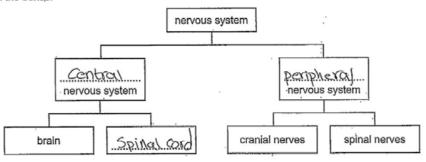


Fig. 2.1

[3]

(b) Fig. 2.2 is a flow chart that shows how an involuntary action is controlled.

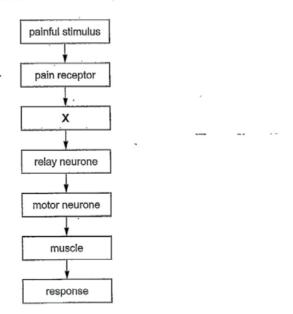


Fig. 2.2

Select page

Your Mark	Q2
	(a)
	(b)(i
	(b)(i
	(b)(i

2(b)(i)

2(b)(ii)

2(b)(iii)

2(c)(i)

2(c)(ii)

2(c)(iii)

2(c)(iv)

	Q2	Mark scheme
	(a)	central (nervous system); peripheral (nervous system); spinal cord; R spine 3 marks
	(b)(i)	sensory neurone ; A afferent neurone R sensory nerve 1 mark
	(b)(ii)	simple reflex / reflex ; A reflex arc 1 mark
	(b)(iii)	slower / takes more time; needs thought / uses (higher centres of) the brain / conscious control; learnt / not inherited / not innate / needs training / AW; not automatic; response is not always the same to the stimulus; 2 marks

Select	
page	

	Your Mark
2(a)	
2(b)(i)	
2(b)(ii)	
2(b)(iii)	

00	And the second s
Q2	Mark scheme
(a)	central (nervous system); peripheral (nervous system); spinal cord; R spine 3 marks
(b)(i)	sensory neurone ; A afferent neurone R sensory nerve 1 mark
(b)(ii)	simple reflex / reflex ; A reflex arc 1 mark
(b)(iii)	slower / takes more time; needs thought / uses (higher centres of) the brain / conscious control; learnt / not inherited / not innate / needs training / AW; not automatic; response is not always the same to the stimulus; 2 marks

2(c)(iv)

2(c)(i)

2(c)(ii)

2(c)(iii)

pot P

pot Q

pot R

Fig. 2.3

(i) State the conditions in which pots P and Q were kept.

P Light upwards	
a dark conditions	
	[1]

(ii) State the name of the growth response shown by the seedlings in pot R.

-1	
positive phototropism	TOI
	[2]
1	

Select page

Your	
Mar	

2(a)

2(b)(ii)

2(b)(i)

2(b)(iii)

2(c)(i)

2(c)(ii)

2(c)(iii)

	Q2	Mark scheme	
	(c)(i)	<pre>either pot P - (uniform) light AND pot Q - no light / dark (up); or pot P - (uniform) with / plus, magnesium AND pot</pre>	
		magnesium; A pot P has all nutrients	1 mark
	(c)(ii)	positive; (photo)tropism / (photo)tropic; R (photo)trophic / geotropic / gravitropic	2 marks
	(c)(iii)	idea that leaves / seedlings / plants / chloroplasts, light; more (light) energy, absorbed / trapped / AW; more photosynthesis; more, growth / biomass / glucose / starch / AW; 'more' is only required once	get more 2 marks
	(c)(iv)	(auxins) made / produced, in (shoot), tip / apex; I 'found, in / on' pass / move / diffuse / spread (down the stem); auxins collect in the side, in the dark / away from I: A 'dark / shaded, side' greater (cell) elongation on side in the dark; AVP; e.g. absorption of water (by osmosis) / strete cell walls / phototropin(s) / plants detect or sense light / ref to pressure	ching of
		I comments about roots	4 marks

2(c)(iv)

* One side of the shoot is exposed to light

* Aurin from the tip diffuse more * to the

Shaded side than the one exposed to light

* They accumulate on the shaded side causing

the cells to absorb more water than the

Other side and become have a elongated

* The uneven growth causes the shoot

to bend towards the direction of the light 14

Select page

Your Mark	
2(a)	
2(b)(i)	
2(b)(ii)	
2(b)(iii)	
2(c)(i)	
2(c)(ii)	
2(c)(iii)	

Mark scheme
either pot P – (uniform) light AND pot Q – no light / dark / covered (up); or pot P – (uniform) with / plus, magnesium AND pot Q – no magnesium; A pot P has all nutrients 1 mark
positive; (photo)tropism / (photo)tropic; R (photo)trophic / geotropic / gravitropic 2 marks
idea that leaves / seedlings / plants / chloroplasts, get more light; more (light) energy, absorbed / trapped / AW; more photosynthesis; more, growth / biomass / glucose / starch / AW; 'more' is only required once 2 marks
(auxins) made / produced, in (shoot), tip / apex; I 'found, in / on' pass / move / diffuse / spread (down the stem); auxins collect in the side, in the dark / away from light; A 'dark / shaded, side' greater (cell) elongation on side in the dark; AVP; e.g. absorption of water (by osmosis) / stretching of cell walls / phototropin(s) / plants detect or sense light / ref to turgor pressure I comments about roots 4 marks

2(c)(iv)

[Total: 16]

- 2 The nervous system coordinates the responses of animals to changes in their environment.
 - (a) Fig. 2.1 shows the arrangement of the nervous system in a mammal.

Complete Fig. 2.1 by writing the names of the missing parts of the mammalian nervous system in the boxes.

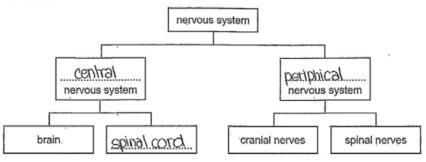


Fig. 2.1

[3]

(b) Fig. 2.2 is a flow chart that shows how an involuntary action is controlled.

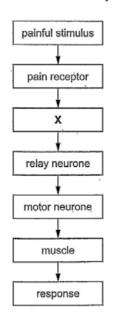


Fig. 2.2.

Select page

You Ma	
2(a)	
2(b)(i)	
2(b)(ii)	

Q2	Mark scheme
(a)	central (nervous system); peripheral (nervous system); spinal cord; R spine 3 marks
(b)(i)	sensory neurone ; A afferent neurone R sensory nerve 1 mark
(b)(ii)	simple reflex / reflex ; A reflex arc 1 mark
(b)(iii)	slower / takes more time; needs thought / uses (higher centres of) the brain / conscious control; learnt / not inherited / not innate / needs training / AW; not automatic; response is not always the same to the stimulus; 2 marks

2(c)(ii)	
2(c)(iii)	

2(b)(iii)

2(c)(i)

2(c)(iv)

Select	
page	

Your		
Mark	Q2	Mark scheme
2(a)	(a)	central (nervous system) ; peripheral (nervous system) ; spinal cord ; R spine 3 marks
2(b)(i)	(b)(i)	sensory neurone ; A afferent neurone R sensory nerve 1 mark
	(b)(ii)	simple reflex / reflex ; A reflex arc 1 mark
2(b)(ii)	(b)(iii)	slower / takes more time; needs thought / uses (higher centres of) the brain / conscious control; learnt / not inherited / not innate / needs training / AW; not automatic;
2(b)(iii)		response is not always the same to the stimulus; 2 marks

2(c)(iv)

2(c)(i)

2(c)(ii)

2(c)(iii)

pot P

pot Q

pot R

Fig. 2.3

i)	State the conditions in which pots P and Q were kept.	
	P. Dark	
	a Light	
	0	[1]
	Children and the second second by the second	
ii)		
	.phatatropism	[2]

Select page

Your Mark
2(a)
2(b)(i)
2(b)(ii)
2(b)(iii)
2(c)(i)
2(c)(ii)
2(c)(iii)

Q2	Mark scheme	
(c)(i)	either pot P – (uniform) light AND pot Q – no light / dark / covere (up); or	ed
	pot P – (uniform) with / plus, magnesium AND pot Q – no magnesium;)
	A pot P has all nutrients 1 mai	rk
(c)(ii)	positive; (photo)tropism / (photo)tropic; R (photo)trophic / geotropic / gravitropic 2 mark	(S
(c)(iii)	idea that leaves / seedlings / plants / chloroplasts, get mor light; more (light) energy, absorbed / trapped / AW; more photosynthesis; more, growth / biomass / glucose / starch / AW; 'more' is only required once 2 mark	
(c)(iv)	(auxins) made / produced, in (shoot), tip / apex; I 'found, in / on' pass / move / diffuse / spread (down the stem); auxins collect in the side, in the dark / away from light; A 'dark / shaded, side' greater (cell) elongation on side in the dark; AVP; e.g. absorption of water (by osmosis) / stretching of cell walls / phototropin(s) / plants detect or sense light / ref to turgor pressure I comments about roots 4 mark	

2(c)(iv)

Your

iii)	Explain the advantage to the seedlings of this growth response.	
	It grows towards the light so the whole	
	plant has an access to light and grow better,	
	It's also good for the plant because it gets	
	all the nutrients needed from the sun.	
	.,	[2]

(iv) Auxins control the growth responses of seedlings.

As you can see, the seedling in pot R. are slightly bend towards the right side. This means that the light is coming from the right. This also means that the right side of the seedlings does receive light but the left side does not. That's why a plant hormone, auxin, collects on the side of the seedling that is reached by light and weights it down so the left side of under it's weight (to the right) and the left side elongate and is now exposed to the light. [4] and can grow.

Mark	
2(a)	
2(b)(i)	
2(b)(ii)	
2(b)(iii)	
2(c)(i)	
2(c)(ii)	
2(c)(iii)	

Q2	Mark scheme	
(c)(i)	either pot P – (uniform) light AND pot Q – no light / dark (up); or pot P – (uniform) with / plus, magnesium AND po magnesium; A pot P has all nutrients	
(c)(ii)	positive; (photo)tropism / (photo)tropic; R (photo)trophic / geotropic / gravitropic	2 marks
(c)(iii)	idea that leaves / seedlings / plants / chloroplasts, light; more (light) energy, absorbed / trapped / AW; more photosynthesis; more, growth / biomass / glucose / starch / AW; 'more' is only required once	get more 2 marks
(c)(iv)	(auxins) made / produced, in (shoot), tip / apex; I 'found, in / on' pass / move / diffuse / spread (down the stem); auxins collect in the side, in the dark / away from I A 'dark / shaded, side' greater (cell) elongation on side in the dark; AVP; e.g. absorption of water (by osmosis) / stretcell walls / phototropin(s) / plants detect or sense light / ref to pressure	ching of turgor
	I comments about roots	4 marks

2(c)(iv)

[Total: 16]

- 2 The nervous system coordinates the responses of animals to changes in their environment.
 - (a) Fig. 2.1 shows the arrangement of the nervous system in a mammal.

Complete Fig. 2.1 by writing the names of the missing parts of the mammalian nervous system in the boxes.

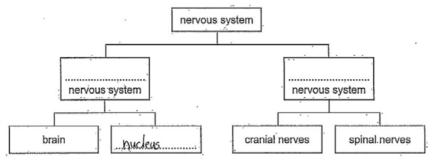


Fig: 2.1

[3]

(b) Fig. 2.2 is a flow chart that shows how an involuntary action is controlled.

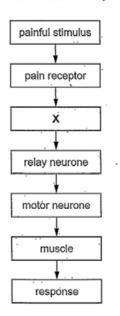


Fig. 2.2

Select page

	Your Mark
2(a)	

2(b)(i)

2(b)(ii)

2(b)(iii)

2(c)(i)

2(c)(ii)

2(c)(iii)

2(c)(iv)

Q2	Mark scheme
(a)	central (nervous system); peripheral (nervous system); spinal cord; R spine 3 marks
(b)(i)	sensory neurone ; A afferent neurone R sensory nerve 1 mark
(b)(ii)	simple reflex / reflex ; A reflex arc 1 mark
(b)(iii)	slower / takes more time; needs thought / uses (higher centres of) the brain / conscious control; learnt / not inherited / not innate / needs training / AW; not automatic; response is not always the same to the stimulus; 2 marks

Select page

	Your Mark
2(a)	
2(b)(i)	
2(b)(ii)	
2(b)(iii)	

Mark scheme
central (nervous system); peripheral (nervous system); spinal cord; R spine 3 marks
sensory neurone; A afferent neurone R sensory nerve 1 mark
simple reflex / reflex ; A reflex arc 1 mark
slower / takes more time; needs thought / uses (higher centres of) the brain / conscious control; learnt / not inherited / not innate / needs training / AW; not automatic; response is not always the same to the stimulus; 2 marks

2(c)(iv)

2(c)(i)

pot P

pot Q

pot R

Fig. 2.3

(i)	State the	conditions	in wh	nich p	oots I	P and	Q we	ere	kept	
-----	-----------	------------	-------	--------	--------	-------	------	-----	------	--

P. Sunlight

a. Dimlight and too much water

[1]

(ii) State the name of the growth response shown by the seedlings in pot R.

It's cells were not exposed to light from some place. [2]

Select page

Your
Mark

2(a)

2(b)(i)

2(b)(ii)

2(b)(iii)

2(c)(i)

2(c)(ii)

2(c)(iii)

	Q2	Mark scheme	
	(c)(i)	either pot P – (uniform) light AND pot Q – no light / dark (up); or pot P – (uniform) with / plus, magnesium AND po magnesium;	t Q – no
		A pot P has all nutrients	1 mark
	(c)(ii)	positive; (photo)tropism / (photo)tropic; R (photo)trophic / geotropic / gravitropic	2 marks
	(c)(iii)	idea that leaves / seedlings / plants / chloroplasts, light; more (light) energy, absorbed / trapped / AW; more photosynthesis; more, growth / biomass / glucose / starch / AW; 'more' is only required once	get more 2 marks
	(c)(iv)	(auxins) made / produced, in (shoot), tip / apex; I 'found, in / on' pass / move / diffuse / spread (down the stem); auxins collect in the side, in the dark / away from I A 'dark / shaded, side' greater (cell) elongation on side in the dark; AVP; e.g. absorption of water (by osmosis) / stret cell walls / phototropin(s) / plants detect or sense light / ref to pressure	ching of turgor
		I comments about roots	4 marks

2(c)(iv)

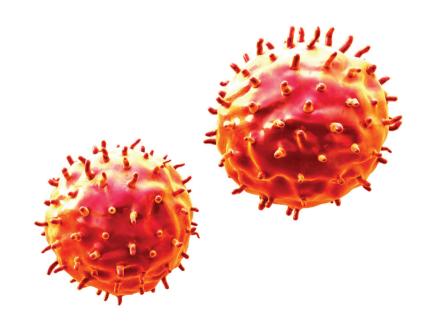
Select page

Your Mark
2(a)
2(b)(i)
2(b)(ii)
2(b)(iii)
2(c)(i)
2(c)(ii)
2(c)(iii)

Q2	Mark scheme	
(c)(i)	<pre>either pot P - (uniform) light AND pot Q - no light / dark (up); or pot P - (uniform) with / plus, magnesium AND po magnesium; A pot P has all nutrients</pre>	
(c)(ii)	positive; (photo)tropism / (photo)tropic; R (photo)trophic / geotropic / gravitropic	2 marks
(c)(iii)	idea that leaves / seedlings / plants / chloroplasts, light; more (light) energy, absorbed / trapped / AW; more photosynthesis; more, growth / biomass / glucose / starch / AW; 'more' is only required once	get more 2 marks
(c)(iv)	(auxins) made / produced, in (shoot), tip / apex; I 'found, in / on' pass / move / diffuse / spread (down the stem); auxins collect in the side, in the dark / away from A 'dark / shaded, side' greater (cell) elongation on side in the dark; AVP; e.g. absorption of water (by osmosis) / stretcell walls / phototropin(s) / plants detect or sense light / ref to pressure	ching of
	I comments about roots	4 marks

2(c)(iv)

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554


Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 4 (May / June 2016), Question 3

Cambridge IGCSE[™]
Biology 0610

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

3		talase is an enzyme that breaks o alase.	lown hydrogen	peroxide inside	cells. Red blood cells contain
		me dogs have an inherited condit acatalasia and it is caused by a n			
	(a)	Define the terms gene and gene			
		gene a length of 1		codes f	
		gene mutation. a chang	e in bas	se sequen	ce of DNA.
		,			
					. [2]
	(b)	A geneticist was asked to inves	tigate the inher	itance of acatala	sia in dogs.
		The normal allele is represente	d by B and the	mutant allele is r	epresented by b.
		The geneticist made the diagra- of dogs. The shaded symbols in			В Ь
					6 88 8b
					p 80 00
		2 3	7)	normal male
Г					male with acatalasia
4				\Diamond	female with acatalasia
		6.		8 4	В 8
				Ė	1. B.P
			Fig. 3,1	ь	: B BB 66
		(i) State the genotypes of the	he dogs identifi	ed as 1, 2 and 3	in Fig. 3.1. b Bb bb
		1 bb Bb			
		3 Bb			[3]

Select page

Your
Mark

3(a)

(b)(i)	
(17/(17)	

3(b)(ii)	

Q3	Mark schem	е		
(a)	R chromosom	ne/molecule	t codes for a p of/genome n <u>base</u> sequer	
(b)(i)	1 Bb ; 2 bb ; 3 Bb ;			3 marks
(b)(ii)	(Bb x bb) B , b + b , (b)	;	m	ale gametes
			В	b
	female	b	Bb	bb
	gametes	(b)	(Bb)	(bb)
	, 0	us and hom	nd bb ; ozygous reces mal/carrier and	
(b)(iii)	test (cross);			1 mark

3(b)(iii)

Cor	talasia and half the	Array of the		
pare	ntal phenotypes	dog norm	4	dog 5 has acatalasia
gam	etes	(B),	b +	(b)
Puni	nett square			
		B	b	
	b	Bb	bb actalasia	
			-	

(iii) State the name given to the type of cross that you have completed in (b)(ii).

test cross. [1]

Select	
page	

Your
Mark

3(a

	l	
(b)(i)		

3(b)(ii)	

Q3	Mark scheme	•		
(a)	gene a length R chromosome gene mutation	e/molecule c	of/genome	
(b)(i)	1 Bb ; 2 bb ; 3 Bb ;			3 marks
(b)(ii)	(Bb x bb) B , b + b , (b);	;	m	ale gametes
			В	_
		Ι.		b
	female	b	Bb	bb
	gametes	(b)	(Bb)	(bb)
	offspring genotypes Bb and bb ; A heterozygous and homozygous recessive offspring phenotypes normal/carrier and acatalasia; 3 marks			
(b)(iii)	test (cross);			1 mark

3(b)(iii)

[Total: 9]

3		alase is an enzyme that breaks down hydrogen peroxide inside o lase:	cells. Red blood cells contain	
		ne dogs have an inherited condition in which catalase is not producatalasia and it is caused by a mutation in the gene for catalase		:
	(a)	Define the terms gene and gene mutation.		
		gene a strand of DNA that addes	for protein.	
		.,,,	1: N - +	
		gene mutation a copy of a gene that to the original	is authorent	
			[Ź]	
	(b)	A geneticist was asked to investigate the inheritance of acatala	sia in dògs.	
		The normal allele is represented by \boldsymbol{B} and the mutant allele is re	epresented by b .	
		The geneticist made the diagram in Fig. 3.1 to show the inherita of dogs. The shaded symbols indicate the dogs with acatalasia.		
1			normal male	
Γ	,	L	male with acatalasia	
4			female with acatalasia	
.,			C) review management	
		0		
		Fig. 3.1		
		(i) State the genotypes of the dogs identified as 1, 2 and 3	in Fig. 3.1.	
		1 BB; normal male		
		2 b i male with a catalsia		
		3 BB; normal female	[3]	
		•		

Select page

Your
Mark

3(a)

3(b)(i)

3(b)(ii)	

Q3	Mark scheme	е		
(a)	gene a length R chromosom gene mutation	e/molecule	of/genome	
(b)(i)	1 Bb ; 2 bb ; 3 Bb ;			3 marks
(b)(ii)	(Bb x bb) B , b + b , (b)	;	m	ale gametes
			В	b
	female	b	Bb	bb
	gametes	(b)	(Bb)	(bb)
	offspring genotypes Bb and bb ; A heterozygous and homozygous recessive offspring phenotypes normal/carrier and acatalasia; 3 marks			
(b)(iii)	test (cross);			1 mark

3(b)(iii)

parental phenotypes	dog 4 normal BB	dog 5
gametes	B, B	+
Punnett square	B B	
don't have	B6 B6	
offspring genotypes	ВЬ	
offspring phenotypes		

Select	
page	

Your
Mark

3(a

3(b)(i)	

3(b)(ii)	

Q 3	Mark scheme			
(a)	gene a length of R chromosome gene mutation	e/molecule of/	genome	
(b)(i)	1 Bb ; 2 bb ; 3 Bb ;			3 marks
(b)(ii)	$(Bb \times bb)$ B , b + b , (b);		male g	ametes
			В	b
	female	b	Bb	bb
	gametes	(b)	(Bb)	(bb)
	offspring genotypes Bb and bb ; A heterozygous and homozygous recessive offspring phenotypes normal/carrier and acatalasia; 3 marks			
(b)(iii)	test (cross);			1 mark

3(b)(iii)

[Total: 9]

3		alase is an enzyme that breaks down hydrogen peroxide inside cells. Red blood cells contain alase.
		ne dogs have an inherited condition in which catalase is not produced. This condition is known acatalasia and it is caused by a mutation in the gene for catalase.
	(a)	perine the terms gene and gene mutation. gene features transported form from parants
		gene mutation. Teatures transported from parants. the get changed
		[2]
	(b)	A geneticist was asked to investigate the inheritance of acatalasia in dogs.
		The normal allele is represented by ${\bf B}$ and the mutant allele is represented by ${\bf b}$.
The geneticist made the diagram in Fig. 3.1 to show the inheritance of acatalasia in a family of dogs. The shaded symbols indicate the dogs with acatalasia.		
<u> </u> 1 -]- -	normal male normal female male with acatalasia
4		female with acatalasia
Fig. 3.1		
		(i) State the genotypes of the dogs identified as 1, 2 and 3 in Fig. 3.1. 1 normal Male 2 male with acatalasia
3 mo normal female [3]		

Select page

	Your Mark	(
3(a)		
		(
3(b)(i)		(
3(b)(ii)		

3(b)(iii)

Q3	Mark scheme	е		
(a)	R chromosom	e/molecule	nt codes for a p e of/genome n <u>base</u> sequer	
(b)(i)	1 Bb ; 2 bb ; 3 Bb ;			3 marks
(b)(ii)	(Bb x bb) B , b + b , (b) ;			
	male gametes			ale gametes
			В	b
	female	b	Bb	bb
	gametes	(b)	(Bb)	(bb)
	offspring genotypes Bb and bb ; A heterozygous and homozygous recessive offspring phenotypes normal/carrier and acatalasia; 3 marks			
(b)(iii)	test (cross);			1 mark

Complete the genetic diag	ram to show how this is	possible.
	dog 4	dog 5
parental phenotypes	normal	has acatalasia
parental genotypes	acdc95	dogly.
gametes	4 5	+ (5)
Punnett square		
4 54 5 4	\$ 554 5 44 ⁵	
offspring genotypes4		

(iii) State the name given to the type of cross that you have completed in (b)(ii).

Punnett square [1]

Select	
page	

You	r
Mar	k

3(a

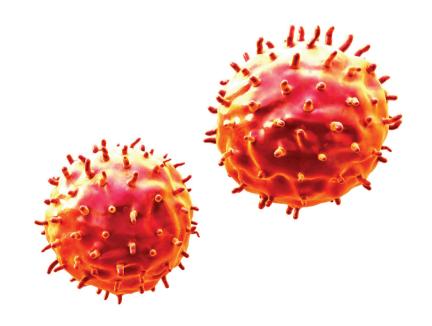
(b)(i)	

Q3	Mark scheme				
(a)	gene a length of DNA that codes for a protein; R chromosome/molecule of/genome gene mutation a change in base sequence of DNA; 2 marks				
(b)(i)	1 Bb; 2 bb; 3 Bb; 3 marks				
(b)(ii)	(b)(ii) (Bb x bb) B , b + b , (b) ;				
			В	b	
	female	b	Bb	bb	
	gametes	(b)	(Bb)	(bb)	
	offspring genot	s and homozyg	ous recessive	italasia ; 3 marks	
(b)(iii)	test (cross);			1 mark	

3(b)(iii)

[Total: 9]

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554


Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 4 (May / June 2016), Question 4

Cambridge IGCSE[™]
Biology 0610

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

4	Rha	abdostyla is a single-celled organism that has no cell wall and no chlorophyll.
	(a)	Gases are exchanged across the cell membrane of Rhabdostyla.
		Name:
		the gas produced by <i>Rhabdostyla</i>
		the process that produces the gas
		the method of removal of the gas
		(3)
	Rh	abdostyla lives in freshwater habitats, such as ponds, lakes and rivers.
	Fre	shwater has a very low concentration of solutes.
	Rha Fig	abdostyla has a contractile vacuole that fills with water and empties at intervals as shown in 4.1. The contractile vacuole removes excess water.
	ntrad cuole	
		Fig. 4.1
	(b)	Explain, using the term water potential, why Rhabdostyla needs to remove excess water. If Rhah do Styla did not cemone excess water. If Rhah do Styla did not cemone excess water. If Rhah do Styla did not cemone excess water. If Rhah do Styla did not cemone excess water. If Rhah do Styla did not cemone excess water. If was it has no cell wall to hold its shape. It would fill up as the reshaper was a high matter potential and Rhab doststa has a land water potential sowater mouss down the dammile. Potential a cadient through a partially permemble [3] New Morane into the cell by Osmo 5is,

Select page

Your Mark Q4	Mark scheme	
(a)	carbon dioxide/CO2; (aerobic) respiration; (simple) diffusion; A excretion I gas exchange	3 marks
(b)	water enters by osmosis; down a water potential gradient/high(er) to low potential; R water concentration A semi-/selectively/differentially through partially permeable membrane; needs to remove water to prevent bursting;	(er) <u>water</u> 3 marks
(c)	as concentration of sea water increases the rer water decreases; as concentration of sea water increases the wa gradient decreases; A 0% to 12% therefore less water enters at higher concentra water;	ter potential
(d)	less excess water; cell walls, inelastic/do not stretch/rigid/inflexib shape of cell; I strong/tough/don't break cells, are turgid/have high turgor pressure; resist any increase in, volume/pressure; these cells do not absorb excess water;	
	A (very) little water enters the cells will not burst;	3 marks

In an investigation, individual *Rhabdostyla* were placed into different concentrations of sea water. The rate of water excreted by the contractile vacuole of each organism was determined. The results are shown in Fig. 4.2.

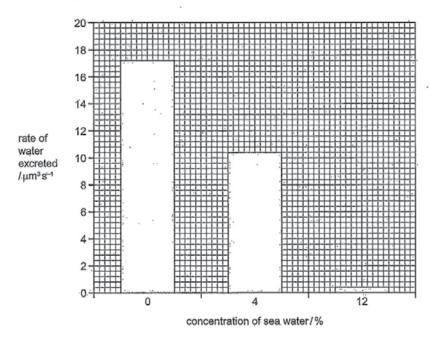


Fig. 4.2

(c) Explain the results shown in Fig. 4.2.

When there is instrumen a high amount of

Luter is excreted the to the large discerences in

Vater Potential between the cell and the water.

When there is a higher concentration 08-sea

hater at 6% there are more Salts intremater 89

The disserence in water Dobential isless so less more

into the cell. A 12/6 Concentration the water Potentialization or Similars of water is little monement of water and so

little unter reeds to be excreted by the cellos there

are many Salt ions international as sea water has
a high salt cowers

Select page

Your			
Mark	Q4	Mark scheme	
4(a)	(a)	carbon dioxide/CO2; (aerobic) respiration; (simple) diffusion; A excretion I gas exchange	3 marks
4(b)	(b)	water enters by osmosis; down a water potential gradient/high(er) to low(e potential; R water concentration A semi-/selectively/differentially through partially permeable membrane; needs to remove water to prevent bursting;	r) <u>water</u> 3 marks
44.	(c)	as concentration of sea water increases the removater decreases; as concentration of sea water increases the water gradient decreases; A 0% to 12% therefore less water enters at higher concentration water; less excess water;	r potential
4(c)	(d)	cell walls, inelastic/do not stretch/rigid/inflexible shape of cell; I strong/tough/don't break cells, are turgid/have high turgor pressure; resist any increase in, volume/pressure; these cells do not absorb excess water; A (very) little water enters the cells will not burst;	/keep 3 marks
4(d)			

(d) Single-celled organisms with cell walls do not have contractile vacuoles. Suggest why.

AS a Cell wall how hot fur shape of the

Organism even were Rilled with water

8 9ituill not bucst like twose without

Cell walls. In Stead them be come

two id when they are of Hed with water

M. Stee Cell wall retains the Cell's Shape

un like the cell membrane So fres do not [3]

Need to be emptied of waster by a contractive

vacuole So it would be a waster of a contractive

vacuole So it would be a waster of a contractive

vacuole.

Select page

Your Mark	Q4	Mark scheme	
a)	(a)	carbon dioxide/CO2; (aerobic) respiration; (simple) diffusion; A excretion I gas exchange	3 marks
b)	(b)	water enters by osmosis; down a water potential gradient/high(er) to low(potential; R water concentration A semi-/selectively/differentially through partially permeable membrane; needs to remove water to prevent bursting;	er) <u>water</u> 3 marks
c)	(c)	as concentration of sea water increases the remwater decreases; as concentration of sea water increases the wat gradient decreases; A 0% to 12% therefore less water enters at higher concentrat water; less excess water;	er potential
C)	(d)	cell walls, inelastic/do not stretch/rigid/inflexible shape of cell; I strong/tough/don't break cells, are turgid/have high turgor pressure; resist any increase in, volume/pressure; these cells do not absorb excess water; A (very) little water enters	e/keep

the cells will not burst;

3 marks

		, ,	
4	Rha	abdostyla is a single-celled organism that has no cell wall and no chlorophyll:	
	(a)	Gases are exchanged across the cell membrane of Rhabdostyla.	
		Name:	
		the gas produced by Rhabdostyla	
		the process that produces the gastespiration	
		the method of removal of the gasEXCTCHON	
			[3
	Rhe	abdostyla lives in freshwater habitats, such as ponds, lakes and rivers.	
	Fre	shwater has a very low concentration of solutes.	
		abdostyla has a contractile vacuole that fills with water and empties at intervals as shown in 4.1. The contractile vacuole removes excess water.	
	ntrac cuole		
	/	7 not drawn to sca	le
		Fig. 4.1	
	(b)	Explain, using the term water potential, why Rhabdostyla needs to remove excess water	
		Rhabdostyla needs to remove excess water to avoid	
		having too high water potential. If it would have too	
		high mater potential the cell would swell up	
		and bust as there is no call wall that	

would stop it from burshing,

Select page

4(a)	Your Mark	(
4(b)		(
4(c)		(
4(d)		

Q4	Mark scheme
(a)	carbon dioxide/CO2; (aerobic) respiration; (simple) diffusion; A excretion I gas exchange 3 mark
(b)	water enters by osmosis; down a water potential gradient/high(er) to low(er) water potential; R water concentration A semi-/selectively/differentially through partially permeable membrane; needs to remove water to prevent bursting; 3 mark
(c)	as concentration of sea water increases the removal of water decreases; as concentration of sea water increases the water potenti gradient decreases; A 0% to 12% therefore less water enters at higher concentrations of se water; less excess water;
(d)	cell walls, inelastic/do not stretch/rigid/inflexible/keep shape of cell; I strong/tough/don't break cells, are turgid/have high turgor pressure; resist any increase in, volume/pressure; these cells do not absorb excess water; A (very) little water enters the cells will not burst; 3 mark

In an investigation, individual *Rhabdostyla* were placed into different concentrations of sea water. The rate of water excreted by the contractile vacuole of each organism was determined. The results are shown in Fig. 4.2.

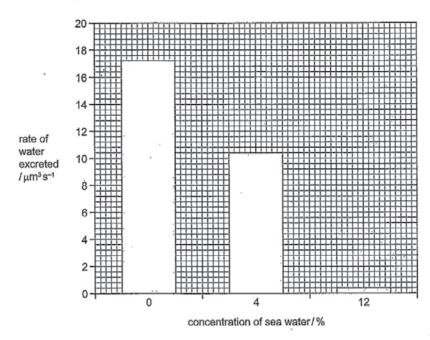


Fig. 4.2

The lower the concentration of selection the higher the rate of water excreted. As you can see, at 0 concentration (%) the rate of water excreted was the highest (17.2 µm³s-1). This might be because Rhabod stylas are used to fresh waters and not to salty water. Too much salty water could have made the vacuale the flacid and dried out from the salt.

Select page

(a) (b) (c) (d)	water enters by osmosis; down a water potential gradient/high(er) to low(er) was potential; R water concentration A semi-/selectively/differentially through partially permeable membrane;	n arks iter
(c)	water enters by <u>osmosis</u> ; down a <u>water potential</u> gradient/high(er) to low(er) <u>water potential</u> ; R water concentration A semi-/selectively/differentially through partially permeable membrane;	nter_
(c)	needs to remove water to prevent bursting; 3 n	narks
	as concentration of sea water increases the removal of water decreases; as concentration of sea water increases the water pot gradient decreases; A 0% to 12% therefore less water enters at higher concentrations of water; less excess water;	ential
	cell walls, inelastic/do not stretch/rigid/inflexible/kee shape of cell; I strong/tough/don't break cells, are turgid/have high turgor pressure; resist any increase in, volume/pressure;	
(4)	these cells do not absorb excess water; A (very) little water enters	narks

(d)	Single-celled organisms with cell walls do not have contractile vacuoles. Suggest why.
	Single-celled organisms with cell walls do not
	need contractile vacable to empty it's content because
	these cells cannot burst. The cell wall prevents
	them from burshing and so there is no need
	for contractile vacuole and to even out the
	water potential.
	[3

Select page

You
Mar

4(a)

4(b)

[Total: 12]

1(c)

4(d)

Q4	Mark scheme	
(a)	carbon dioxide/CO2; (aerobic) respiration; (simple) diffusion; A excretion I gas exchange	3 marks
(b)	water enters by osmosis; down a water potential gradient/high(er) to low potential; R water concentration A semi-/selectively/differentially through partially permeable membrane; needs to remove water to prevent bursting;	v(er) <u>water</u> 3 marks
(c)	as concentration of sea water increases the rewater decreases; as concentration of sea water increases the way gradient decreases; A 0% to 12% therefore less water enters at higher concentrativater; less excess water;	ater potential
(d)	cell walls, inelastic/do not stretch/rigid/inflexits shape of cell; I strong/tough/don't break cells, are turgid/have high turgor pressure; resist any increase in, volume/pressure; these cells do not absorb excess water; A (very) little water enters the cells will not burst;	ole/keep 3 marks

- 4 Rhabdostyla is a single-celled organism that has no cell wall and no chlorophyll.
 - (a) Gases are exchanged across the cell membrane of Rhabdostyla.

Name: Rhabdostyla

the gas produced by Rhabdostyla WOLLET VOLOT
the process that produces the gas CONTROTILE VACUOLE Fills And amplys withwater
the method of removal of the gas CONTROTILE VACUOLE

[3]

Rhabdostyla lives in freshwater habitats, such as ponds, lakes and rivers.

Freshwater has a very low concentration of solutes.

Rhabdostyla has a contractile vacuole that fills with water and empties at intervals as shown in Fig. 4.1. The contractile vacuole removes excess water.

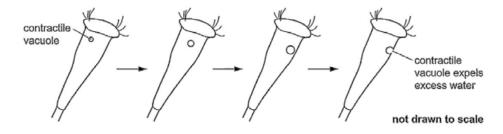
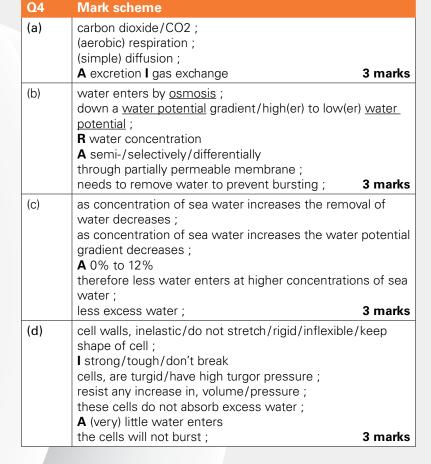


Fig. 4.1

(b) Explain, using the term water potential, why Rhabdostyla needs to remove excess water.

TO Make Sure your water potential is correct,


you need to get rid of all excess water. If

you don't remove excess water then you wan't

be able to produce the gas you want.

Select page

Your Mark 4(a) 4(b)

In an investigation, individual *Rhabdostyla* were placed into different concentrations of sea water. The rate of water excreted by the contractile vacuole of each organism was determined. The results are shown in Fig. 4.2.

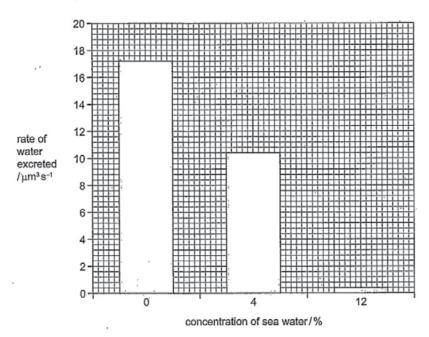


Fig. 4.2

(c) Explain the results shown in Fig. 4.2.

When there is 0% concentration of sea

water, the rate of water exerction is about

17 um35. When there is 4% concentration of

Sea water, the rater of water exerction is lawer

at about 10.5 um35. Lastly, when there is 12%

concentration of sea water, there is only about

2 um35. (rate of water exercted).

Select page

Your Mark	0.4		
IVIAIN	Q4	Mark scheme	
1(a)	(a)	carbon dioxide/CO2; (aerobic) respiration; (simple) diffusion; A excretion I gas exchange	3 marks
(b)	(b)	water enters by osmosis; down a water potential gradient/high(er) to low(potential; R water concentration A semi-/selectively/differentially through partially permeable membrane; needs to remove water to prevent bursting;	er) <u>water</u> 3 marks
	(c)	as concentration of sea water increases the remwater decreases; as concentration of sea water increases the wat gradient decreases; A 0% to 12% therefore less water enters at higher concentrat water;	er potential
(c)	(d)	less excess water; cell walls, inelastic/do not stretch/rigid/inflexibl shape of cell; I strong/tough/don't break cells, are turgid/have high turgor pressure; resist any increase in, volume/pressure; these cells do not absorb excess water; A (very) little water enters	3 marks e/keep
		the cells will not burst;	3 marks

(k	Single-celled organisms with cell walls do not have contractile vacuoles. Suggest why.	
	Single-celled organisms only with cell walls	
	clan't have contractive vacuous because	
	they only have I can to to live off of.	
	Organisms with multiple cells to need a contradile	
	vacuoles to hap the organisms calls work	
	together to beep the organism alive.	
		[3]
	. [Total:	121
	. [Total.	.2]

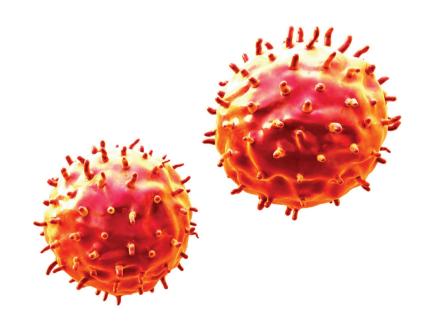
Select page

Your Mark	C
4(a)	(6
	(k
4(b)	(c
4(c)	
	(0

4(d)

Q4	Mark scheme
(a)	carbon dioxide/CO2; (aerobic) respiration; (simple) diffusion; A excretion I gas exchange 3 marks
(b)	water enters by osmosis; down a water potential gradient/high(er) to low(er) water potential; R water concentration A semi-/selectively/differentially through partially permeable membrane; needs to remove water to prevent bursting; 3 marks
(c)	as concentration of sea water increases the removal of water decreases; as concentration of sea water increases the water potential gradient decreases; A 0% to 12% therefore less water enters at higher concentrations of sea water; less excess water; 3 marks
(d)	cell walls, inelastic/do not stretch/rigid/inflexible/keep shape of cell; I strong/tough/don't break cells, are turgid/have high turgor pressure; resist any increase in, volume/pressure; these cells do not absorb excess water; A (very) little water enters the cells will not burst; 3 marks

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554


Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 4 (May / June 2016), Question 5

Cambridge IGCSE[™]
Biology 0610

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

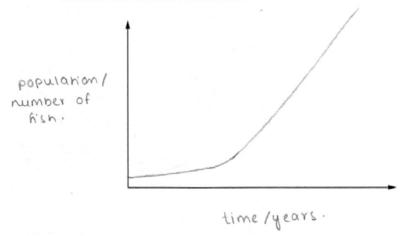
We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/


Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

- 5 A researcher investigated the population growth of fish for fish farming. The researcher stocked a farmer's lake with a small number of these fish and recorded the number of fish over the next five years. The researcher's results showed that the population of fish had increased exponentially.
 - (a) (i) Use the axes to show the exponential growth in the population of fish.

Label the axes and draw a suitable curve.

[3]

(ii) Explain why the population of fish increased exponentially.

There were few limiting factors.
Fish had plenty of food from foodstock.
so there was little competition. There
were no predators. Spread of disease
was controlled by antibiotics. Birth rate
was high since there were many
individuals to reproduce.

Select page

Yo	ur
M	ark

5(a)(i)

5(a)(ii)

(b)

5(c)

- 4 - 1	
5(4)	
Jul	

Q5	Mark scheme
(a)(i)	vertical axis – numbers / population; horizontal axis – time / years; curve showing exponential increase / log phase; I lag phase / curve starting at origin 3 marks
(a)(ii)	<pre>idea that 'birth'/reproduction/breeding, rate is greater than death rate; I definitions of exponential growth no limiting factors; no/little, competition; plenty, of food/nutrients/space/mates/oxygen/ resources; no/few, predators; no/few, parasites/pathogens/disease; AVP; e.g. no/little, pollution/waste products/toxins 4 marks</pre>
(b)	between 1950 and 2012 units must be used at least once mass of fish caught increased and levels off; 17 to 90 million tonnes/increase = 73 million tonnes; A 16 to 18/increase of 72 to 74 fluctuations/increases and decreases/described; e.g. around 1970/any time after 1990; mp4 cannot be awarded without mp3

maximum catch, 94 million tonnes/in 1996;

steep increase between, 1950–1970/1973–1989; **3 marks**

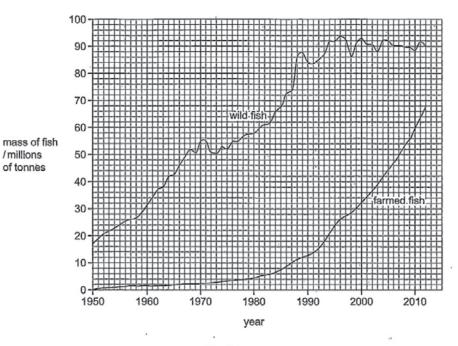


Fig. 5.1

(b) Describe the changes in the mass of wild fish caught between 1950 and 2012.

You will gain credit if you use data from Fig. 5.1.

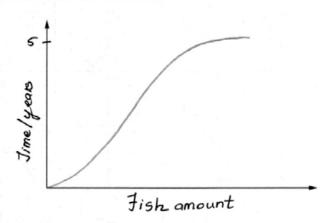
There has been an overall increase in mass between 1950 and 2012 from 17 million tonnes to 90 million tonnes. It increased steeply between 1950 and 1995 and then remained fairly constant around 90 million tonnes.

Greatest mass was in 1996. There were small furchations throughout 1940 1950 -2012.

Select page

Q5	Mark scheme
(a)(i)	vertical axis – numbers / population ; horizontal axis – time / years ; curve showing exponential increase / log phase ; I lag phase / curve starting at origin 3 mark
(a)(ii)	idea that 'birth'/reproduction/breeding, rate is greater than death rate; I definitions of exponential growth no limiting factors; no/little, competition; plenty, of food/nutrients/space/mates/oxygen/ resources; no/few, predators; no/few, parasites/pathogens/disease; AVP; e.g. no/little, pollution/waste products/toxins 4 mark
(b)	between 1950 and 2012 units must be used at least once mass of fish caught increased and levels off; 17 to 90 million tonnes/increase = 73 million tonnes; A 16 to 18/increase of 72 to 74 fluctuations/increases and decreases/described; e.g. around 1970/any time after 1990; mp4 cannot be awarded without mp3 maximum catch, 94 million tonnes/in 1996; steep increase between, 1950–1970/1973–1989; 3 marks
	(a)(i) (a)(ii)

Select page


(c)	It is predicted that wild fish stocks will decrease and become depleted because of overfishing.							
	Suggest ways in which governments can try to maintain the stocks of wild fish.							
	Governments should to try to reduce the effect							
	of limining factors							
	Governments should pass strict laws- Fishing							
	Should not be allowed during breeding							
	season; special nets should be provided to							
	hishermen that don't catch baby hish and							
	overseas fishermen should not be allowed to							
	high in the part of the sea that is belongs to							
	the country water pollution & due to chemical							
	ferhilizers and sewage should be reduced as							
	this causes eutrophication and sewage should							
	be treated before being dumped. Plashics should							
	not be dumped in the sea or rivers. Oil spills							
	should be prevented, Sewage should not contain							
(d)	Like fish stocks, forests can be a sustainable resource.							
	Discuss what is meant by the term sustainable resource, using forests as an example.							
	Sustainable resource is a resource that can							
	be removed from the environment without it							
	running out e.g. forests are cut down							
	for agriculture, housing etc. but as long as							
	they are replaced by planting trees elsewhere							
	or some are left, they will not finish and							
	will be awailable for future generations. [3] and they will also grow back.							
	•							

Your						
Mark	Q5	Mark scheme				
5(a)(i)	(c)	answers can refer to seas, lakes and/or rivers international, agreements/treaties; A set maximum mass/number/amount/quantity quotas/permits/licenses; A 'ban unauthorised fishing'				
5(a)(ii)		fines/sanctions, for, overfishing/illegal/unauthorised, fishing; A consequences other than fines fishery protection vessels/wardens/patrols/AW; restrictions on times when fishing can occur; A not in breeding season exclusion zones/nursery zones/'no take' zones/reserves;				
5(b)		A descriptions or examples total ban for some species; A named examples regulations on method of fishing; e.g. mesh size of nets/ban nets/use of lines instead/size of fishing vessel/'fishing effort' I ban on all wild fish education/raise awareness/any example;				
5(c)		monitoring fish stocks; captive breeding (of wild fish); re-stocking (of wild stocks); encourage farmed fish; e.g. provide subsidies AVP; e.g. tax on wild fish/increase the cost of wild fish 6 marks				
5(d)	(d)	definition of sustainable resource renewable/self-renewing/regenerates/described; e.g. produced as rapidly as it is removed I reused/recycled resource, does not/will not, run out/become exhausted; replanting/reseeding/regrowing; AVP; e.g. pollarding/coppicing/leaving mature trees 3 marks				

[Total: 19]

- 5 A researcher investigated the population growth of fish for fish farming. The researcher stocked a farmer's lake with a small number of these fish and recorded the number of fish over the next five years. The researcher's results showed that the population of fish had increased exponentially.
 - (a) (i) Use the axes to show the exponential growth in the population of fish.

Label the axes and draw a suitable curve.

[3]

The fish were provided with enough may feet have not been within the reproductive age and then when they reached it however, there was an exponential growth as they provided with all the nutrients, thetime and conditions for their population to

(ii) Explain why the population of fish increased exponentially.

increase	.x	 	
	•••••	 	

Select page

Q5

(a)(i)

Your
Mark

5(a)(i)

5(a)(ii)

(b)

5(c)

	I lag phase / curve starting at origin 3 marks
(a)(ii)	idea that 'birth'/reproduction/breeding, rate is greater than death rate; I definitions of exponential growth no limiting factors; no/little, competition; plenty, of food/nutrients/space/mates/oxygen/ resources; no/few, predators; no/few, parasites/pathogens/disease; AVP; e.g. no/little, pollution/waste products/toxins 4 marks
(b)	between 1950 and 2012 units must be used at least once mass of fish caught increased and levels off; 17 to 90 million tonnes/increase = 73 million tonnes; A 16 to 18/increase of 72 to 74 fluctuations/increases and decreases/described; e.g. around 1970/any time after 1990; mp4 cannot be awarded without mp3 maximum catch, 94 million tonnes/in 1996; steep increase between, 1950–1970/1973–1989; 3 marks

curve showing exponential increase / log phase:

Mark scheme

vertical axis - numbers / population;

horizontal axis - time / years;

5(d)

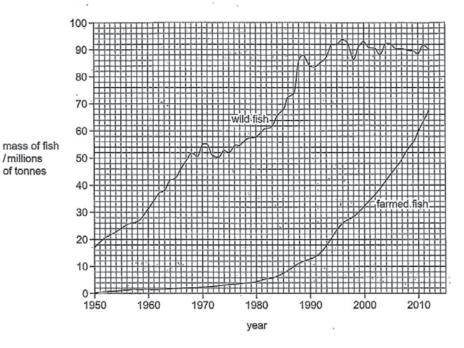


Fig. 5.1

(b) Describe the changes in the mass of wild fish caught between 1950 and 2012.

You will gain credit if you use data from Fig. 5.1.

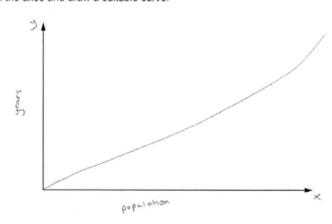
The mass of fish at 1950 was around 19 million tonnes and as the years passed by there was growth but around the year 1985, there - 1990 was a growth spurt until it reached about 88 million tonne and then the growth at increased and decreased normally until Dot was almost

constant until 2010. [3]

Select page

5(d)

our ark Q5	Mark scheme
(a)(i)	vertical axis – numbers / population; horizontal axis – time / years; curve showing exponential increase / log phase; I lag phase / curve starting at origin 3 mark
(a)(ii)	idea that 'birth'/reproduction/breeding, rate is greater that death rate; I definitions of exponential growth no limiting factors; no/little, competition; plenty, of food/nutrients/space/mates/oxygen/ resources; no/few, predators; no/few, parasites/pathogens/disease; AVP; e.g. no/little, pollution/waste products/toxins 4 mark
(b)	between 1950 and 2012 units must be used at least once mass of fish caught increased and levels off; 17 to 90 million tonnes/increase = 73 million tonnes; A 16 to 18/increase of 72 to 74 fluctuations/increases and decreases/described; e.g. around 1970/any time after 1990; mp4 cannot be awarded without mp3 maximum catch, 94 million tonnes/in 1996; steep increase between, 1950–1970/1973–1989; 3 mark


(c)	It is predicted that wild fish stocks will decrease and become depleted because of overfishing.
	Suggest ways in which governments can try to maintain the stocks of wild fish.
	The government can contribute in maintaing
	The government can contribute in maintaing maintaining the stock of wild just by:
	The state of the s
	· Educating fishers about this issue. • Enf. Enforcing Laws that ban fishing at breeding seasons.
	· Enf Enforcing Laws that bon lishing at breeding
	seasons.
	o Fishers should not be allowed to Jish the young jishes that have not yet reached reproductive age.
	young jishes that have not yet reached
	reproductive age.
	a There should be a limit for fishing rate
	at time intervals.
į	[6]
ŕ	
(d)	Like fish stocks, forests can be a sustainable resource.
	Discuss what is meant by the term sustainable resource, using forests as an example.
	A sustainable resource is a resource that is
	renewable or can be produced at the Same rate as.
	it is used. We can see this in forests as we cut
	heating purposes. We can be grow grow the trees
	that we cut clown again and so repeoling this no
	eyele change in the ecosystem rail at the same rate [3]
	as we use them: and at this rote the sustainable resource will remain in our ecosystem. [Total: 19]
	resource will remain in our ecosystem. [Total: 19]

Select page

Q5	Mark scheme
(c)	answers can refer to seas, lakes and/or rivers international, agreements/treaties; A set maximum mass/number/amount/quantity quotas/permits/licenses; A 'ban unauthorised fishing'
	fines/sanctions, for, overfishing/illegal/unauthorised, fishing; A consequences other than fines fishery protection vessels/wardens/patrols/AW; restrictions on times when fishing can occur; A not in breeding season
	exclusion zones/nursery zones/'no take' zones/reserves; A descriptions or examples total ban for some species; A named examples regulations on method of fishing; e.g. mesh size of nets/ban nets/use of lines instead/size of fishing vessel/'fishing effort' I ban on all wild fish education/raise awareness/any example;
	monitoring fish stocks; captive breeding (of wild fish); re-stocking (of wild stocks); encourage farmed fish; e.g. provide subsidies AVP; e.g. tax on wild fish/increase the cost of wild fish 6 marks
(d)	definition of sustainable resource renewable/self-renewing/regenerates/described; e.g. produced as rapidly as it is removed I reused/recycled resource, does not/will not, run out/become exhausted; replanting/reseeding/regrowing; AVP; e.g. pollarding/coppicing/leaving mature trees 3 marks
	(c)

- 5 A researcher investigated the population growth of fish for fish farming. The researcher stocked a farmer's lake with a small number of these fish and recorded the number of fish over the next five years. The researcher's results showed that the population of fish had increased exponentially.
 - (a) (i) Use the axes to show the exponential growth in the population of fish.

Label the axes and draw a suitable curve.

[3]

[4]

(ii) Explain why the population of fish increased exponentially.

Good environment, more offspring.
save made The right amount of
Sunlight the The laste is pure
water no additional compounds
More oxygen.

Select page

Your
Mark

5(a)(i)

5(a)(ii)

(b)

5(c)

5(d)	
O(a)	

Q5	Mark scheme			
(a)(i)	vertical axis – numbers / population; horizontal axis – time / years; curve showing exponential increase / log phase; I lag phase / curve starting at origin 3 marks			
(a)(ii)	<pre>idea that 'birth'/reproduction/breeding, rate is greater than death rate; I definitions of exponential growth no limiting factors; no/little, competition; plenty, of food/nutrients/space/mates/oxygen/ resources; no/few, predators; no/few, parasites/pathogens/disease; AVP; e.g. no/little, pollution/waste products/toxins 4 marks</pre>			
(b)	between 1950 and 2012 units must be used at least once mass of fish caught increased and levels off; 17 to 90 million tonnes/increase = 73 million tonnes; A 16 to 18/increase of 72 to 74 fluctuations/increases and decreases/described; e.g. around 1970/any time after 1990; mp4 cannot be awarded without mp3			

maximum catch, 94 million tonnes/in 1996;

steep increase between, 1950–1970/1973–1989; **3 marks**

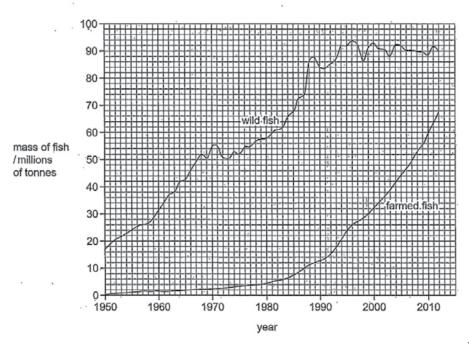


Fig. 5.1

(b)	Describe the changes in the mass of wild fish caught between 1950 and 2012.		
	You will gain credit if you use data from Fig. 5.1.		
	The population of fish increased a lot,		
	because farmed fish were used and		
	So the wild fish weren't caught		
	so more offsprings and less fishing.		
	· · · · · · · · · · · · · · · · · · ·		
		[3]	

Select page

5(d)

Your Mark	Q5	Mark scheme
5(a)(i)	(a)(i)	vertical axis – numbers / population; horizontal axis – time / years; curve showing exponential increase / log phase; I lag phase / curve starting at origin 3 marks
(a)(ii)	(a)(ii)	idea that 'birth'/reproduction/breeding, rate is greater than death rate; I definitions of exponential growth no limiting factors; no/little, competition; plenty, of food/nutrients/space/mates/oxygen/resources; no/few, predators; no/few, parasites/pathogens/disease; AVP; e.g. no/little, pollution/waste products/toxins 4 marks
5(b)	(b)	between 1950 and 2012 units must be used at least once mass of fish caught increased and levels off; 17 to 90 million tonnes/increase = 73 million tonnes; A 16 to 18/increase of 72 to 74 fluctuations/increases and decreases/described; e.g. around 1970/any time after 1990;
c)		mp4 cannot be awarded without mp3 maximum catch, 94 million tonnes/in 1996; steep increase between, 1950–1970/1973–1989; 3 marks

[Total: 19]

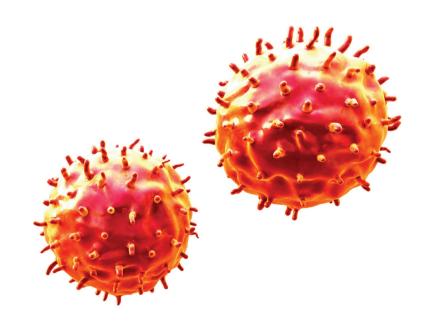
Select page

Your		
Mark	Q5	Mark scheme
5(a)(i)	(c)	answers can refer to seas, lakes and/or rivers international, agreements/treaties; A set maximum mass/number/amount/quantity quotas/permits/licenses; A 'ban unauthorised fishing'
5(a)(ii)		fines/sanctions, for, overfishing/illegal/unauthorised, fishing; A consequences other than fines fishery protection vessels/wardens/patrols/AW; restrictions on times when fishing can occur; A not in breeding season
5(b)		exclusion zones/nursery zones/'no take' zones/reserves; A descriptions or examples total ban for some species; A named examples regulations on method of fishing; e.g. mesh size of nets/ban nets/use of lines instead/size of fishing vessel/'fishing effort' I ban on all wild fish
5(c)		education/raise awareness/any example; monitoring fish stocks; captive breeding (of wild fish); re-stocking (of wild stocks); encourage farmed fish; e.g. provide subsidies AVP; e.g. tax on wild fish/increase the cost of wild fish 6 marks
5(d)	(d)	definition of sustainable resource renewable/self-renewing/regenerates/described; e.g. produced as rapidly as it is removed I reused/recycled resource, does not/will not, run out/become exhausted; replanting/reseeding/regrowing; AVP; e.g. pollarding/coppicing/leaving mature trees

6 marks

3 marks

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554


Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 4 (May / June 2016), Question 6

Cambridge IGCSE[™]
Biology 0610

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

					light			1	
6	5	CO2	+	6H20	chlorophyll	C6H12O6	+	602	
					omoropmym				

[2]

A student investigated the effect of different wavelengths of light on the rate of photosynthesis of the water plant, *Cabomba*.

The student used the apparatus shown in Fig. 6.1.

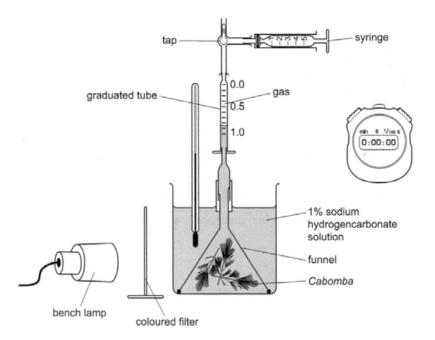


Fig. 6.1

Select page

Your
Mark

6(a)

(b)

6(c

6(d)(i)

6(d)(ii)

6(e)

	Q6	Mark scheme
	(a)	$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$;; one mark for the correct chemical formulae one mark for balancing the equation correctly R word equation 2 marks
	(b)	as <u>wavelength</u> increases, rate (of photosynthesis) decreases and increases; units must be used once in the answer A volume of gas for rate
		high rates in, blue and violet and red/400–475 nm and 675 nm; low(est) rate in, green and yellow/550–600 nm;
either maximum rate = 0.9 cm³, at 675 nm/red or minimum rate = 0.2 cm³, at 550 nm/green :		maximum rate = 0.9 cm³, at 675 nm/red
	(c)	divide the volumes by, five (minutes)/time; 1 mark

colour of filter	wavelength of light/nm	volume of gas collected/cm3
violet	400	0.80
blue	475	0.80
green	550.	0.20
yellow	600	0.40
red	675	0.90

Describe the effect of wavelength of light on the rate of photosynthesis as shown in the student's results in Table 6.1.

You will gain credit if you use data from the table.

As wavelength increases from 400 to 550,
rate of phonosynthesis decreases, but as
wavelength is increased further, it increases.
Greatest rate with wavelength 675 nm and
volume of gas collected was 0,90 cm3 in \$ 5 minutes
· At 400 nm, it was 0.8 cm³ in 5 minutes and
at 550 nm; it was 0.2 cm3 in Sminutes. [3]

(c)	State how the student would calculate the rates of photosynthesis from the results in Table 6.	1.
	Divide volume of gas collected by 5.	
	to obtain rate in cm³ min"	1]

Select page

	Your Mark
6(a)	
6(b)	
6(c)	

6(d)(i)

6(d)(ii)

00	Mark askama	
Q6	Mark scheme	
(a)	$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$;; one mark for the correct chemical formulae one mark for balancing the equation correctly R word equation	2 marks
(b)	as <u>wavelength</u> increases, rate (of photosynthesis) decreases and increases; units must be used once in the answer A volume of gas for rate	
	high rates in, blue and violet and red/400–475 nm 675 nm; low(est) rate in, green and yellow/550–600 nm;	and
	either maximum rate = 0.9 cm³, at 675 nm/red or	
	minimum rate = 0.2 cm ³ , at 550 nm/green;	3 marks
(c)	divide the volumes by, five (minutes)/time;	1 mark

Select page

	Your Mark	
6(a)		
6(b)		

	Q6	Mark scheme	
	(d)(i)	to keep the light intensity the same; R temperature I 'fair test' A 'control light intensity'/'light intensity is a contro variable'	l(led) 1 mark
	(d)(ii)	to provide carbon dioxide/so carbon dioxide is not a limiting factor/so the only limiting factor is waveler	
	(e)	for, respiration/energy; I protein synthesis/growth/active transport R produces energy converted to sucrose; used to make, nectar/fruits; used to make, cellulose/lignin; used in cell walls; used to make, starch/oils/fats; I 'makes food', but A 'stores food' for 1 mark storage; used to make, amino acids; used to make, chlorophyll;	3 marks

6(d)(i)

[Total: 11]

6(d)(ii)

6(e)

		light		
Co HD De	+ 02	chlorophyll	6C02	+6H20

[2]

A student investigated the effect of different wavelengths of light on the rate of photosynthesis of the water plant, *Cabomba*.

The student used the apparatus shown in Fig. 6.1.

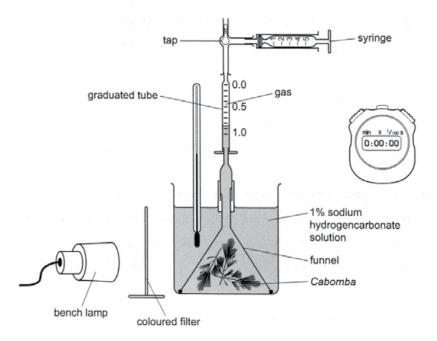


Fig. 6.1

Select page

Your
Mark

6(a)

b)

6(c

6(d)(i)

6(d)(ii)

6(e)

Q6	Mark scheme
(a)	$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$;; one mark for the correct chemical formulae one mark for balancing the equation correctly R word equation 2 marks
(b)	as <u>wavelength</u> increases, rate (of photosynthesis) decreases and increases; units must be used once in the answer A volume of gas for rate
	high rates in, blue and violet and red/400–475 nm and 675 nm; low(est) rate in, green and yellow/550–600 nm;
	either maximum rate = 0.9 cm³, at 675 nm/red or minimum rate = 0.2 cm³, at 550 nm/green; 3 marks
(c)	divide the volumes by, five (minutes)/time; 1 mark

colour of filter	wavelength of light/nm	volume of gas collected / cm ³
violet	400	0.80
blue	475	0.80
green	550-	0.20
yellow	600	0.40
red.	675	0.90

Describe the effect of wavelength of light on the rate of photosynthesis as shown in the student's results in Table 6.1.

You will gain credit if you use data from the table.

Generally, as wavelength of light increases,	
volume of gas collected increases. At first The	
volume of gase collected was 0.80 cm3 at a	
wavelength of 400nm. But at 675 nm, Tho	
volume increased to 0.90 cm?	
	[3
	•

(c) State how the student would calculate the rates of photosynthesis from the results in Table 6.1.

dividing to wavelength over the time [1]

Select page

	Your Mark	
6(a)		
6(b)		
6(c)		
(i)(k		

6(d)(ii)

Q6	Mark scheme	
(a)	$6\text{CO}_2 + 6\text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2$;; one mark for the correct chemical formulae one mark for balancing the equation correctly R word equation	2 marks
(b)	as <u>wavelength</u> increases, rate (of photosynthesis) decreases and increases; units must be used once in the answer A volume of gas for rate	
	high rates in, blue and violet and red/400–475 nm 675 nm ; low(est) rate in, green and yellow/550–600 nm ;	and
	either maximum rate = 0.9 cm³, at 675 nm/red or minimum rate = 0.2 cm³, at 550 nm/green;	3 marks
(0)		
(c)	divide the volumes by, five (minutes)/time;	1 mark

Select page

	Your Mark
6(a)	
6(b)	
6(c)	

6(d)(i)

6(d)(ii)

Q6	Mark scheme
(d)(i)	to keep the light intensity the same; R temperature I 'fair test' A 'control light intensity'/'light intensity is a control(led) variable' 1 mark
(d)(ii)	to provide carbon dioxide/so carbon dioxide is not a limiting factor/so the only limiting factor is wavelength; 1 mark
(e)	for, respiration/energy; I protein synthesis/growth/active transport R produces energy converted to sucrose; used to make, nectar/fruits; used to make, cellulose/lignin; used in cell walls; used to make, starch/oils/fats; I 'makes food', but A 'stores food' for 1 mark storage; used to make, amino acids; used to make, chlorophyll; 3 marks

H₂O + CO₁† H₆ light chlorophyll H₂O₁₂

A student investigated the effect of different wavelengths of light on the rate of photosynthesis of the water plant, *Cabomba*.

The student used the apparatus shown in Fig. 6.1.

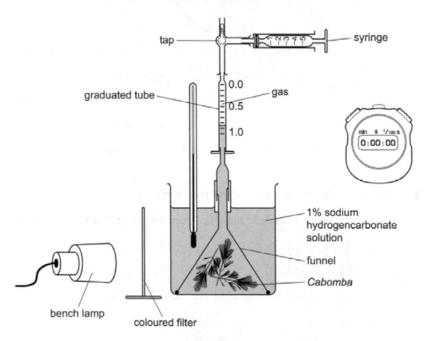


Fig. 6.1

Select page

You	r
Mai	rk

6(a)

6(b)

6(c)

6(d)(i)

6(d)(ii)

6(e)

Q6	Mark scheme	
(a)	$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$;; one mark for the correct chemical formulae one mark for balancing the equation correctly R word equation 2 mark	s
(b)	as <u>wavelength</u> increases, rate (of photosynthesis) decreases and increases; units must be used once in the answer A volume of gas for rate	
	high rates in, blue and violet and red/400–475 nm and 675 nm; low(est) rate in, green and yellow/550–600 nm;	
	either maximum rate = 0.9 cm³, at 675 nm/red or minimum rate = 0.2 cm³, at 550 nm/green; 3 mark	76
(c)	divide the volumes by, five (minutes)/time;	_

colour of filter	wavelength of light/nm	volume of gas collected/cm3
violet	400	0.80
blue	475	0.80
green	550	0.20
yellow	600	0.40
red	675	0.90

Describe the effect of wavelength of light on the rate of photosynthesis as shown in the student's results in Table 6.1.

You will gain credit if you use data from the table. The affect of investment of

	THE CHICK OF MOVER AHY OF
	19ght on the rate of thotosynthais as shown in the table is that
	as shown in the table is that
;	
	[3]
(c)	State how the student would calculate the rates of photosynthesis from the results in Table 6.1.
	By seeing and figuring our how the nature relate to rates of 111
	the returns relate to rates of [1]
	Photosyn+hesis.

Select page

6(d)(i

6(d)(ii)

You Ma	 Q6	Mark scheme	
6(a)	(a)	$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$;; one mark for the correct chemical formulae one mark for balancing the equation correctly R word equation	2 m
6(b)	(b)	as <u>wavelength</u> increases, rate (of photosynthesis) decreases and increases; units must be used once in the answer A volume of gas for rate	
		high rates in, blue and violet and red/400–475 nm 675 nm; low(est) rate in, green and yellow/550–600 nm;	and
6(c)		either maximum rate = 0.9 cm ³ , at 675 nm/red or	•
	(c)	minimum rate = 0.2 cm³, at 550 nm/green; divide the volumes by, five (minutes)/time;	3 m
(d)(i)	(6)	aivide the volumes by, five (minutes)/ (iffie ,	

2 marks

3 marks

1 mark

Select page

6(d)(

6(d)(ii)

6(e)

Your			
Mark	Q6	Mark scheme	
6(a)	(d)(i)	to keep the light intensity the same; R temperature I 'fair test' A 'control light intensity'/'light intensity is a convariable'	ntrol(led) 1 m a
C(h)	(d)(ii)	to provide carbon dioxide/so carbon dioxide is n limiting factor/so the only limiting factor is wave	
6(b)	(e)	for, respiration/energy; I protein synthesis/growth/active transport R produces energy converted to sucrose; used to make, nectar/fruits;	
6(c)		used to make, cellulose/lignin; used in cell walls; used to make, starch/oils/fats; I 'makes food', but A 'stores food' for 1 mark storage; used to make, amino acids;	
(d)(i)		used to make, chlorophyll;	3 ma

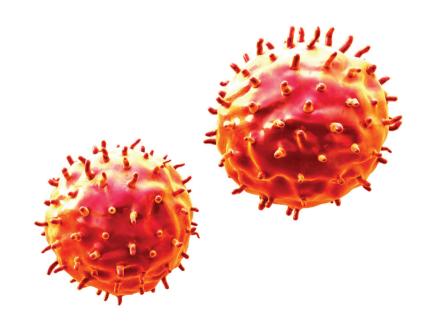
1 mark

1 mark

3 marks

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org


Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 5 (May / June 2016), Question 1

Cambridge IGCSE[™]
Biology 0610

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Read through all the questions on this paper carefully before starting work.

1 Maize (corn) is an important food crop that produces grain. Fig. 1.1 shows a maize grain that has germinated to form a seedling.

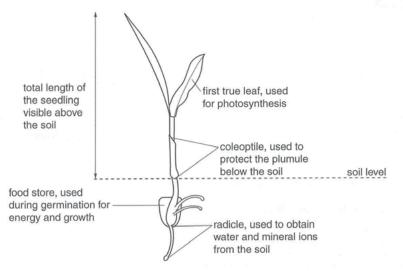


Fig. 1.1

You are going to investigate the effect of light on the germination and early growth of maize. You will measure and observe maize grown in the light and maize grown in the dark.

Three maize grains were planted in each of the two pots labelled $\bf L$ and $\bf D$. One pot ($\bf L$) was placed in the light and the other pot ($\bf D$) placed in the dark. The seedlings were kept at a constant temperature.

Step 1 Observe the appearance of the seedlings carefully.

(a) Complete Table 1.1 by recording two **visible** differences in the seedlings grown in the light and the seedlings grown in the dark.

Table 1.1

feature	seedlings grown in the light	seedlings grown in the dark
Sten	upright, firm	bending, weak, flogge
Leowes	green in colour	pale yelow in colour

Select page

Your Mark 1(a) 1(b)(i)

1(b)(ii)

Q1	Mark scheme							
(a)	any 2 of : comparisons must r	match						
	feature seedlings grown in light seedlings grown in dark							
	height short(er) tall(er)							
	colour	green	yellow/light green					
	coleoptiles	green/pink/ brown/short	white/pale pink/ brown/long					
	leaves	two or three leaves/wider	one or two leaves					
	coleoptile/shoot/ stem	wide(er)	narrow(er)					
	coleoptile/shoot/ almost vertical/ bent/AW stem upright							
			2 marks					
(b)(i)	1 one table drawn with (ruled) lines; 2 column/row headings with units in the header only; 3 trials identified/numbered; 4 twelve measurements recorded in the appropriate light and dark conditions; R if measurements recorded are inconsistent with the unit heading 5 all coleoptile lengths should be shorter than the total length; 6 majority of measurements are consistent with Supervisor's range;							
(b)(ii)	any 2 of: 1 the seeds germina 2 light is needed for chlorophyll is made, 3 idea that seedlings without light (becau	the leaves become f ora ; s grow longer (and t	green (as hinner)					

You are going to measure the length of the coleoptiles and the total length of the seedlings visible above the soil. You will measure all the seedlings grown in the light and all the seedlings grown in the dark.

(b) (i) Prepare a table to record your results.

FEATURE .	SEEDLIN	LIGHT (DAPK (D)			
worth n P0	al - 1	2	3	(2	3	
LENGTH OF COLEOPTILES (cm)	2.0	1.5	3.0	3.0	2.5	3.5	
TOTAL LENGTH OF SEEDLING		41.0	41.0	42.0	42.0	43.0	

[6]

[2]

Step 2 Use a ruler to measure the length of the coleoptile and the total length of the seedling visible above the soil for each seedling.

Record the results for the seedlings grown in pot L and in pot D in your table.

(ii) Look at Table 1.1 and the results of your measurements. State two conclusions that can be made about the effect of light on the germination and early growth of maize.

Lack of light	causes the lack	fallowaphyll
and the lack	of production of	fallooplift
Lach of ligh	t couses the p	last to be weaker
200000000000000000000000000000000000000		

Select page

Q1

(a)

Your Mark

1(a)

Mark scheme any 2 of :

comparisons must match

feature	seedlings grown in light	seedlings grown in dark
height	short(er)	tall(er)
colour	green	yellow/light green
coleoptiles	green/pink/ brown/short	white/pale pink/ brown/long
leaves	two or three leaves/wider	one or two leaves
coleoptile/shoot/ stem	wide(er)	narrow(er)
coleoptile/shoot/ stem	almost vertical/ upright	bent/AW
		2 marks

1(b)(i)

1(b)(ii)

(b)(i) 1 one table drawn with (ruled) lines; 2 column/row headings with units in the header only; 3 trials identified/numbered; 4 twelve measurements recorded in the appropriate light and dark conditions: **R** if measurements recorded are inconsistent with the unit heading 5 all coleoptile lengths should be shorter than the total 6 majority of measurements are consistent with Supervisor's range; (b)(ii) any 2 of: 1 the seeds germinate in both light and dark; 2 light is needed for the leaves become green (as chlorophyll is made/ora; 3 idea that seedlings grow longer (and thinner)

without light (because there is no light)/ora;

2 marks

Use gloves and eye protection while carrying out steps 3 to 14 of the practical work for question 1.

- Step 3 Use a marker pen to draw a line down the centre of a white tile.

 Label one side L and the other side D.
- Step 4 Use a spatula to carefully dig out from each pot, **two** of the seedlings grown in the light and **two** of the seedlings grown in the dark.
- Step 5 Use a scalpel or razor blade to cut the remains of the food store from each of the seedlings.
- Step 6 Use the water in the beaker labelled water for washing to wash each of these food stores and remove the outer covering. Put the outer covering in the beaker labelled waste.
- Step 7 Place the food stores from the seedlings grown in the light on the side of the tile labelled L and the food stores from seedlings grown in the dark on the side of the tile labelled D.
- Step 8 Wash the spatula in the beaker labelled **water for washing** and dry it with a paper towel.

 Use the spatula to crush together the two food stores from the seedlings grown in the light on the part of the tile labelled **L**.

Separate the crushed food store into two equal parts spaced at least 2cm apart, as shown in Fig. 1.2.

Step 9 Repeat step 8 using the two food stores from the seedlings grown in the dark on the part of the tile labelled **D**.

Fig. 1.2

- Step 10 Label two test-tubes, one with the letter L and the other with the letter D.
- Step 11 Scrape one of the food stores from the seedlings grown in the light into the test-tube labelled **L**. Add 2 cm³ of water from the beaker labelled **water**, taking care to wash the crushed food store to the bottom of the test-tube.
- Step 12 Repeat step 11 using one of the food stores from the seedlings grown in the dark and the test-tube labelled **D**.
- Step 13 Carry out a Benedict's test on the contents of test-tube L and test-tube D.

Raise your hand when you are ready for hot water to be placed in the beaker labelled water-bath.

Leave the test-tubes for 5 minutes.

During this time carry out step 14 and answer question (c)(i).

Step 14 Add 1 drop of iodine solution to the remaining two food stores on the white tile. Record your results in Table 1.2.

Select page

	Your Mark
1(c)(i)	
1(c)(ii)	
1(c)(iii)	
1(d)(i)	
r(u)(i)	

1(d)(ii)

Q1	Mark scheme					
(c)(i)	add biuret reagent to the crushed seed/crushed seed and water (and observe the colour change); R if heated 1 mark					
(c)(ii)		res	ults			
	test reagent	seedlings grown in light	seedlings grown in dark			
	biuret	purple	purple			
	Benedict's	blue	blue;			
	iodine	blue-black	blue-black;			
			2 mark			
(c)(iii)	(maize stores) starch and protein (reducing sugar); 1 mark					
	2 ref. to finding star 3 ref. to method of 4 ref. to planting ma 5 ref. to planting tw 6 ref. to keeping (bo °C/constant tempe 7 one other valid de 8 ref. to one set plan placed in (constant) 9 ref to removing (1 days for drying and	drying; aize (grains) in soil/A o sets of at least 10 oth sets) in a warm r rature; atail of the method; ce in (constant) light dark; 0) seedlings (from e weighing;	AW; 0 maize/seeds; oom at/given t/ref. to one set each set) every two			
	10 repeat and calcul	iate the mean/avera	age: 6 mark			
(d)(ii)	water content in, se		<u> </u>			

luns g	up the food source and placed shoke the test tube. A purple protein is present of a biuret test are recorded in Table step 13 by recording the results of your	dd biwet solution and	d. if. it. [1]	Your Mark	Q1 (c)(i)	Mark scheme add biuret reagent to water (and observe) R if heated	to the crushed seed/ the colour change);	
	Table 1.2				(c)(ii)	n ii rieated		1 mark
test	t seedlings grown in light seedlings grown in dark		seedlings grown in light seedlings grown in dark		' ' ' '	test reagent	results seedlings grown seedlings grown	
iuret	purple	purple					in light	in dark
enedict's	blue	blue	1(c)	(ii)		biuret	purple	purple
alia a	down brown	blue block				Benedict's	blue	blue;
odine	dork brown	blue block				iodine	blue-black	blue-black;
			[2]		(c)(iii)		h and protein (reduc	2 marks
	onclusion for the results shown in Tal		1(c)(i		(d)(i)	any 6 of: 1 ref. to using same 2 ref. to finding star 3 ref. to method of 4 ref. to planting ma 5 ref. to planting tw 6 ref. to keeping (bo °C/constant tempe 7 one other valid de 8 ref. to one set pla placed in (constant) 9 ref to removing (1 days for drying and 10 repeat and calcu	e species/type/age of ting (dry) mass; drying; aize (grains) in soil/A of sets of at least 100 of the sets) in a warm resture; etail of the method; ce in (constant) light dark; 0) seedlings (from e weighing; late the mean/averal	of maize; NV; 0 maize/seeds; 0 maiz
			1(d)((ii)	(d)(ii)	water content in, se for comparisons to	eeds/seedlings, is va be valid;	ariable; 1 mark

(c) (i) Describe how to carry out a biuret test on a crushed food store.

Select page The dry mass is the total mass left after all the water has been evaporated.

Table 1.3 shows the results of the investigation for the maize seedlings grown in the light.

Table 1.3

					tim	ne / da	ays				
	0	2	4	6	8	10	12	14	16	18	20
dry mass of 10 maize seedlings/g	22	20	17	12	10	8	11	13	14	15	17

(i) Describe a method the students could have used to carry out this investigation.

Use the information on page 2 to help you.

Plant 10 specify in a container with the same
Plant 10 specific a container with the same type of soil, Place a seed that has not been planted
in the over to senove the water; and measure it is
does mans At 2 day intervals dig up one of the
seeds you planted place it in the over to day out,
and measure it is doy mass by weighing it on a
scales Record your readings. For the seeds that
gernivate cut off the leaves, stem and roots, and only
measure the day mass of the food stare.
[6]

(ii) Suggest why the students measured the dry mass instead of the mass including water in their investigation.

To have	a made as	curate re	sult in ho	w-much
actual in	rass is p	oduced		[1]

[Total: 21]

Select page

1(c)(i)	Your Mark
1(c)(ii)	
1(c)(iii)	
1(d)(i)	

Q1	Mark scheme		
(c)(i)	add biuret reagent to the crushed seed/crushed seed and water (and observe the colour change); R if heated 1 mar		
(c)(ii)		res	ults
	test reagent	seedlings grown in light	seedlings grown in dark
	biuret	purple	purple
	Benedict's	blue	blue;
	iodine	blue-black	blue-black;
			2 mark
(c)(iii)	(maize stores) starch and protein (reducing sugar); 1 mark		
	2 ref. to finding star 3 ref. to method of 4 ref. to planting ma 5 ref. to planting tw	drying; aize (grains) in soil/A o sets of at least 10 oth sets) in a warm r	.W; 0 maize/seeds;
	7 one other valid de 8 ref. to one set pla placed in (constant) 9 ref to removing (1 days for drying and	etail of the method; ce in (constant) light dark; 0) seedlings (from e weighing;	ach set) every two
(d)(ii)	7 one other valid de 8 ref. to one set pla placed in (constant) 9 ref to removing (1 days for drying and 10 repeat and calcu	tail of the method; ce in (constant) light dark; 0) seedlings (from e	ach set) every two

1((d)	(ii)		
			l	

Read through all the questions on this paper carefully before starting work.

1 Maize (corn) is an important food crop that produces grain. Fig. 1.1 shows a maize grain that has germinated to form a seedling.

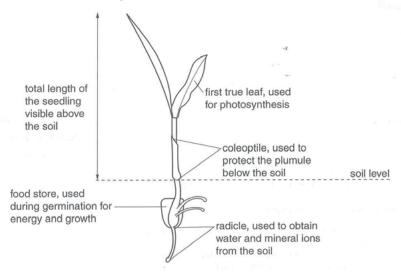


Fig. 1.1

You are going to investigate the effect of light on the germination and early growth of maize. You will measure and observe maize grown in the light and maize grown in the dark.

Three maize grains were planted in each of the two pots labelled L and D. One pot (L) was placed in the light and the other pot (D) placed in the dark. The seedlings were kept at a constant temperature.

Step 1 Observe the appearance of the seedlings carefully.

(a) Complete Table 1.1 by recording two visible differences in the seedlings grown in the light and the seedlings grown in the dark.

Table 1.1

feature	seedlings grown in the light	seedlings grown in the dark
Colour of leaves	heaves are green	Leaves are yellow.
Roots	Roots are below the	Roots are above the soil.

Select page

Q1

(a)

(b)(i)

Your Mark 1(a)

Mark scheme anv 2 of:

comparisons must match

feature	soodlings grown	seedlings grown
leature	seedlings grown in light	in dark
height	short(er)	tall(er)
colour	green	yellow/light green
coleoptiles	green/pink/ brown/short	white/pale pink/ brown/long
leaves	two or three leaves/wider	one or two leaves
coleoptile/shoot/ stem	wide(er)	narrow(er)
coleoptile/shoot/ stem	almost vertical/ upright	bent/AW
		2 marks

1(b)(i)

1(b)(ii)

R if measurements recorded are inconsistent with the unit heading 5 all coleoptile lengths should be shorter than the total 6 majority of measurements are consistent with Supervisor's range;

2 column/row headings with units in the header only;

4 twelve measurements recorded in the appropriate light

1 one table drawn with (ruled) lines;

3 trials identified/numbered;

and dark conditions:

(b)(ii) any 2 of:

1 the seeds germinate in both light and dark;

2 light is needed for the leaves become green (as chlorophyll is made/ora;

3 idea that seedlings grow longer (and thinner) without light (because there is no light)/ora;

You are going to measure the length of the coleoptiles and the total length of the seedlings visible above the soil. You will measure **all** the seedlings grown in the light and **all** the seedlings grown in the dark.

(b) (i) Prepare a table to record your results.

t , t , and a second year second			
Length of coleoptiles	Total length of the seedlings visible above the soil		
2 mm	120mm		
4 mm	240 mm		
20 mm	250 mm.		
50 mm	345 mm		
LIG MM	320 mm		
90 MM	340 mm		
	2 MM 4 mm 20 mm		

[6]

[2]

Step 2 Use a ruler to measure the length of the coleoptile and the total length of the seedling visible above the soil for each seedling.

Record the results for the seedlings grown in pot L and in pot D in your table.

(ii) Look at Table 1.1 and the results of your measurements. State two conclusions that can be made about the effect of light on the germination and early growth of maize.

Select page

Your Mark

1(a)

1(b)(i)

1(b)(ii)

Mark scheme

Q1

(a) any 2 of: comparisons must match

compansons must		
feature	seedlings grown in light	seedlings grown in dark
height	short(er)	tall(er)
colour	green	yellow/light green
coleoptiles	green/pink/ brown/short	white/pale pink/ brown/long
leaves	two or three leaves/wider	one or two leaves
coleoptile/shoot/ stem	wide(er)	narrow(er)
coleoptile/shoot/ stem	almost vertical/ upright	bent/AW
		2 marks

4 twelve measurements recorded in the appropriate light

and dark conditions; **R** if measurements recorded are inconsistent with the unit heading

2 column/row headings with units in the header only;

5 all coleoptile lengths should be shorter than the total length:

6 majority of measurements are consistent with Supervisor's range;

(b)(ii) any 2 of:

1 the seeds germinate in both light and dark;

1 one table drawn with (ruled) lines;

3 trials identified/numbered;

2 light is needed for the leaves become green (as chlorophyll is made/ora;

3 idea that seedlings grow longer (and thinner) without light (because there is no light)/ora;

2 marks

Use gloves and eye protection while carrying out steps 3 to 14 of the practical work for question 1.

- Step 3 Use a marker pen to draw a line down the centre of a white tile.

 Label one side L and the other side D.
- Step 4 Use a spatula to carefully dig out from each pot, **two** of the seedlings grown in the light and **two** of the seedlings grown in the dark.
- Step 5 Use a scalpel or razor blade to cut the remains of the food store from each of the seedlings.
- Step 6 Use the water in the beaker labelled water for washing to wash each of these food stores and remove the outer covering. Put the outer covering in the beaker labelled waste.
- Step 7 Place the food stores from the seedlings grown in the light on the side of the tile labelled L and the food stores from seedlings grown in the dark on the side of the tile labelled D.
- Step 8 Wash the spatula in the beaker labelled **water for washing** and dry it with a paper towel. Use the spatula to crush together the two food stores from the seedlings grown in the light on the part of the tile labelled **L**.

Separate the crushed food store into two equal parts spaced at least 2cm apart, as shown in Fig. 1.2.

Step 9 Repeat step 8 using the two food stores from the seedlings grown in the dark on the part of the tile labelled **D**.

Fig. 1.2

- Step 10 Label two test-tubes, one with the letter L and the other with the letter D.
- Step 11 Scrape one of the food stores from the seedlings grown in the light into the test-tube labelled **L**. Add 2 cm³ of water from the beaker labelled **water**, taking care to wash the crushed food store to the bottom of the test-tube.
- Step 12 Repeat step 11 using one of the food stores from the seedlings grown in the dark and the test-tube labelled **D**.
- Step 13 Carry out a Benedict's test on the contents of test-tube L and test-tube D.

Raise your hand when you are ready for hot water to be placed in the beaker labelled water-bath.

Leave the test-tubes for 5 minutes.

During this time carry out step 14 and answer question (c)(i).

Step 14 Add 1 drop of iodine solution to the remaining two food stores on the white tile. Record your results in Table 1.2.

Select page

1(c)(i)	Your Mark
l(c)(ii)	
(c)(iii)	
1(d)(i)	

Q1	Mark scheme		
(c)(i)	add biuret reagent to the crushed seed/crushed seed and water (and observe the colour change); R if heated 1 mark		
(c)(ii)		res	ults
	test reagent	seedlings grown in light	seedlings grown in dark
	biuret	purple	purple
	Benedict's	blue	blue;
	iodine	blue-black	blue-black;
			2 mark
(c)(iii)	(maize stores) starch and protein (reducing sugar); 1 mar		
	any 6 of: 1 ref. to using same species/type/age of maize; 2 ref. to finding starting (dry) mass; 3 ref. to method of drying; 4 ref. to planting maize (grains) in soil/AW; 5 ref. to planting two sets of at least 100 maize/seeds; 6 ref. to keeping (both sets) in a warm room at/given °C/constant temperature; 7 one other valid detail of the method; 8 ref. to one set place in (constant) light/ref. to one set placed in (constant) dark; 9 ref to removing (10) seedlings (from each set) every two days for drying and weighing;		
/al\/::\	· ·	late the mean/avera	<u> </u>
(d)(ii)	for comparisons to	eeds/seedlings, is va be valid;	ariable; 1 mar

1(d)(ii)

(c) (i) Describe h	ow to carry out a biuret test on a c	rushed food store.	
Crush.	the contents add l	rurent solution (sodu	ano:
.hy.dr.e.		sulfax positur litar	
test	seedlings grown in light	seedlings grown in dark	
biuret	purple	purple	
Benedict's	orange	orange	1(c)(ii)
iodine	blue / black	blue /black	
	110 g is 10	1 - 1 Pm	[2]
	onclusion for the results shown in T		1(c)(iii)
Both	reedlings contain sta	ich and reducing	
Cogarr	and no proteins		[1]
			1(d)(i)
			1(4)(1)
			4/4//::
			1(d)(ii)

Select page

Your Mark

Q1	Mark scheme		
(c)(i)	_	to the crushed seed, the colour change);	crushed seed and
(c)(ii)	T ii iicated		
(0)(11)		res	
	test reagent	seedlings grown in light	seedlings grown in dark
	biuret	purple	purple
	Benedict's	blue	blue;
	iodine	blue-black	blue-black;
			2 marks
(c)(iii)	(maize stores) stard	ch and protein (reduc	ing sugar); 1 marl
	2 ref. to finding sta 3 ref. to method of 4 ref. to planting m	• .	
	6 ref. to keeping (be °C/constant temper 7 one other valid de 8 ref. to one set placed in (constant 9 ref to removing (days for drying and	etail of the method; ace in (constant) light) dark; 10) seedlings (from e	O maize/seeds; oom at/given /ref. to one set ach set) every two

(d) A group of students investigated the changes in dry mass during germination and growth of maize grown in the light and maize grown in the dark.

The dry mass is the total mass left after all the water has been evaporated.

Table 1.3 shows the results of the investigation for the maize seedlings grown in the light.

Table 1.3

		time / days									
	0	2	4	6	8	10	12	14	16	18	20
dry mass of 10 maize seedlings/g	22	20	17	12	10	8	11	13	14	15	17

(i) Describe a method the students could have used to carry out this investigation.

Use the information on page 2 to help you.

You could use seedling appreximately 10.
and calculate its mass perus D germination and
thereafter & calculate mass arker germination.
and the the growth of maire you could grow
one maize plant in light and another in the
dark and make a comparison everyday and
Mote it down in a table as the one about the
dy mais changes with the days as the pair
and for the growth of maize at the end of
20 day compare the maize cobs the one in light and
the one in dart light comparing size of reeds. [6]

(ii) Suggest why the students measured the dry mass instead of the mass including water in their investigation.

50	as	10	knoc	10 G	sly th	O	2200	of	266	dlings	witho	100
	wate	+	and	be o	able	ol	mate	COM	Dar iso	on only	(in	[1]
cho	inges	0	000	bred	in t	Le s	eed	and	VOT	indudi	Tota	1:21]

Select page

Your Mark

1(c)(i)

1(c)(ii)

1(c)(iii)

1(d)(i)

1(d)(ii)

(
(
(4
((
(

Q1	Mark scheme	Mark scheme				
(c)(i)		add biuret reagent to the crushed seed/crushed seed and water (and observe the colour change); R if heated 1 mark				
(c)(ii)		results				
	test reagent	seedlings grown in light	seedlings grown in dark			
	biuret	purple	purple			
	Benedict's	blue	blue;			
	iodine	blue-black	blue-black;			
	2 marks					
(c)(iii)	(maize stores) starc	h and protein (reduc	ing sugar); 1 mark			
(d)(i)	any 6 of: 1 ref. to using same species/type/age of maize; 2 ref. to finding starting (dry) mass; 3 ref. to method of drying; 4 ref. to planting maize (grains) in soil/AW; 5 ref. to planting two sets of at least 100 maize/seeds; 6 ref. to keeping (both sets) in a warm room at/given °C/constant temperature; 7 one other valid detail of the method; 8 ref. to one set place in (constant) light/ref. to one set placed in (constant) dark; 9 ref to removing (10) seedlings (from each set) every two days for drying and weighing; 10 repeat and calculate the mean/average; 6 marks					
(d)(ii)	water content in, seeds/seedlings, is variable; for comparisons to be valid; 1 mark					

Read through all the questions on this paper carefully before starting work.

1 Maize (corn) is an important food crop that produces grain. Fig. 1.1 shows a maize grain that has germinated to form a seedling.

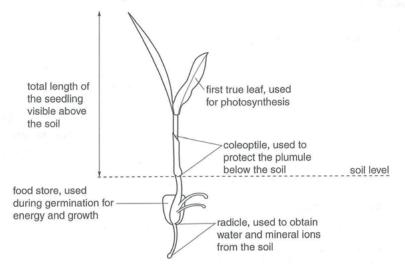


Fig. 1.1

You are going to investigate the effect of light on the germination and early growth of maize. You will measure and observe maize grown in the light and maize grown in the dark.

Three maize grains were planted in each of the two pots labelled $\bf L$ and $\bf D$. One pot ($\bf L$) was placed in the light and the other pot ($\bf D$) placed in the dark. The seedlings were kept at a constant temperature.

Step 1 Observe the appearance of the seedlings carefully.

(a) Complete Table 1.1 by recording two **visible** differences in the seedlings grown in the light and the seedlings grown in the dark.

Table 1.1

feature	seedlings grown in the light	seedlings grown in the dark
Leaves	Flesh (green)	Pare (Yellovish)
Coleoptile	Green coloured	White coloured

Select page

Your Mark 1(a) 1(b)(i) 1(b)(ii)

Q1	Mark scheme							
(a)	any 2 of : comparisons must r	any 2 of : comparisons must match						
	feature	seedlings grown in light	seedlings grown in dark					
	height	short(er)	tall(er)					
	colour	green	yellow/light green					
	coleoptiles	green/pink/ brown/short	white/pale pink/ brown/long					
	leaves	two or three leaves/wider	one or two leaves					
	coleoptile/shoot/ stem	wide(er)	narrow(er)					
	coleoptile/shoot/ stem	almost vertical/ upright	bent/AW					
			2 marks					
(b)(i)	1 one table drawn with (ruled) lines; 2 column/row headings with units in the header only; 3 trials identified/numbered; 4 twelve measurements recorded in the appropriate light and dark conditions; R if measurements recorded are inconsistent with the unit heading 5 all coleoptile lengths should be shorter than the total length; 6 majority of measurements are consistent with Supervisor's range;							
(b)(ii)	any 2 of: 1 the seeds germinate in both light and dark; 2 light is needed for the leaves become green (as chlorophyll is made/ora; 3 idea that seedlings grow longer (and thinner) without light (because there is no light)/ora; 2 marks							

Select page

01

You are going to measure the length of the coleoptiles and the total length of the seedlings visible above the soil. You will measure **all** the seedlings grown in the light and **all** the seedlings grown in the dark.

(b) (i) Prepare a table to record your results.

(b) (i)	Seedlings grown in the light	Seeding grown in the dark
length of coleoptiles	3 Cm .	9.5cm.
Total length, of the seedlings (cm)	22,7 Cm	30.8 _(Cm)

[6]

Step 2 Use a ruler to measure the length of the coleoptile and the total length of the seedling visible above the soil for each seedling.

Record the results for the seedlings grown in pot L and in pot D in your table.

(ii) Look at Table 1.1 and the results of your measurements.

State **two** conclusions that can be made about the effect of light on the germination and early growth of maize.

early growth of maize.

the light is where the place the maize grown, the

Coleophies is croller than it is grown in the dark

too The growth of maize that is grown in high is more rapid efforter compare to the maize

Simush in the Large

[2]

Your Mark

1(a)

1(b)(i)

1(b)(ii)

(a)	any 2 of : comparisons must	match
	feature	seed

Mark scheme

	feature	seedlings grown in light	seedlings grown in dark
	height	short(er)	tall(er)
	colour	green	yellow/light green
	coleoptiles	green/pink/ brown/short	white/pale pink/ brown/long
	leaves	two or three leaves/wider	one or two leaves
	coleoptile/shoot/ stem	wide(er)	narrow(er)
	coleoptile/shoot/ stem	almost vertical/ upright	bent/AW
			2 marks

(b)(i) 1 one table drawn with (ruled) lines; 2 column/row headings with units in the header only;

3 trials identified/numbered;

4 twelve measurements recorded in the appropriate light and dark conditions:

R if measurements recorded are inconsistent with the unit heading

5 all coleoptile lengths should be shorter than the total length;

6 majority of measurements are consistent with Supervisor's range;

(b)(ii) any 2 of:

1 the seeds germinate in both light and dark;

2 light is needed for the leaves become green (as chlorophyll is made/ora;

3 idea that seedlings grow longer (and thinner) without light (because there is no light)/ora;

2 marks

Use gloves and eye protection while carrying out steps 3 to 14 of the practical work for question 1.

- Step 3 Use a marker pen to draw a line down the centre of a white tile.

 Label one side L and the other side D.
- Step 4 Use a spatula to carefully dig out from each pot, **two** of the seedlings grown in the light and **two** of the seedlings grown in the dark.
- Step 5 Use a scalpel or razor blade to cut the remains of the food store from each of the seedlings.
- Step 6 Use the water in the beaker labelled **water for washing** to wash each of these food stores and remove the outer covering. Put the outer covering in the beaker labelled **waste**.
- Step 7 Place the food stores from the seedlings grown in the light on the side of the tile labelled L and the food stores from seedlings grown in the dark on the side of the tile labelled D.
- Step 8 Wash the spatula in the beaker labelled **water for washing** and dry it with a paper towel.

 Use the spatula to crush together the two food stores from the seedlings grown in the light on the part of the tile labelled **L**.

Separate the crushed food store into two equal parts spaced at least 2cm apart, as shown in Fig. 1.2.

Step 9 Repeat step 8 using the two food stores from the seedlings grown in the dark on the part of the tile labelled **D**.

Fig. 1.2

- Step 10 Label two test-tubes, one with the letter L and the other with the letter D.
- Step 11 Scrape one of the food stores from the seedlings grown in the light into the test-tube labelled **L**. Add 2 cm³ of water from the beaker labelled **water**, taking care to wash the crushed food store to the bottom of the test-tube.
- Step 12 Repeat step 11 using one of the food stores from the seedlings grown in the dark and the test-tube labelled **D**.
- Step 13 Carry out a Benedict's test on the contents of test-tube L and test-tube D.

Raise your hand when you are ready for hot water to be placed in the beaker labelled water-bath.

Leave the test-tubes for 5 minutes.

During this time carry out step 14 and answer question (c)(i).

Step 14 Add 1 drop of iodine solution to the remaining two food stores on the white tile. Record your results in Table 1.2.

Select page

1(c)(i)	Your Mark
1(c)(ii)	
1(c)(iii)	
1(d)(i)	

Q1	Mark scheme					
(c)(i)	add biuret reagent to the crushed seed/crushed seed and water (and observe the colour change); R if heated 1 mark					
(c)(ii)		results				
	test reagent	seedlings grown in light	seedlings grown in dark			
	biuret	purple	purple			
	Benedict's	blue	blue;			
	iodine	blue-black	blue-black;			
	2 marks					
(c)(iii)	(maize stores) starch and protein (reducing sugar); 1 mark					
	any 6 of: 1 ref. to using same species/type/age of maize; 2 ref. to finding starting (dry) mass; 3 ref. to method of drying; 4 ref. to planting maize (grains) in soil/AW; 5 ref. to planting two sets of at least 100 maize/seeds; 6 ref. to keeping (both sets) in a warm room at/given °C/constant temperature; 7 one other valid detail of the method; 8 ref. to one set place in (constant) light/ref. to one set placed in (constant) dark; 9 ref to removing (10) seedlings (from each set) every two days for drying and weighing;					
(d)(ii)	water content in, se	late the mean/avera	<u> </u>			
(u)(II)	for comparisons to	•	anable, 1 mar			

1(d)(ii)

sults of your Benedict's tests in Table 1.2.	of a biuret test are recorded in Table ap 13 by recording the results of you Table 1.2	(ii) The results of Complete ste
light seedlings grown in dark	seedlings grown in light	test
purple	purple	uret
9e110W	Sellon	Benedict's
0		
Black nown in Table 1.2. n.j. in the Maize		(iii) State the co
nown in Table 1.2. n.j. in the Maize	nclusion for the results shown in Table	(iii) State the co
nown in Table 1.2. n.j. in the Maize	nclusion for the results shown in Table	(iii) State the co
nown in Table 1.2. n.j. in the Maize	nclusion for the results shown in Table	and the second
nown in Table 1.2. n.j. in the Maize	nclusion for the results shown in Table	(iii) State the co

Select page

Your Mark

Q1	Mark scheme				
(c)(i)	add biuret reagent to the crushed seed/crushed seed and water (and observe the colour change); R if heated 1 mark				
(c)(ii)		res	ults		
	test reagent	seedlings grown in light	seedlings grown in dark		
	biuret	purple	purple		
	Benedict's	blue	blue;		
	iodine	blue-black	blue-black;		
			2 mark		
(c)(iii)	(maize stores) starc	h and protein (reduc	ing sugar); 1 ma ı		
	any 6 of: 1 ref. to using same species/type/age of maize; 2 ref. to finding starting (dry) mass; 3 ref. to method of drying; 4 ref. to planting maize (grains) in soil/AW; 5 ref. to planting two sets of at least 100 maize/seeds; 6 ref. to keeping (both sets) in a warm room at/given °C/constant temperature; 7 one other valid detail of the method; 8 ref. to one set place in (constant) light/ref. to one set placed in (constant) dark; 9 ref to removing (10) seedlings (from each set) every two days for drying and weighing;				
	5 ref. to planting tw 6 ref. to keeping (bo °C/constant tempe 7 one other valid de 8 ref. to one set pla placed in (constant) 9 ref to removing (1 days for drying and	ro sets of at least 100 oth sets) in a warm rerature; etail of the method; ce in (constant) light dark; 0) seedlings (from e weighing;	O maize/seeds; com at/given /ref. to one set ach set) every two		
(d)(ii)	5 ref. to planting tw 6 ref. to keeping (bo °C/constant tempe 7 one other valid de 8 ref. to one set pla placed in (constant) 9 ref to removing (1 days for drying and 10 repeat and calcu	ro sets of at least 100 oth sets) in a warm re rature; etail of the method; ce in (constant) light dark; 0) seedlings (from e	O maize/seeds; com at/given /ref. to one set ach set) every two ge; 6 mark		

The dry mass is the total mass left after all the water has been evaporated.

Table 1.3 shows the results of the investigation for the maize seedlings grown in the light.

Table 1.3

	time / days										
	0	2	4	6	8	10	12	14	16	18	20
dry mass of 10 maize seedlings/g	22	20	17	12	10	8	11	13	14	15	17

(i)	Describe a method the students could have used to carry out this investigation.
	Use the information on page 2 to help you. Students should grown the maise grown in light and maise grown in dark with the constant temperature, every 2 days, the student should measure the weight in grany and make the record.
	[6]
(ii)	Suggest why the students measured the dry mass instead of the mass including water in their investigation. If the ruft is counted, the result will not be specific of the regult of rufer may vary. [1]
	[Total: 21]

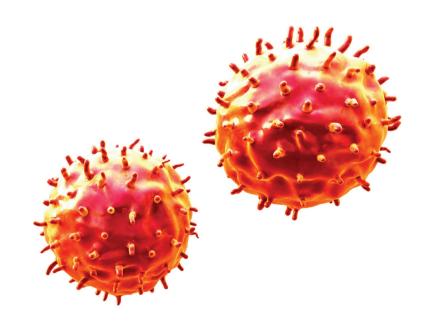
Select	
page	

	Your Mark
1(c)(i)	
1(c)(ii)	
1(c)(iii)	
1(d)(i)	
1(d)(ii)	

Q1	Mark scheme				
(c)(i)	add biuret reagent to the crushed seed/crushed seed and water (and observe the colour change); R if heated 1 mark				
(c)(ii)		results			
	test reagent	seedlings grown in light	seedlings grown in dark		
	biuret	purple	purple		
	Benedict's	blue	blue;		
	iodine	blue-black	blue-black;		
			2 marks		
(c)(iii)	(maize stores) starc	h and protein (reduc	ing sugar); 1 marl		
(d)(i)	1 ref. to using same 2 ref. to finding star 3 ref. to method of 4 ref. to planting ma 5 ref. to planting tw 6 ref. to keeping (bc °C/constant tempe 7 one other valid de 8 ref. to one set pla placed in (constant) 9 ref to removing (1	any 6 of: 1 ref. to using same species/type/age of maize; 2 ref. to finding starting (dry) mass; 3 ref. to method of drying; 4 ref. to planting maize (grains) in soil/AW; 5 ref. to planting two sets of at least 100 maize/seeds; 6 ref. to keeping (both sets) in a warm room at/given °C/constant temperature; 7 one other valid detail of the method; 8 ref. to one set place in (constant) light/ref. to one set placed in (constant) dark; 9 ref to removing (10) seedlings (from each set) every two days for drying and weighing;			
(d)(ii)	· ·	eeds/seedlings, is v	<u> </u>		
(u)(II)	for comparisons to		inable, 1 marl		

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org


Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 5 (May / June 2016), Question 2

Cambridge IGCSE[™]
Biology 0610

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

2 (a) A group of students investigated the effect of two different exercises on the heart rate of ten male and ten female students.

Before the first exercise, the pulse rate at rest was measured and the group then jumped on the same spot for two minutes without moving their arms. Every two seconds an investigator shouted 'jump'.

After two minutes the pulse rate was measured and the students were allowed ten minutes to rest.

Before the second exercise, the pulse rate at rest was measured again and the group was asked to do a different exercise.

The students jumped on the same spot for two minutes lifting their arms above their head as they jumped up and dropping their arms as they came down. Every two seconds an investigator shouted 'jump'.

Table 2.1 shows the results of this investigation.

Table 2.1

a ativita .	average pulse rate/beats per minute					
activity	male students	female students	all students			
resting	68	74	71			
after jumping	96	92	94			
after jumping and moving arms	128	140	134			

(i) Complete Table 2.1 by writing in the average pulse rate for all students after both forms of exercise.[2]

(ii)	Describe two variables in this investigation that have been controlled.
	1 the duration of both forms of exercise were
	kept constant at 2 mountes.
	2 the investigator shouted the word jump every
	2 seconds for each form of exercise
	[8]

(iii) Explain why the students had to rest before carrying out the second exercise.

to ensure the pulse rate would reduce back dawn to the rate before the exercise [1]

State one variable that cannot be controlled during the exercise and describe the effect of this variable on the results of the investigation.

variable the different pulse rates of each student effect on results the average pulse rate may eigenfroutly drop or rise because of one students pulse rate which may be totally different to the other students. [2]

Select page

2(b)(ii)

2(c)(i)

2(c)(ii)

Your					
Mark	Q2	Mark scheme			
2(a)(i)	(a)(i)	94; 134;	2 mark		
(a)(ii)	(a)(ii)	same time/2 minutes for whe same time/10 minutes for resame rate/every 2 seconds to equal numbers of male and tidea of same students in each	est between exercises; for each jump; female students;		
a)(iii) a)(iv)	(a)(iii)	to allow pulse rate to recover/return to normal/re (before doing another exercise); so the effect of the two exercises can be compared			
	(a)(iv)	variable	effect on results		
2(b)(i)		idea of effort put into exercise	more effort would make pulse rate increase more		
		idea of fitness	pulse would increase less for fitter students		
			2 mark		

(b) (i) Plot a bar ch	art of the data in Table 2.1, fo		
the grid	ulse Rates compa	red between Fe	males and Males.
140-			
3		00030 BAX 522 C C 20000 A0000 A000 35000 A0000 A000	
aprin 120-			
2100			
			V
age of the state o			Key: Resting:
rate/busts			Resting.
2			after : VIII
\$ 60-			Jumping
Pulse			after imping, Til
2)			and morning
\$ 40			arms
5			7.4
₹ 20-			
0	Male	Female 7	(4)
(ii) State one sin	nilarity and one difference the	effect of exercise has on	males and females.
similarity	hey their pulse	rates both in	crease with
exert	,		<u> </u>
difference	Le females L	pulse rute me	reases bruher
A	the males pulse		V
July	in views prise	WIN E	Xer Clack

[2]

Your	00	D.//
Mark	Q2	Marl
2(a)(i) 2(a)(ii)	(b)(i)	A(xes S(cal than P(lot) B(ars R if li
2(a)(iii) 2(a)(iv)	(b)(ii)	any 1 (s) ex I ref. (s) id incre
2(b)(i)		any 1 (d) ju in ma (d) ju fema
2(b)(ii)	(c)(i)	draw O(utl S(ize D (de
2(c)(i)	(c)(ii)	diam diam corre
2(c)(ii)		

Q2	Mark scheme
(b)(i)	 A(xes) – labelled with units on y axis; S(cale) – suitable even linear scale and plots to fill more than half of the printed grid; P(lot) – all points plotted accurately ±½ square; B(ars) – have a gap between each component; R if line graph drawn
(b)(ii)	any 1 of: (s) exercise increases heart/pulse rate; I ref. to resting pulses rate (s) idea that the more intense the exercise the more increase in heart/pulse rate; any 1 from (d) jumping without moving arms shows greater increase in males than females; (d) jumping and moving arms shows greater increase in females than males; 2 marks
(c)(i)	drawing of cross section of artery O(utline) – single clear lines and without shading; S(ize) – occupies at least half of the space provided; D (detail) to show at least 2 layers and wavy lining; 3 marks
(c)(ii)	diameter of lumen = $47 (\pm 1)$ mm; diameter of drawing = $\mathbf{X} \pm 1$ mm; correct magnification; 3 marks

(c) Fig. 2.1 shows a photomicrograph of a cross section of an artery from a mammal.

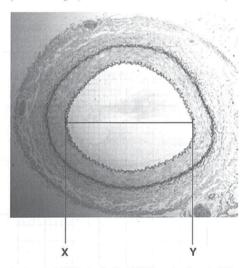
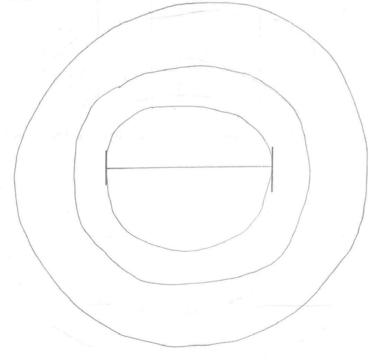



Fig. 2.1

(i) Make a large diagram of this cross section to show the layers forming the wall of the artery.

Select page

Your Mark
2(a)(i)
2(a)(ii)
2(a)(iii)
2(a)(iv)
2(b)(i)
2(b)(ii)

Q2	Mark scheme
(b)(i)	A(xes) – labelled with units on y axis; S(cale) – suitable even linear scale and plots to fill more than half of the printed grid; P(lot) – all points plotted accurately ±½ square; B(ars) – have a gap between each component; R if line graph drawn
(b)(ii)	any 1 of: (s) exercise increases heart/pulse rate; I ref. to resting pulses rate (s) idea that the more intense the exercise the more increase in heart/pulse rate; any 1 from (d) jumping without moving arms shows greater increase in males than females; (d) jumping and moving arms shows greater increase in females than males; 2 marks
(c)(i)	drawing of cross section of artery O(utline) – single clear lines and without shading; S(ize) – occupies at least half of the space provided; D (detail) to show at least 2 layers and wavy lining; 3 marks
(c)(ii)	diameter of lumen = 47 (±1) mm; diameter of drawing = X ± 1 mm; correct magnification; 3 marks

[3]

2(c)(i)

(ii)	Measure the diameter of the lumen of the artery between points X and Y on Fig. 2.1. Include the unit .
	Diameter of the lumen on Fig. 2.1
	Draw a line in the same position on your drawing and measure the diameter of the lumen on your drawing.
	Diameter of the lumen on your drawing
	magnification = $\frac{\text{diameter of the lumen on your drawing}}{\text{diameter of the lumen on Fig. 2.1}}$
	Calculate the magnification of your drawing using the equation given and your answers.
	Show your working.
	Mon = Orawing
	Achal
	= 62mm = 1.319148936
	47mm
	magnification×1.32 [3]
	[Total: 19]

Sel	ect
рa	ae

	Your Mark	
2(a)(i)		
2(a)(ii)		
2(a)(iii)		
2(a)(iv)		
2(b)(i)		
2(b)(ii)		
2(c)(i)		

2(c)(ii)

Q2	Mark scheme	
(b)(i)	A(xes) – labelled with units on y axis; S(cale) – suitable even linear scale and plots to fill more than half of the printed grid; P(lot) – all points plotted accurately ±½ square; B(ars) – have a gap between each component; R if line graph drawn	
(b)(ii)	any 1 of: (s) exercise increases heart/pulse rate; I ref. to resting pulses rate (s) idea that the more intense the exercise the more increase in heart/pulse rate; any 1 from (d) jumping without moving arms shows greater increase in males than females; (d) jumping and moving arms shows greater increase in females than males; 2 marks	
(c)(i)	c)(i) drawing of cross section of artery O(utline) – single clear lines and without shading; S(ize) – occupies at least half of the space provided; D (detail) to show at least 2 layers and wavy lining; 3 mark	
(c)(ii)	diameter of lumen = 47 (±1) mm; diameter of drawing = X ± 1 mm; correct magnification; 3 marks	

2 (a) A group of students investigated the effect of two different exercises on the heart rate of ten male and ten female students.

Before the first exercise, the pulse rate at rest was measured and the group then jumped on the same spot for two minutes without moving their arms. Every two seconds an investigator shouted 'jump'.

After two minutes the pulse rate was measured and the students were allowed ten minutes to rest.

Before the second exercise, the pulse rate at rest was measured again and the group was asked to do a different exercise.

The students jumped on the same spot for two minutes lifting their arms above their head as they jumped up and dropping their arms as they came down. Every two seconds an investigator shouted 'jump'.

Table 2.1 shows the results of this investigation.

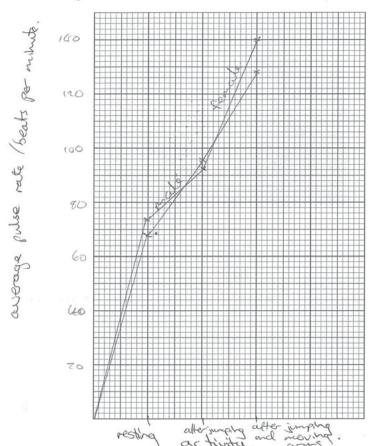
Table 2.1

activity	average pulse rate/beats per minute		
	male students	female students	all students
resting	68	74	71
after jumping	96	92	94
after jumping and moving arms	128	140	134

(i) Complete Table 2.1 by writing in the average pulse rate for all students after both forms of exercise. [2]

(ii)	Describe two variables in this investigation that have been controlled. 1
	2 Where the Students jumped, they west land on
	the same spot. [2]
(iii)	Explain why the students had to rest before carrying out the second exercise.
	To heir pulse rate can go book to normalize
	[1]
(iv)	State one variable that cannot be controlled during the exercise and describe the effect of this variable on the results of the investigation.
	variable the high bear the Students jump
	effect on results this will after be results, as the Student
	wall jump at duggered heights.

Select page


Your			
Mark	Q2	Mark scheme	
(a)(i)	(a)(i)	94; 134;	2 marks
(a)(ii)		same time/2 minutes for whole exercise; same time/10 minutes for rest between exercises; same rate/every 2 seconds for each jump; equal numbers of male and female students; idea of same students in each exercise; 2 marks	
a)(iii) a)(iv)	(a)(iii)	to allow pulse rate to recover/return to normal/resting (before doing another exercise); so the effect of the two exercises can be compared; 1 mark	
	(a)(iv)	variable	effect on results
(b)(i)		idea of effort put into exercise	more effort would make pulse rate increase more
		idea of fitness	pulse would increase less for fitter students
			2 marks

2(

2(c)(i)

2(c)(ii)

(b) (i) Plot a bar chart of the data in Table 2.1, for both the male and the female students, on the grid.

(ii) State one similarity and one difference the effect of exercise has on males and females.

similarity heart heart per mount harvesses

than Lenales

Select page

Your
Mark

2(a)(i)

2(a)(ii)

2(a)(iii)

2(a)(iv)

2(b)(i)

2(b)(ii)

2(c)(i)

0/ 1/111	
2(c)(ii)	
2(0/(11/	

Q2	Mark scheme
(b)(i)	 A(xes) – labelled with units on y axis; S(cale) – suitable even linear scale and plots to fill more than half of the printed grid; P(lot) – all points plotted accurately ±½ square; B(ars) – have a gap between each component; R if line graph drawn
(b)(ii)	any 1 of: (s) exercise increases heart/pulse rate; I ref. to resting pulses rate (s) idea that the more intense the exercise the more increase in heart/pulse rate; any 1 from (d) jumping without moving arms shows greater increase in males than females; (d) jumping and moving arms shows greater increase in females than males; 2 marks
(c)(i)	drawing of cross section of artery O(utline) – single clear lines and without shading; S(ize) – occupies at least half of the space provided; D (detail) to show at least 2 layers and wavy lining; 3 marks
(c)(ii)	diameter of lumen = $47 (\pm 1)$ mm; diameter of drawing = $\mathbf{X} \pm 1$ mm; correct magnification; 3 marks

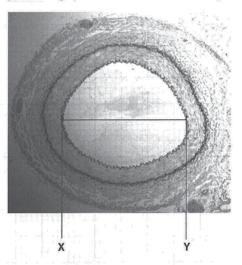
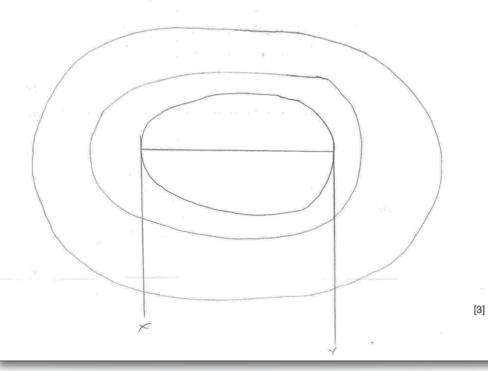



Fig. 2.1

(i) Make a large diagram of this cross section to show the layers forming the wall of the artery.

Your Mark	
2(a)(i)	
2(a)(ii)	
2(a)(iii)	
2(a)(iv)	
2(b)(i)	
2(b)(ii)	

2(c)(i)

2(c)(ii)

Q2	Mark scheme
(b)(i)	 A(xes) – labelled with units on y axis; S(cale) – suitable even linear scale and plots to fill more than half of the printed grid; P(lot) – all points plotted accurately ±½ square; B(ars) – have a gap between each component; R if line graph drawn
(b)(ii)	any 1 of: (s) exercise increases heart/pulse rate; I ref. to resting pulses rate (s) idea that the more intense the exercise the more increase in heart/pulse rate; any 1 from (d) jumping without moving arms shows greater increase in males than females; (d) jumping and moving arms shows greater increase in females than males; 2 marks
(c)(i)	drawing of cross section of artery O(utline) – single clear lines and without shading; S(ize) – occupies at least half of the space provided; D (detail) to show at least 2 layers and wavy lining; 3 marks
(c)(ii)	diameter of lumen = $47 (\pm 1)$ mm; diameter of drawing = $\mathbf{X} \pm 1$ mm; correct magnification; 3 marks

i)	Measure the diameter of the lumen of the artery between points ${\bf X}$ and ${\bf Y}$ on Fig. 2.1. Include the unit.
	Diameter of the lumen on Fig. 2.1 4 - 7 cm
	Draw a line in the same position on your drawing and measure the diameter of the lumen on your drawing.
	Diameter of the lumen on your drawing
	magnification = $\frac{\text{diameter of the lumen on your drawing}}{\text{diameter of the lumen on Fig. 2.1}}$
	Calculate the magnification of your drawing using the equation given and your answers.
	Show your working.
	7.2cm = (.5cm
	magnification X. 1. S.c.
	[3]
	[Total: 19]

Select	
page	

	Your Mark
2(a)(i)	
2(a)(ii)	
2(a)(iii)	
2(a)(iv)	
2(b)(i)	
2(b)(ii)	
2(c)(i)	

2(c)(ii)

Q2	Mark scheme
(b)(i)	 A(xes) – labelled with units on y axis; S(cale) – suitable even linear scale and plots to fill more than half of the printed grid; P(lot) – all points plotted accurately ±½ square; B(ars) – have a gap between each component; R if line graph drawn
(b)(ii)	any 1 of: (s) exercise increases heart/pulse rate; I ref. to resting pulses rate (s) idea that the more intense the exercise the more increase in heart/pulse rate; any 1 from (d) jumping without moving arms shows greater increase in males than females; (d) jumping and moving arms shows greater increase in females than males; 2 marks
(c)(i)	drawing of cross section of artery O(utline) – single clear lines and without shading; S(ize) – occupies at least half of the space provided; D (detail) to show at least 2 layers and wavy lining; 3 marks
(c)(ii)	diameter of lumen = 47 (±1) mm; diameter of drawing = X ± 1 mm; correct magnification; 3 marks

2 (a) A group of students investigated the effect of two different exercises on the heart rate of ten male and ten female students.

Before the first exercise, the pulse rate at rest was measured and the group then jumped on the same spot for two minutes without moving their arms. Every two seconds an investigator shouted 'jump'.

After two minutes the pulse rate was measured and the students were allowed ten minutes to

Before the second exercise, the pulse rate at rest was measured again and the group was asked to do a different exercise.

The students jumped on the same spot for two minutes lifting their arms above their head as they jumped up and dropping their arms as they came down. Every two seconds an investigator shouted 'jump'.

Table 2.1 shows the results of this investigation.

Table 2.1

	average pulse rate/beats per minute		
activity	male students	female students	all students
resting	68	74	71
after jumping	96	92	94
after jumping and moving arms	128	140	134

(1)	of exercise.	
		[2]
(ii)	Describe two variables in this investigation that have been controlled.	
	1 Reating it is to be we cam	
	2 Atter Jumping and moving arms	
		[2]

(iii)	Explain why the students had to rest before carrying out the second exercise.		
	To reduce heat beats		
	[1]		
(iv)	State one variable that cannot be controlled during the exercise and describe the effect		

		the investigation		Apter lump	ing and
effect on results	ng arms	average	Pulse	4pter jump rate 16	eats
				Student	
13 134	beats p	per minute	٠ ک		[2]

Select page

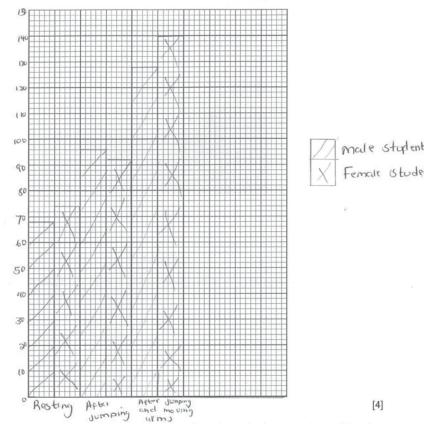
Your			
	Q2	Mark scheme	
(i)	(a)(i)	94; 134;	2 m
(ii)	(a)(ii)	same time/2 minutes for who same time/10 minutes for res same rate/every 2 seconds fo equal numbers of male and fe idea of same students in each	t between exercises; r each jump; male students;
iii)	(a)(iii)	to allow pulse rate to recover, (before doing another exercise so the effect of the two exerc	e);
	(a)(iv)	variable	effect on results
)(i)		idea of effort put into exercise	more effort would make pulse rate increase more
		idea of fitness	pulse would increase les

2 marks

2 marks

1 mark

2 marks


for fitter students

more effort would make pulse rate increase more pulse would increase less

2(b)(ii)	
2(c)(i)	
2(c)(ı)	

(b) (i) Plot a bar chart of the data in Table 2.1, for both the male and the female students, on the grid.

similarity After jumping that exercise has on males and females.

similarity After jumping that exercise almost has the same average pulse rate/beats per minute. There are both in the 90's famalestudents have 92 male students have 92 difference Resting remailes rest more compared to male 5. Females have 74 beats per minutes while males have 68 beats per minutes

Your Mark	(
2(a)(i)	(
2(a)(ii)	
2(a)(iii)	(
2(a)(iv)	
2(b)(i)	
2(b)(ii)	()

2(c)(i)

2(c)(ii)

Q2	Mark scheme
(b)(i)	 A(xes) – labelled with units on y axis; S(cale) – suitable even linear scale and plots to fill more than half of the printed grid; P(lot) – all points plotted accurately ±½ square; B(ars) – have a gap between each component; R if line graph drawn
(b)(ii)	any 1 of: (s) exercise increases heart/pulse rate; I ref. to resting pulses rate (s) idea that the more intense the exercise the more increase in heart/pulse rate; any 1 from (d) jumping without moving arms shows greater increase in males than females; (d) jumping and moving arms shows greater increase in females than males; 2 marks
(c)(i)	drawing of cross section of artery O(utline) – single clear lines and without shading; S(ize) – occupies at least half of the space provided; D (detail) to show at least 2 layers and wavy lining; 3 marks
(c)(ii)	diameter of lumen = 47 (±1) mm; diameter of drawing = X ± 1 mm; correct magnification; 3 marks

(c) Fig. 2.1 shows a photomicrograph of a cross section of an artery from a mammal.

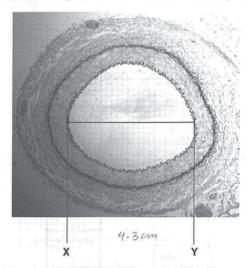
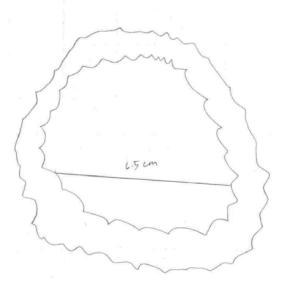



Fig. 2.1

(i) Make a large diagram of this cross section to show the layers forming the wall of the artery.

Select page

	Your Mark
2(a)(i)	
2(a)(ii)	
2(a)(iii)	
2(a)(iv)	
2(b)(i)	
2(b)(ii)	
2(c)(i)	

Q2	Mark scheme
(b)(i)	A(xes) – labelled with units on y axis; S(cale) – suitable even linear scale and plots to fill more than half of the printed grid; P(lot) – all points plotted accurately ±½ square; B(ars) – have a gap between each component; R if line graph drawn
(b)(ii)	any 1 of: (s) exercise increases heart/pulse rate; I ref. to resting pulses rate (s) idea that the more intense the exercise the more increase in heart/pulse rate; any 1 from (d) jumping without moving arms shows greater increase in males than females; (d) jumping and moving arms shows greater increase in females than males; 2 marks
(c)(i)	drawing of cross section of artery O(utline) – single clear lines and without shading; S(ize) – occupies at least half of the space provided; D (detail) to show at least 2 layers and wavy lining; 3 marks
(c)(ii)	diameter of lumen = 47 (±1) mm; diameter of drawing = X ± 1 mm; correct magnification; 3 marks

i)	Measure the diameter of the lumen of the artery between points ${\bf X}$ and ${\bf Y}$ on Fig. 2.1. Include the unit.
	Diameter of the lumen on Fig. 2.1 4.3 cm
	Draw a line in the same position on your drawing and measure the diameter of the lumen on your drawing.
	Diameter of the lumen on your drawing
	$magnification = \frac{\text{diameter of the lumen on your drawing}}{\text{diameter of the lumen on Fig. 2.1}}$
	Calculate the magnification of your drawing using the equation given and your answers.
	Show your working. 6.5 cm 4.3 cm
	magnification: 4.3 cm
	2 1.51 X
	2 1.51 X
	magnification
	[Total: 19]

Select page

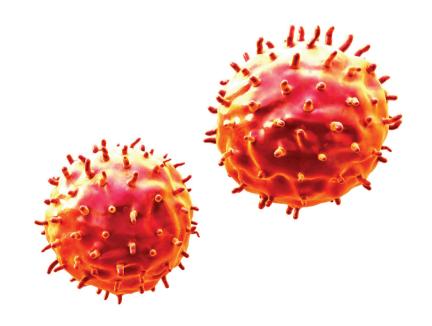
	our 1ark	
2(a)(i)		
2(a)(ii)		
2(a)(iii)		(
2(a)(iv)		
2(b)(i)		
2(b)(ii)		(
2(c)(i)		
(-/(-/		

2(c)(ii)

Q2	Mark scheme
(b)(i)	 A(xes) – labelled with units on y axis; S(cale) – suitable even linear scale and plots to fill more than half of the printed grid; P(lot) – all points plotted accurately ±½ square; B(ars) – have a gap between each component; R if line graph drawn
(b)(ii)	 any 1 of: (s) exercise increases heart/pulse rate; I ref. to resting pulses rate (s) idea that the more intense the exercise the more increase in heart/pulse rate; any 1 from (d) jumping without moving arms shows greater increase in males than females; (d) jumping and moving arms shows greater increase in females than males; 2 marks
(c)(i)	drawing of cross section of artery O(utline) – single clear lines and without shading; S(ize) – occupies at least half of the space provided; D (detail) to show at least 2 layers and wavy lining; 3 marks
(c)(ii)	diameter of lumen = 47 (±1) mm; diameter of drawing = X ± 1 mm; correct magnification; 3 marks

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org


Copyright © UCLES September 2017

Interactive Example Candidate Responses
Paper 6 (May / June 2016), Question 1

Cambridge IGCSE[™]
Biology 0610

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

1 Metabolic reactions in cells produce toxic chemicals which can be converted to harmless or less toxic chemicals.

Hydrogen peroxide is broken down using the enzyme catalase which is found in most cells.

Fig. 1.1 shows this reaction.

Fig. 1.1

A student investigated the effect of alcohol (ethanol) on the activity of catalase found in potato, using three pieces of potato cut to the same size.

Fig. 1.2 shows these pieces of potato.

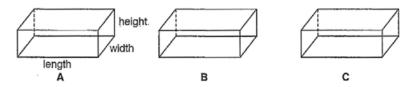


Fig. 1.2

(a) (i) Measure the length, width and height of one of these pieces of potato.

Record your results in Table 1.1.

Table 1.1

length of potato piece	width of potato piece	height of potato piece	
/mm	/mm	/mm	
30 0 30	AD TO		

- Step 1 The student labelled six test-tubes, 1, 2, 3, 4, 5, and 6 and used a syringe to add 10 cm³ of hydrogen peroxide solution to each of the test-tubes.
- Step 2 They cut potato piece A to obtain two slices of similar size.
- Step 3 The student placed the free end of a delivery tube into a large test-tube containing water.
- Step 4 They placed one of the slices of potato piece A into the hydrogen peroxide solution in test-tube 1.
- Step 5 The student immediately placed the rubber bung attached to the delivery tube into test-tube 1 and pushed it in as tightly as possible, as shown in Fig. 1.3.

Select page

	Your Mark
(a)(i)	
a)(ii)	
(b)(i)	

[1]

Q1	Mark scheme
(a)(i)	length: 30 (mm) width: 10 (mm)
	height: 10 (mm) ;
(a)(ii)	1 table drawn with rows or columns; I graphs 2 table drawn with cells for at least 6 bubble readings and 3 means; 3 appropriate column headings with units R if units given in cells instead of header (number of) bubbles per (or in) 3 minutes/min or (number of) bubbles/minute or min potato/piece of potato/piece/tube slice/stick and 1 or 2 mean/average (number of bubbles per 3 min (or per 1 min); 4 correct tally results recorded;
	5 correct mean/average calculated for each potato piece; 5 marks
(b)(i)	prevents leakage of oxygen/all oxygen collected; A gas/air/bubbles can observe reaction/bubbles as soon as it starts/AW; I no air/oxygen can enter tube I "quicker" unqualified for mp 2 1 mark
(b)(ii)	prevents leakage of oxygen/all oxygen collected; A gas/air/bubbles I loose bung could come out/no gas from outside enters the tube I fair test comments increases accuracy/results will be comparable/consistent, reliable/valid; allow a pressure to build up/bubbles to form; 2 marks

Fig. 1.3

- Step 6 They counted the number of bubbles released from the delivery tube in 3 minutes.
- Step 7 The student repeated steps 4-6 for the second slice of potato piece A using test-tube 2.
- They repeated steps 2-7 for potato piece B using test-tubes 3 and 4. Step 8
- Step 9 They repeated steps 2-7 for potato piece C using test-tubes 5 and 6.

The student used a tally to count the number of bubbles.

Fig. 1.4 shows their tally count.

Fig. 1.4

HEAN CALMIATIONS
$$A = \frac{5+3}{2} = 4$$

$$B = \frac{18+44}{2} = 14,5$$

$$C = \frac{12+10}{2} = 14$$

Select page

Your Mark

1(a)(i)

1(a)(ii)

1(b)(i)

	Q1	Mark scheme
	(a)(i)	length: 30 (mm) width: 10 (mm) height: 10 (mm) ; 1 mark
	(0)(::)	
	(a)(ii)	1 table drawn with rows or columns ; I graphs
		2 table drawn with cells for at least 6 bubble readings and 3 means;
		3 appropriate column headings with units
		R if units given in cells instead of header
		(number of) bubbles per (or in) 3 minutes/min or (number of) bubbles/minute or min
		+
		potato/piece of potato/piece/tube
		+ slice/stick and 1 or 2
		+
		mean/average (number of bubbles per 3 min (or per 1 min); 4 correct tally results recorded;
		5 correct mean/average calculated for each potato piece ; 5 marks
	(b)(i)	prevents leakage of oxygen/all oxygen collected; A gas/air/bubbles
		can observe reaction/bubbles as soon as it starts/AW; I no air/oxygen can enter tube
		I "quicker" unqualified for mp 2 1 mark
	(b)(ii)	prevents leakage of oxygen/all oxygen collected; A gas/air/bubbles
		I loose bung could come out/no gas from outside enters the tube
		I fair test comments
		increases accuracy/results will be comparable/consistent/reliable/valid;
4		allow a pressure to build up/bubbles to form; 2 marks

- (ii) Prepare a table to record the student's results.
 Your table should show:
 - the numbers of bubbles produced by each slice of potato in 3 minutes
 - the mean number of bubbles produced by each of potato piece A, B and C.

Complete your table using the results from Fig. 1.4.

POTATO	BUBBLES PRODUCED in 3 min	Hean or bubbles	
A	5	4	
A_2	3		
Ba	18	14.5	
B2	- 11	АТ, Б	
G	12	11	
Cz	10		

(b)	(i)	Suggest why the free end of the delivery tube was placed in the water before adding the potato slice to the hydrogen peroxide solution and connecting the test-tube to the bung of the delivery tube.
		TO MAKE SURE THAT THE TEST TUBE WAS CONEDED AS FAST AS POSSIBLE.
		[1]
	(ii)	Explain why the bung of the delivery tube must fit tightly into the test-tube.
		BECAUSE THERE WILL NO LOSS OF O2 IN THE AIR
		OUTSIDE AND ALL THE OL PRODUCED WILL GO PASS

Select page

Your	
Mark	

1(a)(i)

1(a)(ii)

1(b)(i)

Q1	Mark scheme
(a)(i)	length: 30 (mm) width: 10 (mm) height: 10 (mm); 1 mark
(a)(ii)	1 table drawn with rows or columns; I graphs 2 table drawn with cells for at least 6 bubble readings and 3 means; 3 appropriate column headings with units R if units given in cells instead of header (number of) bubbles per (or in) 3 minutes/min or (number of) bubbles/minute or min + potato/piece of potato/piece/tube + slice/stick and 1 or 2
	mean/average (number of bubbles per 3 min (or per 1 min); 4 correct tally results recorded; 5 correct mean/average calculated for each potato piece; 5 marks
(b)(i)	prevents leakage of oxygen/all oxygen collected; A gas/air/bubbles can observe reaction/bubbles as soon as it starts/AW; I no air/oxygen can enter tube I "quicker" unqualified for mp 2 1 mark
(b)(ii)	prevents leakage of oxygen/all oxygen collected; A gas/air/bubbles I loose bung could come out/no gas from outside enters the tube I fair test comments increases accuracy/results will be comparable/consistent/reliable/valid; allow a pressure to build up/bubbles to form; 2 marks

Select page

Your			
Mark	Q1	Mark scheme	
1(c)(i)	(c)(i)	catalase produces more bubbles when it is active A as number of bubbles increases the activity of to catalase increases/positive correlation the lower the percentage of alcohol (used for soal more bubbles are produced/AW/ora; need not refer to catalase (more bubbles means reactivity) the higher the percentage of alcohol used the low activity of the catalase/ora;	king) the
	(c)(ii)	 B has more catalase activity/bubbles, A has least bubbles; I restatement of results (number of bubbles from piece of potato) A B more, C medium and A fewer bubbles/AW 	, .
I(c)(iii)	(c)(iii)	number 4 or less than 4; A no bubbles/none/zero	1 mark

1(d)(i)

1(c)

1(c)

1(d)(ii)

(c) The pieces of potato that the student used in their investigation were soaked in different concentrations of alcohol for 24 hours.	
 Potato piece A was soaked in 20% alcohol. Potato piece B was soaked in 2% alcohol. Potato piece C was soaked in 10% alcohol. 	
(i) Suggest the relationship between the number of bubbles and the activity of catalase.	1(c)(i)
AS THE ACTIVITY OF THE CATALASE IS RELATED TO THE	
AMOUNT OF ALCOHOL IN WHICH THE PLECES WERES SOMED, THE AS	
THE ALCOHOL INCIDENTES IT STOPS THE ACTIVITY OF THE CATHINES [1] SO VEST BURBLES ARE PRODUCED (ii) Compare the activity of catalase in the potato pieces A, B and C.	
THE ACTUMY IS MORE EPRICIENT IN PIECE B (14,5 bubbles)	1(c)(ii)
WHILE IT DECREASES IN C (B) AND THE LEAST EXECUTIVE	
MAS IN A (4 bubbles)	
(iii) Predict the number of bubbles that would be produced in 3 minutes if a piece of potato was soaked in 50% alcohol before being placed in hydrogen peroxide solution.	
IT WILL BE LES MAN 4 maybe 2 or 1 or none. [1]	1(c)(iii)
(d) (i) State one variable that has been controlled in the student's investigation.	
Describe how this variable was controlled.	
variable the sizes of the pathstoes the amount of 240	
how it was controlled IT was controlled by athing pieces	- / - 1 / - 1
or the same size, usige a syringe, it has	1(d)(i)
added to un3 in each test type	
[2]	
(ii) The method of measuring the oxygen gas produced is a source of error.	
State one reason why this method is a source of error.	4/4\/;;\
counting the bubbles delivered in the reliable.	1(d)(ii)
Suggest how to improve the method to minimise this error.	
Repeat the experiment more times and to love	
a more accurate mean	
a por econore man	

[2]

Select page

Your	0.1		
Mark	Q1	Mark scheme	
	(d)(i)	variable must match control g	iven
		variable	controlled by
		hydrogen peroxide (volume/concentration).	measured 10 cm³ or used same strength solution;
		Potato (size/length/volume/surface area/type of potato sample of potato);	same dimensions used for each piece//30 mm × 5 mm × 10 mm or pieces cut from same potato/type of potato;
		time for measuring bubbles;	counted for 3 min for each piece
		time of soaking in alcohol;	same time/24 hours for each piece;
			2 marks
	(d)(ii)	method must match the error method.	. 1 mark for error, 1 mark for
		source of error	method of reducing error
		bubbles are all different sizes;	measure the volume use a gas syringe/collect in a measuring cylinder/AVP;
		bubbles difficult to count;	use a (tally) counter/ method of collecting the gas/measure the volume/ use 2 people/repeat for reliability/AW;
		setting up and starting time;	use 2 people;
			2 marks

Select page

	Your Mark
1(d)(iii)	
1(d)(iv)	
ι(α)(ιν)	
1(d)(v)	
1(e)	
1(f)(i)	

1(f)(ii)

Q1 Mark scheme		
(d)(iii)	size/mass/volume/of the slices or type/age of may not be equal; surface area is different/quantity of available cat	
	different/AW;	2 marks
(d)(iv)	use exactly the same procedure/do the same/re AW/or description of original method; I use boiled potato/boiled catalase/repeat withouse water instead of hydrogen peroxide/use live use glass beads except soak potato in water (and not ethanol)/use alcohol/without alcohol/use untreated potato/A	out potato/ er or yeast/ se 0%
(d)(v)	same or greater number of bubbles than 2% alc figures quoted (11–18) (mean of 14.5+)/more b more gas produced/most number of bubbles;	
(e)	keep away from flames/heat source; wear goggles/safety glasses: A use a water bath when heating ethanol wear gloves; wear lab coat; use tongs/AW;	1 mark
(f)(i)	280;	1 mark
(f)(ii)	A axes labelled even scale; y-axis: (mean) reaction time/ms x-axis: before drinking alcohol and after drinking before and after/r key given x-axis labels approximately under each bar P both plots accurate ±½ small square; C columns not touching R superimposed columns of same width columns at least half the grid on y-axis;	alcohol/ 3 marks
(f)(iii)	220–350 (milliseconds) ;	1 mark
(1)(111)	220 000 (11111130001103) ,	1 IIIaik

(f) In an investigation into the effects of alcohol on the nervous system, people were asked to carry out a test on their reaction time.

The person being tested looked at a coloured block on a computer screen. As soon as the colour changed they pressed a button.

The time taken to press the button was recorded by the computer.

This was their reaction time.

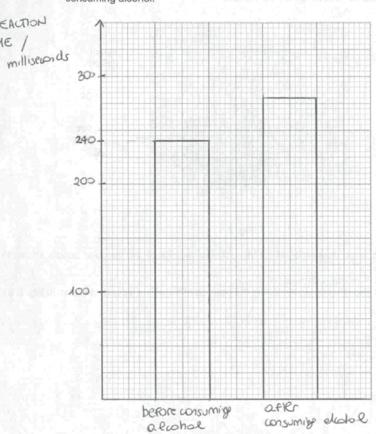
Twenty people were tested before and after consuming a drink containing the same concentration of alcohol

Table 1.2 shows the results of this investigation.

Table 1.2

test person reaction time before consuming alcohol /milliseconds reaction time after consuming alcohol /milliseconds 1 272 322 2 310 350 3 225 270 4 243 290 5 240 308 6 264 315 7 201 238 8 262 300 9 225 252 10 235 278 11 225 253 12 247 271 13 226 266 14 194 220 15 206 239 16 309 340 17 223 261 18 243 286 19 270 316 20 180 225			
2 310 350 3 225 270 4 243 290 5 240 308 6 264 315 7 201 238 8 262 300 9 225 252 10 235 278 11 225 253 12 247 271 13 226 266 14 194 220 15 206 239 16 309 340 17 223 261 18 243 286 19 270 316		consuming alcohol	consuming alcohol
3 225 270 4 243 290 5 240 308 6 264 315 7 201 238 8 262 300 9 225 252 10 235 278 11 225 253 12 247 271 13 226 266 14 194 220 15 206 239 16 309 340 17 223 261 18 243 286 19 270 316	1	272	322
4 243 290 5 240 308 6 264 315 7 201 238 8 262 300 9 225 252 10 235 278 11 225 253 12 247 271 13 226 266 14 194 220 15 206 239 16 309 340 17 223 261 18 243 286 19 270 316	2	310	350
5 240 308 6 264 315 7 201 238 8 262 300 9 225 252 10 235 278 11 225 253 12 247 271 13 226 266 14 194 220 15 206 239 16 309 340 17 223 261 18 243 286 19 270 316	3	225	270
6 264 315 7 201 238 8 262 300 9 225 252 10 235 278 11 225 253 12 247 271 13 226 266 14 194 220 15 206 239 16 309 340 17 223 261 18 243 286 19 270 316	4	243	290
7 201 238 8 262 300 9 225 252 10 235 278 11 225 253 12 247 271 13 226 266 14 194 220 15 206 239 16 309 340 17 223 261 18 243 286 19 270 316	5	240	308
8 262 300 9 225 252 10 235 278 11 225 253 12 247 271 13 226 266 14 194 220 15 206 239 16 309 340 17 223 261 18 243 286 19 270 316	6	264	315
9 225 252 10 235 278 11 225 253 12 247 271 13 226 266 14 194 220 15 206 239 16 309 340 17 223 261 18 243 286 19 270 316	7	201	238
10 235 278 11 225 253 12 247 271 13 226 266 14 194 220 15 206 239 16 309 340 17 223 261 18 243 286 19 270 316	8	262	300
11 225 253 12 247 271 13 226 266 14 194 220 15 206 239 16 309 340 17 223 261 18 243 286 19 270 316	9	225	252
12 247 271 13 226 266 14 194 220 15 206 239 16 309 340 17 223 261 18 243 286 19 270 316	10	235	278
13 226 266 14 194 220 15 206 239 16 309 340 17 223 261 18 243 286 19 270 316	11	225	253
14 194 220 15 206 239 16 309 340 17 223 261 18 243 286 19 270 316	12	247	271
15 206 239 16 309 340 17 223 261 18 243 286 19 270 316	13	226	266
16 309 340 17 223 261 18 243 286 19 270 316	14	194	220
17 223 261 18 243 286 19 270 316	15	206	239
18 243 286 19 270 316	16	309	340
19 270 316	17	223	261
	18	243	286
20 180 225	19	270	316
	20	180	225
mean 240 280	mean	240	280

(i) Calculate the mean for the reaction time after consuming alcohol.


Write your answer in Table 1.2.

Select page

1(d)(iii)	Your Mark
1(d)(iv)	
1(d)(v)	
1(e)	
1(f)(i)	
1(f)(ii)	
1(f)(iii)	

O1 Mark scheme (d)(iii) size/mass/volume/of the slices or type/age of potato, may not be equal; surface area is different/quantity of available catalase is different/AW; 2 max (d)(iv) use exactly the same procedure/do the same/repeat/AW/or description of original method; I use boiled potato/boiled catalase/repeat without potatose water instead of hydrogen peroxide/use liver or year use glass beads
may not be equal; surface area is different/quantity of available catalase is different/AW; (d)(iv) use exactly the same procedure/do the same/repeat/AW/or description of original method; I use boiled potato/boiled catalase/repeat without pota use water instead of hydrogen peroxide/use liver or year
AW/or description of original method; I use boiled potato/boiled catalase/repeat without pota use water instead of hydrogen peroxide/use liver or year
except soak potato in water (and not ethanol)/use 0% alcohol/without alcohol/use untreated potato/AW; 2 ma
(d)(v) same or greater number of bubbles than 2% alcohol/B/ figures quoted (11–18) (mean of 14.5+)/more bubbles a more gas produced/most number of bubbles; 1 m
(e) keep away from flames/heat source; wear goggles/safety glasses: A use a water bath when heating ethanol wear gloves; wear lab coat; use tongs/AW; 1 m
(f)(i) 280; 1 m
(f)(ii) A axes labelled even scale; y-axis: (mean) reaction time/ms x-axis: before drinking alcohol and after drinking alcohol, before and after/r key given x-axis labels approximately under each bar P both plots accurate ±½ small square; C columns not touching R superimposed columns of same width columns at least half the grid on y-axis; 3 ma
(f)(iii) 220–350 (milliseconds); 1 m

(ii) Plot a bar chart to show the mean reaction time of the people tested before and after consuming alcohol.

REACTION THE /

> (iii) The range of reaction times recorded before consuming alcohol is 180-310 milliseconds. Use Table 1.2 to identify the range of reaction times recorded after consuming alcohol. 225 252 - 350 milliseconds [1]

> > [Total: 27]

[3]

Select	
page	

Your	
Mark	

1(d)(iii)

1(d)(iv)

1(d)(v)

1(e)

1(f)(i)

1(f)(ii)

Q1	Mark scheme	
(d)(iii)	size/mass/volume/of the slices or type/age of may not be equal;	
	surface area is different/quantity of available cadifferent/AW;	atalase is 2 marks
(d)(iv)	use exactly the same procedure/do the same, AW/or description of original method; I use boiled potato/boiled catalase/repeat with use water instead of hydrogen peroxide/use livuse glass beads except soak potato in water (and not ethanol)/alcohol/without alcohol/use untreated potato/	nout potato/ ver or yeast/ use 0%
	alcohol, without alcohol, use unitroated potato,	2 marks
(d)(v)	same or greater number of bubbles than 2% a figures quoted (11–18) (mean of 14.5+)/more more gas produced/most number of bubbles;	
(e)	keep away from flames/heat source; wear goggles/safety glasses: A use a water bath when heating ethanol wear gloves; wear lab coat; use tongs/AW;	1 mark
(f)(i)	280;	1 mark
(f)(ii)	A axes labelled even scale; y-axis: (mean) reaction time/ms x-axis: before drinking alcohol and after drinking before and after/r key given x-axis labels approximately under each bar P both plots accurate ±½ small square; C columns not touching R superimposed columns of same width columns at least half the grid on y-axis;	g alcohol/ 3 marks
/f\/;;;\		1 mark
(f)(iii)	220-350 (milliseconds);	ı mark

Metabolic reactions in cells produce toxic chemicals which can be converted to harmless or less toxic chemicals.

Hydrogen peroxide is broken down using the enzyme catalase which is found in most cells.

Fig. 1.1 shows this reaction.

Fig. 1.1

A..student investigated the effect of alcohol (ethanol) on the activity of catalase found in potato, using three pieces of potato cut to the same size.

Fig. 1.2 shows these pieces of potato.

Fig. 1.2

(a) (i) Measure the length, width and height of one of these pieces of potato.

Record your results in Table 1.1.

Table 1.1

length of potato piece	width of potato piece	height of potato piece	
/mm	/mm	/mm	
30 WARRY	10		

Step 1 The student labelled six test-tubes, 1, 2, 3, 4, 5, and 6 and used a syringe to add 10 cm³ of hydrogen peroxide solution to each of the test-tubes.

- Step 2 They cut potato piece A to obtain two slices of similar size.
- Step 3 The student placed the free end of a delivery tube into a large test-tube containing water.
- Step 4 They placed one of the slices of potato piece A into the hydrogen peroxide solution in test-tube 1.
- Step 5 The student immediately placed the rubber bung attached to the delivery tube into test-tube 1 and pushed it in as tightly as possible, as shown in Fig. 1.3.

Select page

(a)(i)	Your Mark	
a)(ii)		
(b)(i)		
h)(ii)		

[1]

Q1	Mark scheme
(a)(i)	length: 30 (mm) width: 10 (mm) height: 10 (mm);
(a)(ii)	1 table drawn with rows or columns; I graphs 2 table drawn with cells for at least 6 bubble readings and 3 means; 3 appropriate column headings with units R if units given in cells instead of header (number of) bubbles per (or in) 3 minutes/min or (number of) bubbles/minute or min potato/piece of potato/piece/tube slice/stick and 1 or 2
	mean/average (number of bubbles per 3 min (or per 1 min); 4 correct tally results recorded; 5 correct mean/average calculated for each potato piece; 5 mark
(b)(i)	prevents leakage of oxygen/all oxygen collected; A gas/air/bubbles can observe reaction/bubbles as soon as it starts/AW; I no air/oxygen can enter tube I "quicker" unqualified for mp 2 1 mark
(b)(ii)	prevents leakage of oxygen/all oxygen collected; A gas/air/bubbles I loose bung could come out/no gas from outside enters the tube I fair test comments increases accuracy/results will be comparable/consistent reliable/valid; allow a pressure to build up/bubbles to form; 2 mark

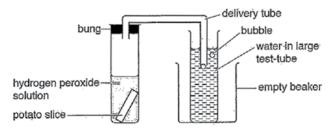


Fig. 1.3

- Step 6 They counted the number of bubbles released from the delivery tube in 3 minutes.
- Step 7 The student repeated steps 4–6 for the second slice of potato piece A using test-tube 2.
- Step 8 They repeated steps 2–7 for potato piece B using test-tubes 3 and 4.
- Step 9 They repeated steps 2-7 for potato piece C using test-tubes 5 and 6.

The student used a tally to count the number of bubbles.

Fig. 1.4 shows their tally count.

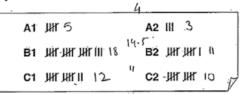


Fig. 1.4

Select page

1(a)(i)	Your Mark
1(a)(ii)	
1(b)(i)	
1(b)(ii)	

Q1	Mark scheme
(a)(i)	length: 30 (mm) width: 10 (mm) height: 10 (mm); 1 mark
(a)(ii)	1 table drawn with rows or columns; I graphs 2 table drawn with cells for at least 6 bubble readings and 3 means; 3 appropriate column headings with units R if units given in cells instead of header (number of) bubbles per (or in) 3 minutes/min or (number of) bubbles/minute or min + potato/piece of potato/piece/tube + slice/stick and 1 or 2
	mean/average (number of bubbles per 3 min (or per 1 min); 4 correct tally results recorded; 5 correct mean/average calculated for each potato piece; 5 marks
(b)(i)	prevents leakage of oxygen/all oxygen collected; A gas/air/bubbles can observe reaction/bubbles as soon as it starts/AW; I no air/oxygen can enter tube I "quicker" unqualified for mp 2 1 mark
(b)(ii)	prevents leakage of oxygen/all oxygen collected; A gas/air/bubbles I loose bung could come out/no gas from outside enters the tube I fair test comments increases accuracy/results will be comparable/consistent/reliable/valid; allow a pressure to build up/bubbles to form; 2 marks

- (ii) Prepare a table to record the student's results. Your table should show:
 - the numbers of bubbles produced by each slice of potato in 3 minutes
 the mean number of bubbles produced by each of potato piece A, B and C.

Complete your table using the results from Fig. 1.4.

Kunhog of		poto	to pi	eces		
dumber of	A		B		C	
bullet 1	1	2		2	- 1	2
number cf bubbles produced	5	3	18	11	12	10
mean	4		14.5		11	

(b) (i)	Suggest why the free end of the delivery tube was placed in the water before adding the potato slice to the hydrogen peroxide solution and connecting the test-tube to the bung of the delivery tube.
	To prevent the escape of oxygen gos, as the
	potato slice contains the catalane enzyme.
	[1
(ii)	Explain why the bung of the delivery tube must fit tightly into the test-tube.
	To prevent the gas pressure inside from
	blocking the tube.
	12

Select page

Your	
Mark	

1(a)(i)

1(a)(ii)

1(b)(i)

[5]

Q1	Mark scheme
(a)(i)	length: 30 (mm)
	width: 10 (mm) height: 10 (mm); 1 mark
(. \ /**\	
(a)(ii)	1 table drawn with rows or columns; I graphs
	2 table drawn with cells for at least 6 bubble readings and
	3 means;
	3 appropriate column headings with units
	R if units given in cells instead of header
	(number of) bubbles per (or in) 3 minutes/min or (number of) bubbles/minute or min
	+
	potato/piece of potato/piece/tube
	+
	slice/stick and 1 or 2
	mean/average (number of bubbles per 3 min (or per 1 min);
	4 correct tally results recorded;
	5 correct mean/average calculated for each potato piece;
	5 marks
(b)(i)	prevents leakage of oxygen/all oxygen collected;
	A gas/air/bubbles can observe reaction/bubbles as soon as it starts/AW;
	I no air/oxygen can enter tube
	I "quicker" unqualified for mp 2
(b)(ii)	prevents leakage of oxygen/all oxygen collected;
	A gas/air/bubbles
	I loose bung could come out/no gas from outside enters
	the tube
	I fair test comments increases accuracy/results will be comparable/consistent/
	reliable/valid;
	allow a pressure to build up/bubbles to form; 2 marks

Select page

(c)(i) (c)(ii) (c)(ii) (c)(iii) (c)(iii)	Your			
A as number of bubbles increases the activity of the catalase increases/positive correlation the lower the percentage of alcohol (used for soaking) the more bubbles are produced/AW/ora; need not refer to catalase (more bubbles means more activity) the higher the percentage of alcohol used the lower the activity of the catalase/ora; (c)(ii) B has more catalase activity/bubbles, A has least activity bubbles; I restatement of results (number of bubbles from each piece of potato) A B more, C medium and A fewer bubbles/AW 1 ma (c)(iii) number 4 or less than 4;	Mark	Q1	Mark scheme	
bubbles; I restatement of results (number of bubbles from each piece of potato) A B more, C medium and A fewer bubbles/AW (c)(iii) number 4 or less than 4;		(c)(i)	A as number of bubbles increases the activity of the catalase increases/positive correlation the lower the percentage of alcohol (used for soal more bubbles are produced/AW/ora; need not refer to catalase (more bubbles means reactivity) the higher the percentage of alcohol used the low	the king) the more
/ - \/ :::\		(c)(ii)	bubbles; I restatement of results (number of bubbles from piece of potato)	,
1 ma	(c)(iii)	(c)(iii)	number 4 or less than 4 ; A no bubbles/none/zero	1 marl

1(d)(i)

1(c)

1(c)

1(d)(ii)

Select page

	Your Mark	Q1	Mark scheme	
		(d)(i)	variable must match control g	iven
1(c)(i)			variable	controlled by
			hydrogen peroxide (volume/concentration).	measured 10 cm³ or used same strength solution;
1(c)(ii)			Potato (size/length/volume/surface area/type of potato sample of potato);	same dimensions used for each piece//30 mm × 5 mm × 10 mm or pieces cut from same potato/type of potato;
			time for measuring bubbles;	counted for 3 min for each piece
			time of soaking in alcohol;	same time/24 hours for each piece;
1/0//:::\				2 mark
1(c)(iii)		(d)(ii)	method must match the error method.	. 1 mark for error, 1 mark for
			source of error	method of reducing error
- / / /			bubbles are all different sizes;	measure the volume use a gas syringe/collect in a measuring cylinder/AVP;
1(d)(i)			bubbles difficult to count;	use a (tally) counter/ method of collecting the gas/measure the volume/ use 2 people/repeat for reliability/AW;
1(d)(ii)			setting up and starting time;	use 2 people;
r(u)(II)				2 mark

Select page

1(d)(iii)

1(d)(iv)

1(d)(v)

1(e)

1(f)(i)

1(f)(ii)

Your Mark	

Q1	Mark scheme	
(d)(iii)	size/mass/volume/of the slices or type/age of may not be equal; surface area is different/quantity of available ca different/AW;	•
(d)(iv)	use exactly the same procedure/do the same/AW/or description of original method; I use boiled potato/boiled catalase/repeat with use water instead of hydrogen peroxide/use livuse glass beads except soak potato in water (and not ethanol)/ualcohol/without alcohol/use untreated potato//	out potato/ er or yeast/ use 0%
(d)(v)	same or greater number of bubbles than 2% ald figures quoted (11–18) (mean of 14.5+)/more bubbles;	
(e)	keep away from flames/heat source; wear goggles/safety glasses: A use a water bath when heating ethanol wear gloves; wear lab coat; use tongs/AW;	1 mark
(f)(i)	280;	1 mark
(f)(ii)	A axes labelled even scale; y-axis: (mean) reaction time/ms x-axis: before drinking alcohol and after drinking before and after/r key given x-axis labels approximately under each bar P both plots accurate ±½ small square; C columns not touching R superimposed columns of same width columns at least half the grid on y-axis;	alcohol/
(f)(iii)	220–350 (milliseconds);	1 mark
(1)(111)	220-330 (Milliseconus) ,	ı ınark

(f) In an investigation into the effects of alcohol on the nervous system, people were asked to carry out a test on their reaction time.

The person being tested looked at a coloured block on a computer screen. As soon as the colour changed they pressed a button.

The time taken to press the button was recorded by the computer.

This was their reaction time.

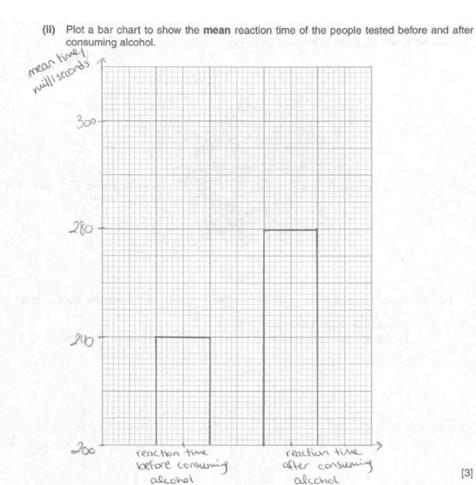
Twenty people were tested before and after consuming a drink containing the same concentration of alcohol.

Table 1.2 shows the results of this investigation.

Table 1.2

test person	reaction time before consuming alcohol /milliseconds	reaction time after consuming alcohol /milliseconds	
1	272	322	
2	310	350	
3	225	270	
4 .	243	.290	
5 .	240	308	
6	264	315	
7	201	238	
. 8	262	300	
9	225	252	
. 10	235	278	
. 11	225	253	
12	247	271	
13	226	266	
14	194	220	
15	206	239	
16	309	340	
17	223	261	
18	243	286	
19	270	316	
20	180	225	
mean 240		280	

(i) Calculate the mean for the reaction time after consuming alcohol.


Write your answer in Table 1.2.

Select page

1(d)(iii)	Your Mark
1(d)(iv)	
1(d)(v)	
1(e)	
1(f)(i)	
1(f)(ii)	

Q1	Mark scheme	
(d)(iii)	size/mass/volume/of the slices or type/age or may not be equal; surface area is different/quantity of available ca different/AW;	
(d)(iv)	use exactly the same procedure/do the same/AW/or description of original method; I use boiled potato/boiled catalase/repeat with use water instead of hydrogen peroxide/use livuse glass beads except soak potato in water (and not ethanol)/uselcohol/without alcohol/use untreated potato/	out potato/ er or yeast/ use 0%
(d)(v)	same or greater number of bubbles than 2% al figures quoted (11–18) (mean of 14.5+)/more bubbles;	
(e)	keep away from flames/heat source; wear goggles/safety glasses: A use a water bath when heating ethanol wear gloves; wear lab coat; use tongs/AW;	1 mark
(f)(i)	280;	1 mark
(f)(ii)	A axes labelled even scale; y-axis: (mean) reaction time/ms x-axis: before drinking alcohol and after drinking before and after/r key given x-axis labels approximately under each bar P both plots accurate ±½ small square; C columns not touching R superimposed columns of same width columns at least half the grid on y-axis;	alcohol/ 3 marks
(f)(iii)	220–350 (milliseconds) ;	1 mark
	1	

(ii) Plot a bar chart to show the mean reaction time of the people tested before and after

(iii) The range of reaction times recorded before consuming alcohol is 180-310 milliseconds.

Use Table 1.2 to identify the range of reaction times recorded after consuming alcohol.

220-350 milliseconds [1]

[Total: 27]

Select page

Your
Mark

1(d)(iii)

1(d)(iv)

1(d)(v)

1(e)

1(f)(i)

1(f)(ii)

Q1	Mark scheme	
(d)(iii)	size/mass/volume/of the slices or type/age of may not be equal;	
	surface area is different/quantity of available c different/AW;	2 marks
(d)(iv)	use exactly the same procedure/do the same AW/or description of original method; I use boiled potato/boiled catalase/repeat wit use water instead of hydrogen peroxide/use li use glass beads except soak potato in water (and not ethanol)/alcohol/without alcohol/use untreated potato.	hout potato/ ver or yeast/ use 0%
		2 marks
(d)(v)	same or greater number of bubbles than 2% a figures quoted (11–18) (mean of 14.5+)/more more gas produced/most number of bubbles;	bubbles as
(e)	keep away from flames/heat source; wear goggles/safety glasses: A use a water bath when heating ethanol wear gloves; wear lab coat; use tongs/AW;	1 mark
(f)(i)	280;	1 mark
(f)(ii)	A axes labelled even scale; y-axis: (mean) reaction time/ms x-axis: before drinking alcohol and after drinkin before and after/r key given x-axis labels approximately under each bar P both plots accurate ±½ small square; C columns not touching R superimposed columns of same width columns at least half the grid on y-axis;	g alcohol/
(f)(iii)	220–350 (milliseconds) ;	1 mark
(1)(111)	220 000 (111111136001103) ,	i ilialk

1 Metabolic reactions in cells produce toxic chemicals which can be converted to harmless or less toxic chemicals.

Hydrogen peroxide is broken down using the enzyme catalase which is found in most cells.

Fig. 1.1 shows this reaction.

Fig. 1.1

A student investigated the effect of alcohol (ethanol) on the activity of catalase found in potato, using three pieces of potato cut to the same size.

Fig. 1.2 shows these pieces of potato.

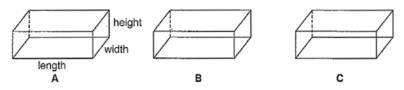


Fig. 1.2

(a) (i) Measure the length, width and height of one of these pieces of potato.

Record your results in Table 1.1.

Table 1.1

leng	th of potato piece	width of potato piece	height of potato piece
	/mm	/mm	/mm
	3mm	\mm	lmm

Step 1 The student labelled six test-tubes, 1, 2, 3, 4, 5, and 6 and used a syringe to add 10 cm³ of hydrogen peroxide solution to each of the test-tubes.

- Step 2 They cut potato piece A to obtain two slices of similar size.
- Step 3 The student placed the free end of a delivery tube into a large test-tube containing water.
- Step 4 They placed one of the slices of potato piece A into the hydrogen peroxide solution in test-tube 1.
- Step 5 The student immediately placed the rubber bung attached to the delivery tube into test-tube 1 and pushed it in as tightly as possible, as shown in Fig. 1.3.

Select page

	Your Mark
1(a)(i)	
1(a)(ii)	
1(b)(i)	
1(b)(ii)	

[1]

Q1	Mark scheme
(a)(i)	length: 30 (mm) width: 10 (mm) height: 10 (mm);
(a)(ii)	1 table drawn with rows or columns; I graphs 2 table drawn with cells for at least 6 bubble readings and 3 means; 3 appropriate column headings with units R if units given in cells instead of header (number of) bubbles per (or in) 3 minutes/min or (number of) bubbles/minute or min potato/piece of potato/piece/tube slice/stick and 1 or 2 mean/average (number of bubbles per 3 min (or per 1 min); 4 correct tally results recorded; 5 correct mean/average calculated for each potato piece;
	5 marks
(b)(i)	prevents leakage of oxygen/all oxygen collected; A gas/air/bubbles can observe reaction/bubbles as soon as it starts/AW; I no air/oxygen can enter tube I "quicker" unqualified for mp 2 1 mark
(b)(ii)	prevents leakage of oxygen/all oxygen collected; A gas/air/bubbles I loose bung could come out/no gas from outside enters the tube I fair test comments increases accuracy/results will be comparable/consistent/reliable/valid; allow a pressure to build up/bubbles to form; 2 marks

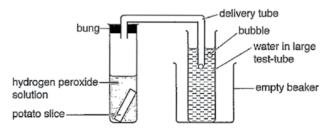


Fig. 1.3

- Step 6 They counted the number of bubbles released from the delivery tube in 3 minutes.
- Step 7 The student repeated steps 4–6 for the second slice of potato piece A using test-tube 2.
- Step 8 They repeated steps 2-7 for potato piece B using test-tubes 3 and 4.
- Step 9 They repeated steps 2-7 for potato piece C using test-tubes 5 and 6.

The student used a tally to count the number of bubbles.

Fig. 1.4 shows their tally count.

A1 ШТ A2 III В1 ШТШТИ В2 ШТШТ С1 ШТШТ С2 ШТШТ

Fig. 1.4

Select page

1(a)(i)	Your Mark
(a)(ii)	
l(b)(i)	
(b)(ii)	

Q1	Mark scheme
(a)(i)	length: 30 (mm) width: 10 (mm) height: 10 (mm); 1 mark
(a)(ii)	1 table drawn with rows or columns; I graphs 2 table drawn with cells for at least 6 bubble readings and 3 means; 3 appropriate column headings with units R if units given in cells instead of header (number of) bubbles per (or in) 3 minutes/min or (number of) bubbles/minute or min + potato/piece of potato/piece/tube + slice/stick and 1 or 2 + mean/average (number of bubbles per 3 min (or per 1 min); 4 correct tally results recorded;
	5 correct mean/average calculated for each potato piece; 5 marks
(b)(i)	prevents leakage of oxygen/all oxygen collected; A gas/air/bubbles can observe reaction/bubbles as soon as it starts/AW; I no air/oxygen can enter tube I "quicker" unqualified for mp 2 1 mark
(b)(ii)	prevents leakage of oxygen/all oxygen collected; A gas/air/bubbles I loose bung could come out/no gas from outside enters the tube I fair test comments increases accuracy/results will be comparable/consistent/reliable/valid; allow a pressure to build up/bubbles to form; 2 marks

(ii)	Prepare a table to record the student's	results
	Your table should show:	

(b) (i)

- the numbers of bubbles produced by each slice of potato in 3 minutes
 the mean number of bubbles produced by each of potato piece A, B and C.

Complete your table using the results from Fig. 1.4.

	Complete your lable daing the results from Fig. 1.4.			
	w	Number of bubbles Produced by each slice of potato in smins	the mean it of bubbles produced by each of patato (steeds
	A۱	6	B 4	
	81	18	My 14.5	
	C,	12	40 11	
	1/2	3		[5]
(i)	62 10			le bung
(ii)	Explain why the bu	ing of the delivery tube must fit tigh	ntly into the test-tube.	
	(1) 80 no	thing can escape		
	2) Bo results are accurate			

	Your Mark
1(a)(i)	
1(a)(ii)	
1(b)(i)	
1(b)(ii)	

	Mark scheme	
	(a)(i)	length: 30 (mm) width: 10 (mm)
		height: 10 (mm) ; 1 mark
	(a)(ii)	1 table drawn with rows or columns; I graphs 2 table drawn with cells for at least 6 bubble readings and 3 means; 3 appropriate column headings with units R if units given in cells instead of header (number of) bubbles per (or in) 3 minutes/min or (number of) bubbles/minute or min + potato/piece of potato/piece/tube + slice/stick and 1 or 2 + mean/average (number of bubbles per 3 min (or per 1 min); 4 correct tally results recorded; 5 correct mean/average calculated for each potato piece; 5 marks
	(b)(i)	prevents leakage of oxygen/all oxygen collected; A gas/air/bubbles can observe reaction/bubbles as soon as it starts/AW; I no air/oxygen can enter tube I "quicker" unqualified for mp 2 1 mark
	(b)(ii)	prevents leakage of oxygen/all oxygen collected; A gas/air/bubbles I loose bung could come out/no gas from outside enters the tube I fair test comments increases accuracy/results will be comparable/consistent/reliable/valid; allow a pressure to build up/bubbles to form; 2 marks

Select

Q1	Mark scheme
(c)(i) catalase produces more bubbles when it is active/ora A as number of bubbles increases the activity of the catalase increases/positive correlation the lower the percentage of alcohol (used for soaking more bubbles are produced/AW/ora; need not refer to catalase (more bubbles means more activity) the higher the percentage of alcohol used the lower t activity of the catalase/ora; 1 (c)(ii) B has more catalase activity/bubbles, A has least act bubbles; I restatement of results (number of bubbles from eac piece of potato) A B more, C medium and A fewer bubbles/AW 1 (c)(iii) number 4 or less than 4; A no bubbles/none/zero 1	

Select page

1(c)

1(c)

1(d

01	Mark schomo	
		•
(d)(i)		
	variable	controlled by
	hydrogen peroxide (volume/concentration).	measured 10 cm ³ or used same strength solution;
	Potato (size/length/volume/surface area/type of potato sample of potato);	same dimensions used for each piece//30 mm × 5 mm × 10 mm or pieces cut from same potato/type of potato;
	time for measuring bubbles ;	counted for 3 min for each piece
	time of soaking in alcohol;	same time/24 hours for each piece;
		2 mar
(d)(ii)	method must match the error. 1 mark for error, 1 mark for method.	
	source of error	method of reducing error
	bubbles are all different sizes;	measure the volume use a gas syringe/collect ir a measuring cylinder/AVP;
	bubbles difficult to count;	use a (tally) counter/ method of collecting the gas/measure the volume/ use 2 people/repeat for reliability/AW;
		Tonabine, Transfer
	setting up and starting time;	use 2 people;
	Q1 (d)(i)	(d)(i) variable must match control grandble hydrogen peroxide (volume/concentration). Potato (size/length/volume/surface area/type of potato sample of potato); time for measuring bubbles; time of soaking in alcohol; (d)(ii) method must match the error method. source of error bubbles are all different sizes;

	(iii)	Identify the source of error in step 2. State why this is a source of error. source of error
		reason the slices & might not be equally the same
		[2]
	(iv)	Describe a control experiment that the student could carry out for this investigation. Doi led enzymes
		[2]
	(v)	Predict the result expected from the control experiment described in (iv).
		Predict the result expected from the control experiment described in (iv).
		[1]
(e)	Stat	te one safety precaution required when ethanol is used in an investigation.
		141

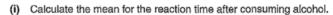
Select page

	Your Mark
1(d)(iii)	
1(d)(iv)	
1(d)(v)	
41.	
1(e)	
1(f)(i)	
1(1/(1)	
1(f)(ii)	

n	size/mass/volume/of the slices or type/age of p may not be equal ; surface area is different/quantity of available catal	otato,
	different/AW;	lase is 2 marks
A I u u e	use exactly the same procedure/do the same/repAW/or description of original method; use boiled potato/boiled catalase/repeat withouse water instead of hydrogen peroxide/use liveruse glass beads except soak potato in water (and not ethanol)/usealcohol/without alcohol/use untreated potato/AV	or yeast/
fi	same or greater number of bubbles than 2% alco igures quoted (11–18) (mean of 14.5+)/more bub more gas produced/most number of bubbles;	hol/B/
V A V	weep away from flames/heat source; wear goggles/safety glasses: A use a water bath when heating ethanol wear gloves; wear lab coat; use tongs/AW;	1 mark
(f)(i) 2	280;	1 mark
(f)(ii) e	A axes labelled even scale; y-axis: (mean) reaction time/ms y-axis: before drinking alcohol and after drinking alcohol and afte	cohol/
	220–350 (milliseconds) ;	1 mark

(f) In an investigation into the effects of alcohol on the nervous system, people were asked to carry out a test on their reaction time.

The person being tested looked at a coloured block on a computer screen. As soon as the colour changed they pressed a button. The time taken to press the button was recorded by the computer.


This was their reaction time.

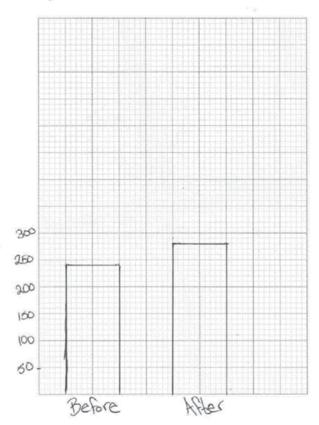
Twenty people were tested before and after consuming a drink containing the same concentration of alcohol.

Table 1.2 shows the results of this investigation.

Table 1.2

test person	reaction time <u>before</u> consuming alcohol /milliseconds	reaction time after consuming alcohol /milliseconds
1	272	322
2	310	350
3	225	270
4	243	290
5	240	308
6	264	315
7	201	238
8	262	300
9	225	252
10	235	278
11	225	253
12	247	271
13	226	266
14	194	220
15	206	239
16	309	340
17	223	261
18	243	286
19	270	316
20	180	225
mean	240	280

Write your answer in Table 1.2.



	Your Mark
1(d)(iii)	
1(d)(iv)	
1(d)(v)	
1(e)	
1(f)(i)	
1(f)(ii)	

Q1	Mark scheme	
(d)(iii)	size/mass/volume/of the slices or type/age o may not be equal; surface area is different/quantity of available ca different/AW;	
(d)(iv)	use exactly the same procedure/do the same/AW/or description of original method; I use boiled potato/boiled catalase/repeat with use water instead of hydrogen peroxide/use livuse glass beads except soak potato in water (and not ethanol)/alcohol/without alcohol/use untreated potato/	nout potato/ ver or yeast/ use 0%
(d)(v)	same or greater number of bubbles than 2% al figures quoted (11–18) (mean of 14.5+)/more more gas produced/most number of bubbles;	
(e)	keep away from flames/heat source; wear goggles/safety glasses: A use a water bath when heating ethanol wear gloves; wear lab coat; use tongs/AW;	1 mark
(f)(i)	280;	1 mark
(f)(ii)	A axes labelled even scale; y-axis: (mean) reaction time/ms x-axis: before drinking alcohol and after drinking before and after/r key given x-axis labels approximately under each bar P both plots accurate ±½ small square; C columns not touching R superimposed columns of same width columns at least half the grid on y-axis;	g alcohol/ 3 marks

-	7	- 1	-	1
1	6	٦		П
Ţ	ŀ	ı		1 (

(ii) Plot a bar chart to show the <u>mean</u> reaction time of the people tested before and after consuming alcohol.

[3]

(iii) The range of reaction times recorded before consuming alcohol is 180–310 milliseconds.

Use Table 1.2 to identify the range of reaction times recorded after consuming alcohol.

404.5 milliseconds [1]

[Total: 27]

Select page

Your
Mark

1(d)(iii)

1(d)(iv)

1(d)(v)

1(e)

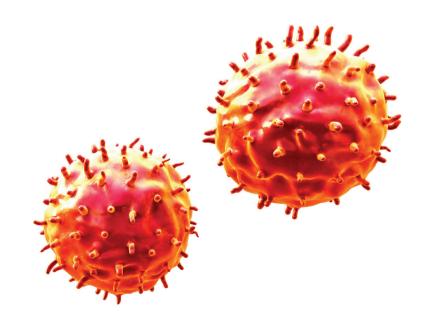
1(f)(i)

1(f)(ii)

(d)(iv) use exactly the same procedure/do the same/repeat/ AW/or description of original method; I use boiled potato/boiled catalase/repeat without potato, use water instead of hydrogen peroxide/use liver or yeast use glass beads except soak potato in water (and not ethanol)/use 0% alcohol/without alcohol/use untreated potato/AW; 2 mark (d)(v) same or greater number of bubbles than 2% alcohol/B/ figures quoted (11–18) (mean of 14.5+)/more bubbles as more gas produced/most number of bubbles; 1 mar (e) keep away from flames/heat source; wear goggles/safety glasses: A use a water bath when heating ethanol wear gloves; wear lab coat; use tongs/AW; 1 mar (f)(i) 280; 1 mar (f)(ii) A axes labelled even scale; y-axis: (mean) reaction time/ms x-axis: before drinking alcohol and after drinking alcohol/before and after/r key given x-axis labels approximately under each bar P both plots accurate ±½ small square; C columns not touching R superimposed columns of same width	Q1	Mark scheme	
different/AW; (d)(iv) use exactly the same procedure/do the same/repeat/ AW/or description of original method; I use boiled potato/boiled catalase/repeat without potato, use water instead of hydrogen peroxide/use liver or yeast use glass beads except soak potato in water (and not ethanol)/use 0% alcohol/without alcohol/use untreated potato/AW; 2 mark (d)(v) same or greater number of bubbles than 2% alcohol/B/ figures quoted (11–18) (mean of 14.5+)/more bubbles as more gas produced/most number of bubbles; 1 mar (e) keep away from flames/heat source; wear goggles/safety glasses: A use a water bath when heating ethanol wear gloves; wear lab coat; use tongs/AW; 1 mar (f)(i) 280; 1 mar (f)(ii) A axes labelled even scale; y-axis: (mean) reaction time/ms x-axis: before drinking alcohol and after drinking alcohol/before and after/r key given x-axis labels approximately under each bar P both plots accurate ±½ small square; C columns not touching R superimposed columns of same width	(d)(iii)	may not be equal;	
AW/or description of original method; I use boiled potato/boiled catalase/repeat without potato, use water instead of hydrogen peroxide/use liver or yeast use glass beads except soak potato in water (and not ethanol)/use 0% alcohol/without alcohol/use untreated potato/AW; 2 mark (d)(v) same or greater number of bubbles than 2% alcohol/B/figures quoted (11–18) (mean of 14.5+)/more bubbles as more gas produced/most number of bubbles; 1 mare (e) keep away from flames/heat source; wear goggles/safety glasses: A use a water bath when heating ethanol wear gloves; wear lab coat; use tongs/AW; 1 mare (f)(ii) 280; 1 mare (f)(iii) A axes labelled even scale; y-axis: (mean) reaction time/ms x-axis: before drinking alcohol and after drinking alcohol/before and after/r key given x-axis labels approximately under each bar P both plots accurate ±½ small square; C columns not touching R superimposed columns of same width			alase is 2 marks
figures quoted (11–18) (mean of 14.5+)/more bubbles as more gas produced/most number of bubbles;	(d)(iv)	AW/or description of original method; I use boiled potato/boiled catalase/repeat withouse water instead of hydrogen peroxide/use live use glass beads except soak potato in water (and not ethanol)/use	out potato/ er or yeast/ se 0%
wear goggles/safety glasses: A use a water bath when heating ethanol wear gloves; wear lab coat; use tongs/AW; 1 mar (f)(i) 280; 1 mar (f)(ii) A axes labelled even scale; y-axis: (mean) reaction time/ms x-axis: before drinking alcohol and after drinking alcohol/ before and after/r key given x-axis labels approximately under each bar P both plots accurate ±½ small square; C columns not touching R superimposed columns of same width	(d)(v)	figures quoted (11-18) (mean of 14.5+)/more b	ohol/B/
(f)(ii) A axes labelled even scale; y-axis: (mean) reaction time/ms x-axis: before drinking alcohol and after drinking alcohol/ before and after/r key given x-axis labels approximately under each bar P both plots accurate ±½ small square; C columns not touching R superimposed columns of same width	(e)	wear goggles/safety glasses: A use a water bath when heating ethanol wear gloves; wear lab coat;	1 mark
(f)(ii) A axes labelled even scale; y-axis: (mean) reaction time/ms x-axis: before drinking alcohol and after drinking alcohol/ before and after/r key given x-axis labels approximately under each bar P both plots accurate ±½ small square; C columns not touching R superimposed columns of same width	(f)(i)	280;	1 mark
<u> </u>		even scale; y-axis: (mean) reaction time/ms x-axis: before drinking alcohol and after drinking before and after/r key given x-axis labels approximately under each bar P both plots accurate ±½ small square; C columns not touching R superimposed columns of same width	alcohol/ 3 marks
(f)(iii) 220–350 (milliseconds); 1 mar	(f)(iii)		1 mark

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org


Copyright © UCLES September 2017

Interactive Example Candidate Responses Paper 6 (May / June 2016), Question 2

Cambridge IGCSE[™]
Biology 0610

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Fig. 2.1 is a photograph of a cross-section of a vascular bundle in a leaf. Line AB shows the length of the vascular bundle.

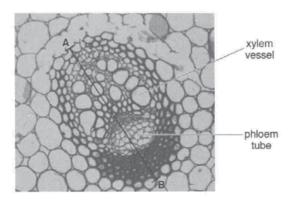
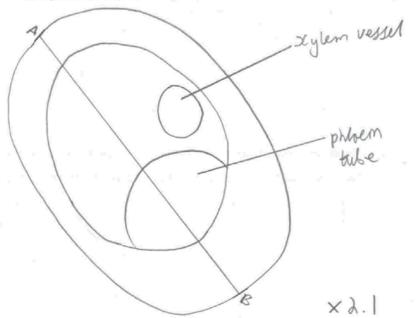



Fig. 2.1

(a) (i) Make a large drawing to show the different regions of the vascular bundle shown in Fig. 2.1.

Do **not** draw any individual cells.

Identify and label on your drawing the position of the xylem vessel as shown in Fig. 2.1.

Select page

Your			
Mark	Q2	Mark scheme	
2(a)(i)	(a)(i)	Outlines – all lines single, clear and unbroken; Size – occupies at least half of the space provided; Detail – oval shape + phloem + 1 other area; two other areas shown; Label – line to correct area on drawing to show position of xylem (vessel) and line labelled "xylem" 5 mark	s
	(a)(ii)	measurement of AB = 58 mm;	٦
		± 1 mm	
		A cm/µm I other units	
		line on their drawing and length measured with correct unit	;
		± 1 mm	
a)(ii)		R if no line drawn or position not indicated/line in incorrect Position	۱ ۱
		correct magnification calculation;	
		R if units given	
		ecf if measurement(s) above are incorrect 3 mark	s
	(a)(iii)	(xylem) walls thick(er)/large (er)/wide(er);	
		(xylem vessels) round(er);	.
		(xylem) has large(r) cross section area/big(ger); 1 mar	k
(a)(iii)			
(4)(111)	(b)	1 use of any suitable plant material;	
		2 put stem/material chosen in (red) dye/add dye to cut	
		(stem) surface;	
		I stain it red	
2/6)		3 time for absorption of dye; 4 cut (sections) of stem or material chosen;	
2(b)		5 (red stained xylem) will indicate position of vascular	
		bundle;	
		I xylem alone 4 mark	s

(ii)	Measure the length of line AB as shown on Fig. 2.1. Include the unit.
	Length of AB 58 mm
	Mark on your drawing a line in the same position as AB.
	Measure the line you have drawn.
	Length of line on drawing
	$magnification = \frac{length of line on drawing}{length of AB}$
	Calculate the magnification of your drawing using the information above and your answers.
	Show your working: magazurtun = length ine an drung length g AB
	$M = \frac{121}{58}$
	$M = 2.086$ magnification $\times 2.1$ [3]
(iii)	State one way visible in Fig. 2.1 in which the xylem vessel is different from the phloem tube.
	The phloem tube is made up y Got) y Cers whereas
	the Xylem veggel is hollow.
	[1]
	walls of xylem vessels are supported by a chemical called lignin, which can be stained by d dye. This makes the xylem vessel walls easily seen when using a microscope.
	this information to plan how you could find the position of the vascular bundles in a stem. Plane Wall to Cut a Gost - Section g a Stem and place
	on a white tile So the boats lolar in losing both be
	cen you will tike 5 pieces of samples (Gross Sections)
и	- the Stem and lut them all the Same Gizer depth 9
	oun you would this old 5 drops of the die to early
Ĺno	21 section 2 the stan which would highlight the scalen versel.
The Con	a you loudd nearne the distance goldens from the xylem stoffed
-	- Jenny
5	may be in a diseast place in each case.

Select page

Your Mark

2(a)(i)

Q2 Mark scheme Outlines – all lines single, clear and unbroken; (a)(i) Size – occupies at least half of the space provided; Detail – oval shape + phloem + 1 other area; two other areas shown; Label – line to correct area on drawing to show position of xylem (vessel) and line labelled "xylem" 5 marks (a)(ii) measurement of AB = 58 mm; ± 1 mm A cm/µm I other units line on their drawing and length measured with correct unit; **R** if no line drawn or position not indicated/line in incorrect Position correct magnification calculation; **R** if units given

ecf if measurement(s) above are incorrect

(xylem) walls thick(er)/large (er)/wide(er);

(xylem) has large(r) cross section area/big(ger);

(xylem vessels) round(er);

3 marks

1 mark

4 marks

2(a)(iii)

2(a)(ii)

2(b)

(a)(iii)

(b)

bundle;

I xylem alone

1 use of any suitable plant material;
2 put stem/material chosen in (red) dye/add dye to cut
(stem) surface;
I stain it red
3 time for absorption of dye;
4 cut (sections) of stem or material chosen;

5 (red stained xylem) will indicate position of vascular

Fig. 2.1 is a photograph of a cross-section of a vascular bundle in a leaf.

Line AB shows the length of the vascular bundle.

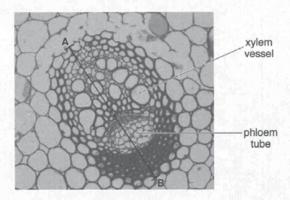
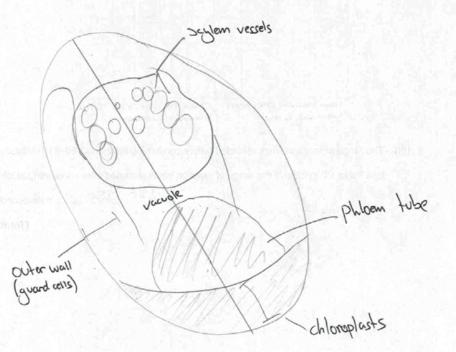



Fig. 2.1

(a) (i) Make a large drawing to show the different regions of the vascular bundle shown in Fig. 2.1.

Do **not** draw any individual cells.
Identify and label on your drawing the position of the xylem vessel as shown in Fig. 2.1.

Select page

Your			
Mark	Q2	Mark scheme	
2(a)(i)	(a)(i)	Outlines – all lines single, clear and unbroken; Size – occupies at least half of the space provided; Detail – oval shape + phloem + 1 other area; two other areas shown; Label – line to correct area on drawing to show position of xylem (vessel) and line labelled "xylem" 5 marks	S
(a)(ii)	(a)(ii)	measurement of AB = 58 mm; ± 1 mm A cm/µm I other units line on their drawing and length measured with correct unit ± 1 mm R if no line drawn or position not indicated/line in incorrect Position correct magnification calculation; R if units given ecf if measurement(s) above are incorrect 3 marks	-
	(a)(iii)	(xylem) walls thick(er)/large (er)/wide(er); (xylem vessels) round(er); (xylem) has large(r) cross section area/big(ger); 1 mark	
(a)(iii)	(b)	1 use of any suitable plant material; 2 put stem/material chosen in (red) dye/add dye to cut (stem) surface; I stain it red	
2(b)		3 time for absorption of dye; 4 cut (sections) of stem or material chosen; 5 (red stained xylem) will indicate position of vascular bundle; I xylem alone 4 marks	S

	(ii)	Measure the length of line AB as shown on Fig. 2.1. Include the unit.
		Length of AB 50 mm,
		Mark on your drawing a line in the same position as AB.
		Measure the line you have drawn.
		Length of line on drawing
		$magnification = \frac{length of line on drawing}{length of AB}$
		Calculate the magnification of your drawing using the information above and your answers. $\frac{\sqrt{4o}}{\sqrt{100}}$
		Show your working. Sq
		= 2.37
		magnification $\times 2.37$ [3]
	(iii)	State one way visible in Fig. 2.1 in which the xylem vessel is different from the phloem tube.
		The sylemost vessel are much violer.
		[1]
b)		walls of xylem vessels are supported by a chemical called lignin, which can be stained by d dye. This makes the xylem vessel walls easily seen when using a microscope.
b)	a re Use	walls of xylem vessels are supported by a chemical called lignin, which can be stained by d dye. This makes the xylem vessel walls easily seen when using a microscope. this information to plan how you could find the position of the vascular bundles in a stem.
b)	a re Use	walls of xylem vessels are supported by a chemical called light, which can be stained by dig. This makes the xylem vessel walls easily seen when using a microscope. this information to plan how you could find the position of the vascular bundles in a stem. Se the diff to enter the system essels. Disect the steve.
b)	use	walls of xylem vessels are supported by a chemical called light, which can be stained by dig. This makes the xylem vessel walls easily seen when using a microscope. this information to plan how you could find the position of the vascular bundles in a stem. Se the due to enter the supernoussels. Disect the stem.
b)	use	walls of xylem vessels are supported by a chemical called light, which can be stained by dig. This makes the xylem vessel walls easily seen when using a microscope. this information to plan how you could find the position of the vascular bundles in a stem. Se the diff to enter the system essels. Disect the steve.
b)	use	walls of xylem vessels are supported by a chemical called light, which can be stained by dig. This makes the xylem vessel walls easily seen when using a microscope. this information to plan how you could find the position of the vascular bundles in a stem. Se the due to enter the supernoussels. Disect the stem.
b)	use	walls of xylem vessels are supported by a chemical called light, which can be stained by dig. This makes the xylem vessel walls easily seen when using a microscope. this information to plan how you could find the position of the vascular bundles in a stem. Se the due to enter the supernvessels. Disect the steve. In order to find the vascular bundle, look for a longe area hat is dued red. This is your bundle.
b)	use	walls of xylem vessels are supported by a chemical called light, which can be stained by dige. This makes the xylem vessel walls easily seen when using a microscope. this information to plan how you could find the position of the vascular bundles in a stem. Se the due to enter the xylam vessels. Disect the steve order was a large order and is directly as a large order and is directly as a large order bundle.

Select page

Y	οι	ır
V	la	rk

2(a)(i)

	Q2	Mark scheme
	(a)(i)	Outlines – all lines single, clear and unbroken; Size – occupies at least half of the space provided; Detail – oval shape + phloem + 1 other area; two other areas shown; Label – line to correct area on drawing to show position of xylem (vessel) and line labelled "xylem"
		5 marks
	(a)(ii)	measurement of AB = 58 mm; ± 1 mm A cm/µm I other units line on their drawing and length measured with correct unit; ± 1 mm

R if no line drawn or position not indicated/line in incorrect

3 marks

4 marks

2(a)(ii)

ii)

2(a)(iii)

[Total: 13]

(b)

(a)(iii)	(xylem) walls thick(er)/large (er)/wide(er); (xylem vessels) round(er); (xylem) has large(r) cross section area/big(ger); 1 mark
(b)	1 use of any suitable plant material; 2 put stem/material chosen in (red) dye/add dye to cut (stem) surface; I stain it red 3 time for absorption of dye; 4 cut (sections) of stem or material chosen; 5 (red stained xylem) will indicate position of yascular

ecf if measurement(s) above are incorrect

correct magnification calculation; **R** if units given

Position

bundle;

I xylem alone

2 Fig. 2.1 is a photograph of a cross-section of a vascular bundle in a leaf.
Line AB shows the length of the vascular bundle.

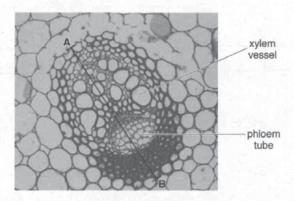
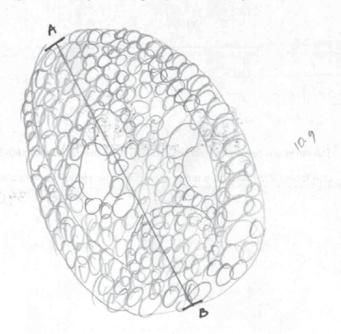



Fig. 2.1

(a) (i) Make a large drawing to show the different regions of the vascular bundle shown in Fig. 2.1.
 Do not draw any individual cells.
 Identify and label on your drawing the position of the xylem vessel as shown in Fig. 2.1.

Select page

2(a)(i)

2(a)(ii)

2(a)(iii)

Your			
Mark	Q2	Mark scheme	
	(a)(i)	Outlines – all lines single, clear and unbroken; Size – occupies at least half of the space provided; Detail – oval shape + phloem + 1 other area; two other areas shown; Label – line to correct area on drawing to show position of xylem (vessel) and line labelled "xylem" 5 marl	ks
	(a)(ii)	measurement of AB = 58 mm; ± 1 mm A cm/µm I other units line on their drawing and length measured with correct unit ± 1 mm R if no line drawn or position not indicated/line in incorrect Position correct magnification calculation; R if units given ecf if measurement(s) above are incorrect (xylem) walls thick(er)/large (er)/wide(er);	ct
1		(xylem vessels) round(er); (xylem) has large(r) cross section area/big(ger); 1 ma	rk
)	(b)	1 use of any suitable plant material; 2 put stem/material chosen in (red) dye/add dye to cut (stem) surface; I stain it red 3 time for absorption of dye; 4 cut (sections) of stem or material chosen;	
		5 (red stained xylem) will indicate position of vascular bundle; I xylem alone 4 marl	ks

(ii)	Measure the length of line AB as shown on Fig. 2.1. Include the unit.	
	Length of AB54 mm	1cm = 10mm
	Mark on your drawing a line in the same position as AB.	5.4 5
	Measure the line you have drawn.	
	Length of line on drawing	
	$magnification = \frac{length of line on drawing}{length of AB}$	
	Calculate the magnification of your drawing using the information answers.	above and your
	Show your working.	
	<u>109</u> 59	
	magnification X 59 m	1 m [3]
(iii)	State one way visible in Fig. 2.1 in which the xylem vessel is different tube.	t from the philoem
	Xylem vessel are bigger and wider th	an phoem
	tube	
		[1]
	e walls of xylem vessels are supported by a chemical called lignin, which ed dye. This makes the xylem vessel walls easily seen when using a mic	
Us	e this information to plan how you could find the position of the vascular l	oundles in a stem.
<u>ት.የ</u>	ut few drops of lignin in the steam.	
	C the colour wait till it diffuse.	
}	the part where you can Put it under	the
m)cros.cope	
+	the part which will be red in colo	our ->
Ŋ	uscular bundles	
	<u></u>	[4]

Select page

Your
Mark

2(a)(i)

2(a)(ii)

2(a)(iii)

[Total: 13]

Q2	Mark scheme
(a)(i)	Outlines – all lines single, clear and unbroken; Size – occupies at least half of the space provided; Detail – oval shape + phloem + 1 other area; two other areas shown; Label – line to correct area on drawing to show position of xylem (vessel) and line labelled "xylem" 5 marks
(a)(ii)	measurement of AB = 58 mm; ± 1 mm A cm/µm I other units line on their drawing and length measured with correct unit; ± 1 mm R if no line drawn or position not indicated/line in incorrect Position correct magnification calculation; R if units given ecf if measurement(s) above are incorrect 3 marks
(a)(iii)	(xylem) walls thick(er)/large (er)/wide(er); (xylem vessels) round(er); (xylem) has large(r) cross section area/big(ger); 1 mark
(b)	1 use of any suitable plant material; 2 put stem/material chosen in (red) dye/add dye to cut (stem) surface; I stain it red 3 time for absorption of dye; 4 cut (sections) of stem or material chosen; 5 (red stained xylem) will indicate position of vascular bundle; I xylem alone 4 marks

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554

e: info@cambridgeinternational.org www.cambridgeinternational.org

Copyright © UCLES September 2017