

Example Candidate Responses Paper 2

Cambridge International AS & A Level Biology 9700

For examination from 2016

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.

www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.

www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

® IGCSE is a registered trademark

Copyright © UCLES 2017

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Contents

ntroduction	. 4
Assessment at a glance	. 6
Paper 2 – AS Level structured questions	. 7
Question 1	. 7
Question 2	11
Question 3	15
Question 4	28
Question 5	40
Question 6	48

Introduction

The main aim of this booklet is to exemplify standards for those teaching Cambridge International AS and A Level Biology (9700), and to show how different levels of candidates' performance (high, middle and low) relate to the subject's curriculum and assessment objectives.

In this booklet candidate responses have been chosen to exemplify a range of answers. Each response is accompanied by a brief commentary explaining the strengths and weaknesses of the answers.

For each question, each response is annotated with a clear explanation of where and why marks were awarded or omitted. This, in turn, is followed by examiner comments on how the answer could have been improved. In this way it is possible for you to understand what candidates have done to gain their marks and what they will have to do to improve their answers. At the end there is a list of common mistakes candidates made in their answers for each question.

This document provides illustrative examples of candidate work. These help teachers to assess the standard required to achieve marks, beyond the guidance of the mark scheme. Some question types where the answer is clear from the mark scheme, such as short answers and multiple choice, have therefore been omitted.

The questions, mark schemes and pre-release material used here are available to download as a zip file from Teacher Support as the Example Candidate Responses Files. These files are:

Question Paper 22, June 2016					
Question paper	9700_s16_qp_22.pdf				
Mark scheme	9700_s16_ms_22.pdf				
Question Paper 33, June 2016					
Question paper	9700_s16_qp_33.pdf				
Mark scheme	9700_s16_ms_33.pdf				
Question Paper 41, June 2016					
Question paper	9700_s16_qp_41.pdf				
Mark scheme	9700_s16_ms_41.pdf				
Question Paper	Question Paper 52, June 2016				
Question paper	9700_s16_qp_52.pdf				
Mark scheme	9700_s16_ms_52.pdf				

Past papers, Examiner Reports and other teacher support materials are available on Teacher Support at https://teachers.cie.org.uk

How to use this booklet

	Example candidate response – high	Examiner comments
co of Di yo	Answer all the questions. Answer all the statements A to E. Answers by real candidates in exam that needs to be overcome by reactants in order that nearners in the classroom to tha	This candidate has responded as requested and given answers that are concise and are Examiner comments are alongside the answers, linked to specific part of the answer. These explain where and why marks were awarded. This helps you to interpret the standard of Cambridge exams and helps your learners to refine their exam technique.
	K.mvalue	Total mark awarded = 5 out of 5

How the candidate could have improved their answer

Stating for E the 'Michaelis-Menten constant' wou However, knowledge that this is also referred to a was able to gain full marks.

This explains how the candidate could have improved their answer and helps you to interpret the standard of Cambridge exams and helps your learners to refine exam technique.

Common mistakes candidates made in this question

A. Some candidates only gave the term 'activation' strictly correct it was allowed.

B. Some candidates gave a mixture of terms, such 'induced substrate', 'lock and key fit'. The examiner

This lists the common mistakes candidates made in answering each question. This will help your learners to avoid these mistakes at the exam and give them the best chance of achieving a high mark.

C. Named globular proteins were incorrectly given as a response. Or these, naemoglobin was most commonly seen. The spellings of 'globular' were not always correct.

Assessment at a glance

Candidates for Advanced Subsidiary (AS) certification take Papers 1, 2 and 3 (either Advanced Practical Skills 1 or Advanced Practical Skills 2) in a single examination series.

Candidates who, having received AS certification, wish to continue their studies to the full Advanced Level qualification may carry their AS marks forward and take Papers 4 and 5 in the examination series in which they require certification.

Candidates taking the full Advanced Level qualification at the end of the course take all five papers in a single examination series.

Candidates may only enter for the papers in the combinations indicated above.

Candidates may not enter for single papers either on the first occasion or for resit purposes.

All components will be externally assessed.

Component	Weig	hting
	AS Level	A Level
Paper 1 Multiple Choice1 hourThis paper consists of 40 multiple choice questions, all with four options. All questions will be based on the AS Level syllabus content. Candidates will answer all questions. Candidates will answer on an answer sheet.[40 marks]	31%	15.5%
Paper 2 AS Level Structured Questions1 hour 15 minutesThis paper consists of a variable number of questions, of variable mark value. All questions will be based on the AS Level syllabus content. Candidates will answer all questions. Candidates will answer on the question paper.[60 marks]	46%	23%
Paper 3 Advanced Practical Skills2 hoursThis paper requires candidates to carry out practical work in timed conditions.This paper will consist of two or three experiments drawn from different areas ofthe AS Level syllabus. Candidates will answer all questions. Candidates willanswer on the question paper.[40 marks]	23%	11.5%
Paper 4 A Level Structured Questions2 hoursThis paper consists of a variable number of structured questions each with a variable mark value (Section A) and a choice of one free response style question worth 15 marks (Section B). All questions will be based on the A Level syllabus but may require knowledge of material first encountered in the AS Level syllabus. Candidates will answer on the question paper.100 marks]	_	38.5%
Paper 5 Planning, Analysis and Evaluation1 hour 15 minutesThis paper consists of a variable number of questions of variable mark valuebased on the practical skills of planning, analysis and evaluation. Candidates willanswer on the question paper.[30 marks]	_	11.5%

Teachers are reminded that the latest syllabus is available on our public website at **www.cie.org.uk** and Teacher Support at **https://teachers.cie.org.uk**

Paper 2 – AS Level structured questions

Question 1

Ex	am	ple candidate response – high	Exa	aminer comments
		Answer all the questions.		
1	Sta	tements A to E are about the structure and functioning of enzymes.		
	Sta	te the correct term to match each of the statements A to E.	1	This candidate responds
	Α	The energy level, lowered by enzyme action, that needs to be overcome by reactants in order for products to be formed.		appropriately and gives answers that are concise and contain
		ActivationEnergy		correct scientific terms.
	B,	The mechanism of enzyme action that relies on the active site being partially flexible and changing shape in order to bind the substrate.		
		Induced fit mechanism		
	C	The term to describe a protein, such as an enzyme, with a tertiary or quaternary structure that results in an approximately spherical shape.		
		Glabular		
	D	The term for enzymes that function outside cells.		
		Extracellular.		
	E	The concentration of substrate that enables an enzyme to achieve half the maximum rate of reaction.		
		Kmvalue	Tot	al marks awarded =
		[Total: 5]		

How the candidate could have improved their answer

E. Giving the 'Michaelis–Menten constant' would have demonstrated knowledge of the correct term to use here. However, knowledge that this is also referred to as the ' K_m value' was also creditworthy, so the candidate was able to gain full marks.

Answer all the questions. Statements A to E are about the structure and functioning of enzymes. State the correct term to match each of the statements A to E. A The energy level, lowered by enzyme action, that needs to be overcome by reactants in order for products to be formed. 	
 State the correct term to match each of the statements A to E. A The energy level, lowered by enzyme action, that needs to be overcome by reactants in order for products to be formed. 	
A The energy level, lowered by enzyme action, that needs to be overcome by reactants in order for products to be formed.	
for products to be formed.	
Activation Energy-	
B The mechanism of enzyme action that relies on the active site being partially flexible and changing shape in order to bind the substrate.	
Induce Et mechanism.	
C The term to describe a protein, such as an enzyme, with a tertiary or quaternary structure that results in an approximately spherical shape.	
Globular	
 D The term for enzymes that function outside cells. The term for enzymes that function outside cells. 	
extrimisic protein <u>exorcutoris</u> good practice to cros	SS
E The concentration of substrate that enables an enzyme to achieve half the maximum rate of reaction.	the
enzyme inhibition marked.	
[5] Total marks awarded = [Total: 5] 3 out of 5	

A. The term 'energy' in 'activation energy' does not have an uppercase (capital) E. This is only a minor point.

B. The candidate wrote 'induce fit', which was accepted; however, the correct term is 'induced fit (mechanism)'.

The correct terms required are stated in the syllabus: 'extracellular' (D) and 'Michaelis–Menten constant' (E), so greater familiarity with these terms would have helped this candidate.

Ex	am	ple candidate response – low	Exa	aminer comments
1		Answer all the questions. tements A to E are about the structure and functioning of enzymes. te the correct term to match each of the statements A to E .	0	It is good that the candidate qualifies 'Ea' with the full term, as it is that term, given in
	A	The energy level, lowered by enzyme action, that needs to be overcome by reactants in order for products to be formed. Eac.activitionenurgy.)	•	brackets, that gains credit here.
	в	The mechanism of enzyme action that relies on the active site being partially flexible and changing shape in order to bind the substrate.	2	The candidate gives an example of a protein with tertiary and quaternary structure rather than the term to
	c	The term to describe a protein, such as an enzyme, with a tertiary or quaternary structure that results in an approximately spherical shape.		describe a protein that has an approximately spherical shape.
	D	The term for enzymes that function outside cells. Active Active site 3	3	The 'active site' is a term used to describe a particular part of the enzyme molecule where
	E	The concentration of substrate that enables an enzyme to achieve half the maximum rate of reaction. $\frac{1}{2} \frac{1}{2} \frac{1}{2}$		catalysis occurs, so does not match the description.
		[Total: 5]	4	The candidate has some recollection of this area of the syllabus but has confused terms. The first answer only was considered and is incorrect.
				al marks awarded = ut of 5

A. Here 'activation energy' was incorrectly spelled as 'activition energy'.

C. It would have helped if the difference between 'the term to describe' and 'the name of . . .' had been better understood. 'Globular' was the required answer but an example of a globular protein was given.

E. The term given in brackets by the candidate was too different from the 'Michaelis–Menten constant' to be creditworthy. Candidates should try to learn the correct spellings of scientific terms.

Common mistakes candidates made in this question

A. Some candidates only gave the term 'activation' instead of 'activation energy'. Although this was not strictly correct, it was allowed.

B. Some candidates gave a mixture of terms, such as 'induced key', 'induced fit key', 'induced lock and key', 'induced substrate', 'lock and key fit'. The examiners were looking only for 'induced fit'.

C. Examples of globular proteins were incorrectly given in response to this question. Of these, 'haemoglobin' was most commonly seen. The spelling of 'globular' was not always correct.

D. Terms with the prefix 'ex' were given, such as 'extrinsic', 'external cellular', 'exocellular' and 'exocytosis'. 'Catalysts' was also given as an incorrect response.

E. Some candidates were not able to get close enough to the correct spelling of 'Michaelis–Menten'. ' V_{max} ', which is a different term, was also given. Some candidates gave ½ V_{max} , but this is a stage in deriving K_m . Some candidates also misinterpreted the statement as inhibition, so this term along with 'competitive inhibition' and 'non-competitive inhibition' were given.

Question 2

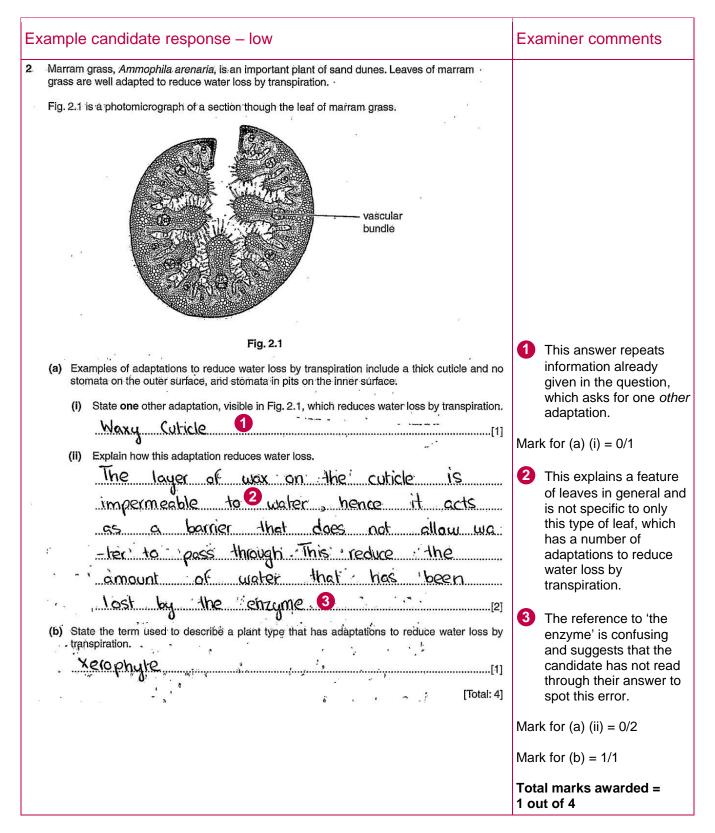
Exa	mple candidate response – high	Examiner comments
	Marram grass, Ammophila arenaria, is an important plant of sand dunes. Leaves of marram rass are well adapted to reduce water loss by transpiration.	
	ig. 2.1 is a photomicrograph of a section though the leaf of marram grass.	
	vascular bundle	
	Fig. 2.1	 An acceptable description of an
1	a) Examples of adaptations to reduce water loss by transpiration include a thick cuticle and no stomata on the outer surface, and stomata in pits on the inner surface.	adaptation that is visible.
	(i) State one other adaptation, visible in Fig. 2.1, which reduces water loss by transpiration.	Mark for (a)(i) = 1/1
	Hairs on inner surguer (the 1	The adaptation from (i)
	(ii) Explain how this adaptation reduces water loss.	The adaptation from (i) is used to explain
	.Nater.vapourleavingstamatais.tappedby.thesehairs	correctly how water loss is reduced. The
	.makingtheareaoutside	candidate gives a logical
	66water patential gradient is reduced and rate of 2	account that includes a reason for the reduced
*	diffusion	water potential gradient.
	.is. reduced	Mark for (a)(ii) = 2/2
	 [2] b) State the term used to describe a plant type that has adaptations to reduce water loss by transpiration. 	3 The correct term is used and is spelt correctly.
		Mark for (b) = $1/1$
	[Total: 4]	Total marks awarded = 4 out of 4

How the candidate could have improved their answer

(a) (i) and (ii) Although it is acceptable to use the term 'hairs', the more precise term is 'trichomes', so the candidate could have used this to improve their answer.

Mark awarded = (a) (i) 1/1, (ii) 2/2 Mark awarded = (b) 1/1

Total marks awarded = 4 out of 4


Example candidate response – middle	Examiner comments
2 Marram grass, <i>Ammophila arenaria</i> , is an important plant of sand dunes. Leaves of marram grass are well adapted to reduce water loss by transpiration.	
Fig. 2.1 is a photomicrograph of a section though the leaf of marram grass.	
vascular bundle	 The phrase 'to reduce water loss' is not
	necessary here as it repeats part of the question.
Fig. 2.1	question.
(a) Examples of adaptations to reduce water loss by transpiration include a thick cuticle and no stomata on the outer surface, and stomata in pits on the inner surface.	Mark for (a) (i) = 1/1
(i) State one other adaptation, visible in Fig. 2.1, which reduces water loss by transpiration. like smuctures Hair on the surfaces to reduce water loss [1]	The candidate correctly uses the feature given in (a) (i) in their
(ii) Explain how this adaptation reduces water loss. Structures The Horizer acts like a barrier between the leaf	explanation. The term 'barrier' has been ignored as the
and order sareas it bey may map the water	explanation that follows is sufficient to show
there, thus rowering the water potential	understanding of a humid region in the
gradient between inside and outside , su refers	enclosed area. There is correct use of the term
water nover outwards.	'water potential gradient'.
(b) State the term used to describe a plant type that has adaptations to reduce water loss by transpiration.	Mark for (a) (ii) = 1/2
Xerophyle [1]	Mark for (b) = 1/1
[Total: 4]	Total marks awarded = 3 out of 4

(a) (i) Credit was awarded here, but the trichomes could have been specifically named, instead of 'hair-like structures', and their location could have been more clearly defined as within the enclosed area of the leaf.

(a) (ii) The candidate should have referred to 'water vapour' instead of just 'water'.

Mark awarded = (a) (i) 1/1, (ii) 1/2 Mark awarded = (b) 1/1

Total marks awarded = 3 out of 4

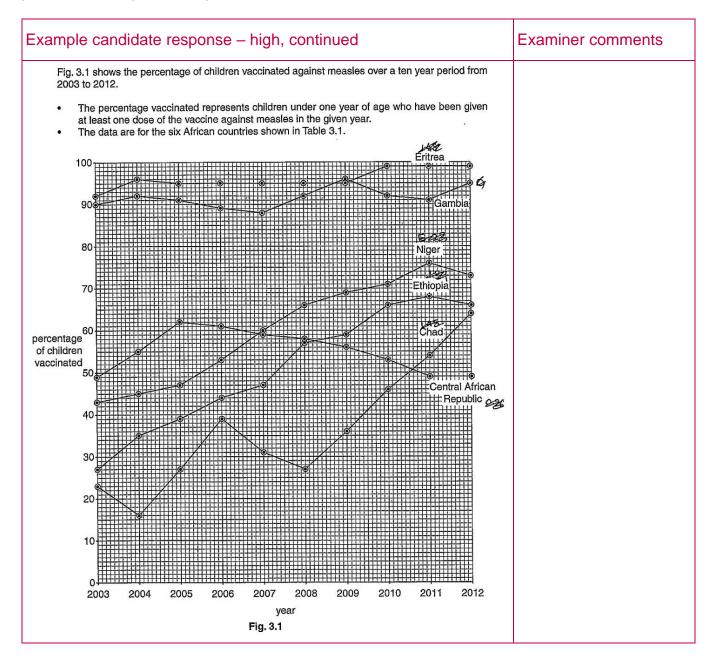
(a) (i) The candidate could have looked at the obvious features of a rolled leaf and trichomes in Fig. 2.1 and observed that these were very different features to leaves that do not have adaptations which reduce water loss. The answer 'waxy cuticle' is a common feature of leaves and not an adaptation which reduces water loss.

(a) (ii) Candidates who had given 'waxy cuticle' as their answer to (a) (i) were allowed to carry the error forward as there were some creditworthy points that could have been made. Here, the candidate could have explained it was a 'thick*er* impermeable' layer and referred to an increased diffusion distance. Also, the term 'water vapour' rather than 'water' should have been used.

Mark awarded = (a) (i) 0/1, (ii) 0/2Mark awarded = (b) 1/1

Total marks awarded = 1 out of 4

Common mistakes candidates made in this question


(a) (i) The trichomes were incorrectly termed 'root hairs', 'needles', 'spikes', 'spines' or 'cilia'. Some candidates gave features that had already been given in the question or just stated 'smaller surface area'.

(a) (ii) The movement of water and water vapour should be explained in terms of water potential, but it was common to see an explanation in terms of concentration, which should be avoided. Some candidates considered differences in water potential, but instead of saying water moves from a higher to a lower water potential, stated that water moves from a high water potential gradient to a low water potential gradient, which is incorrect. Some forgot to state that it was water vapour that left via the stomata and only stated 'water'. Others thought that the trichomes absorbed water rather than being present to create a humid area. Some referred to 'inside the leaf' when in fact they meant the area enclosed by the rolled leaf, which is still external air.

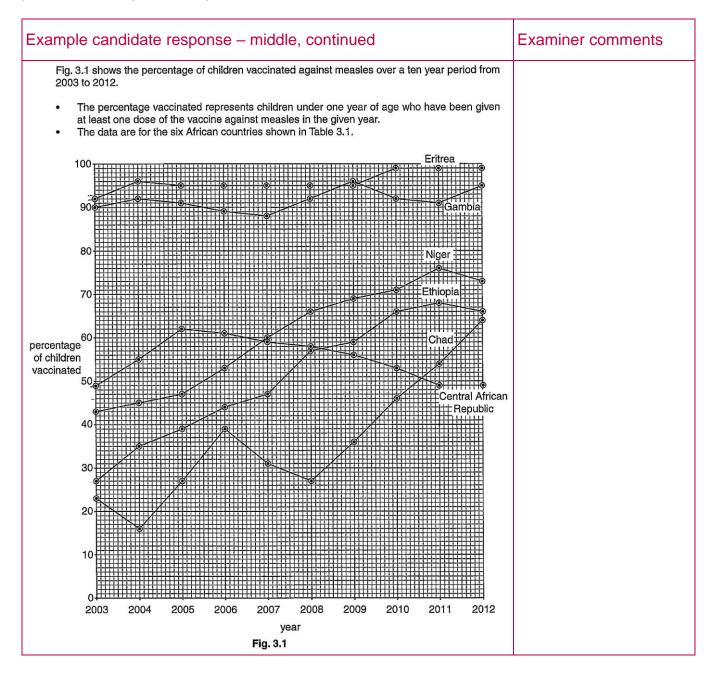
(b) Here the most common mistakes were to term a xerophyte a 'xerotype', 'or 'xenophyte' or to state a type of xerophyte, so that 'cactus' was commonly seen.

Question 3

Globally measion is an im		- high					Examiner comments		
Globally, measles is an important disease that mainly affects children. Many deaths from measles occur in children under five years of age. Table 3.1 shows the population of six countries in Africa in 2009 and the number of cases of measles per 100 000 people for the four years 2009 to 2012. All six countries are classified as low-income countries.									
population in number of cases per 100 000 people									
country	2009	2009	2010	2011	2012				
Central African Republic	Central African Republic 4266000 0.26 0.05 15.31 3.12								
Chad	11371000	1.45	1.66	71.60	0.96	1			
Eritrea	5558000	1.48 82	0.89	0.81	3.16				
Ethiopia	84838000	1.39	4.86	3.64	4.74				
Gambia	1 628 000	0.00	0.12	0.00	0.00				
Niger	15303000	5.23	2.34	4.67	1.59				
(ii) Lies the date for	[2]	Mark for (a) (i) = 2/2							
(ii) Use the data fo data in Table 3. actual number o	1 as number of a								
	constries have						2 The idea of taking		
- Showing de	ata as nome	sel of c	ases of	meas(es	per 100 00	O people	population size into account is implied by		
0	proportion or						the statement that		
gives a							different countries hav different population		
	infected with measles. 2								
nfected	who total nom	- Observing total number of cases is misleading due to different population sizes.							
nfected - Mary or Gu	iving total nom	sizes			J	à	sizes. The candidate has supported this		
- Mass & Gr different	population s	sizes,					has supported this clearly with their		
- Mary or Gr different - For instance	population s e, Ethiopna	sizes. has 1179	Cases	while	Eri tien	orhy	has supported this clearly with their calculated data from ((i) and some data		
- Blazy or Gr different - For instance had 82	populatan e Ethiopia cases. Hor	sizes. has 1179 vever, a l	Cases arger	while proportan of	Eri tien Tritrea	only	has supported this clearly with their calculated data from ((i) and some data extracted from Table		
- Blazy or Gr different - For instance had 82	populatan e Ethiopia cases. Hor	sizes. has 1179 vever, a l	Cases arger	while proportan of	Eri tien Tritrea	only	has supported this clearly with their calculated data from ((i) and some data		
- Blazy or Gr different - For instance had 82	population s e, Ethiopna	sizes. has 1179 vever, a l	Cases arger	while proportan of	Eri tien Tritrea	only	has supported this clearly with their calculated data from ((i) and some data extracted from Table 3.1. The values have		

Example candidate response – high, continued Examiner comments (b) Vaccination is known to protect populations against infectious diseases. 3 The candidate has set Some of the data in Table 3.1 (on page 4) and Fig. 3.1 (on page 6) support this statement. out their response clearly, starting with a Describe the data that support this statement and comment on the data that do not support this statement. sentence that supports Supert: - Increasing percentage of children vaccinated leads to a decreased the statement. They then include information number of cases of measles per 100 000 people. about Niger as an example. A trend is - For instance, in Niger, there is an increase in percentage of children made clear and this is vaccounted between 2009 (69%) and 2010(71%), leading to supported with correct deciease for 5.23 cases per 100000 paper in 2009 to 2.34 cases per 10000 mills a deciease data taken from the graph and the table. - Contries with higher percentage of children vaccinuted has lower number of cases of aleasles per (00 000 pieghe. 4 4 The sentences about for instance, Ganbra, with 95% of children vacanded in 2012 hos Gambia are strong 6 Cases per (00 000 peyle in 2012. - Graph any shows percentage of children vacchited, not the percentage of populatar vand bes at support: - There is an orthorit of measles in 2011, leading to an more in an industriation of cases per (00 000 peyle in contraction fighting. Chad and Niger, despit an increase in percentage of children vaccinates Niger, despit an increase in percentage of children vaccinates pieces of evidence to support the statement these are expressed well by the candidate. Again, correct data is given in support. (c) The successful eradication of smallpox involved an intensive global vaccination programme. It is hoped that the same can be achieved with measles. 5 The candidate makes it Outline two features, apart from cost, of the smallpox eradication programme that may have made it easier to eradicate than measles. clear here that they are 1. A live vacance was used for small por, made from stratered switching to provide maturated usus from tion a strand of similar visus closely related to small posting evidence that does not support the statement. (larger inmine response) 2. Snallpos vaccine es call be freeze dried, carsay Mark for (b) = 4/4to be able to be stored on a wide range 6 This is a very good tequeratives, resulting in easy storage and frausportation. [2] description of the vaccine used in the (d) State precisely the type of immunity gained by receiving a measles vaccine. successful campaign to Artifizzal active [1] eradicate smallpox. A very thorough answer displaying good understanding. Mark for (c) = 2/2Mark for (d) = 1/1

Example candidate response – high, continued	Examiner comments
(e) Planning the prevention and control of measles using a vaccination programme means that financial costs must be considered.	
State two examples of these costs. 1. Cost of developing and researching the vaccines for the virus.	8 There are actually two acceptable examples in this second answer; the cost of manufacturing
2 Cost of manufacturing and transporting the vaccous for the viris to the seg regions where vaccoustion of required.	viruses would have been enough to earn the mark. Mark for (e) = 2/2
, Total: 14]	Total marks awarded = 14 out of 14


(a) (ii) The relevance of different population sizes for different countries is referred to at the start and halfway through the response. This point is made more clearly the second time, although it could have been qualified by stating that giving the cases per 100 000 takes into account the differences in population size. Although full marks were awarded here, another advantage would be that numbers per 100 000 provide information about the severity of the disease when different countries are compared, or in one country over time.

(b) The candidate used the term 'outbreak' to describe a large increase in cases of measles, but the very large increase in cases seen in the stated countries could have been described as an epidemic. In this case, the candidate had already written enough to be awarded the maximum number of marks.

Mark awarded = (a) (i) 2/2, (ii) 3/3Mark awarded = (b) 4/4Mark awarded = (c) 2/2Mark awarded = (d) 1/1Mark awarded = (e) 2/2

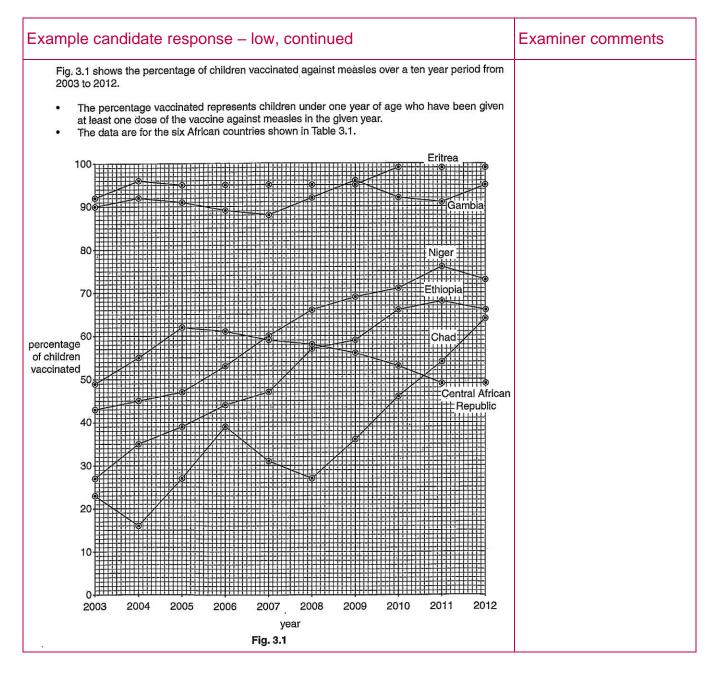
Total marks awarded = 14 out of 14

Ex	ample	candidate r	Examiner comments					
3	Globally, measles is an important disease that mainly affects children. Many deaths from measles occur in children under five years of age. Table 3.1 shows the population of six countries in Africa in 2009 and the number of cases of measles per 100000 people for the four years 2009 to 2012. All six countries are classified as low-income countries. Table 3.1 number of cases per 100000 people ocuntry population in 2009 2009 2010 2011 2012							
8	Central /	African Republic	4266000	0.26	0.05	15.31	3.12	
	Chad		11371000	1.45	1.66	71.60	0.96	
	Eritrea		5 558 000	1.48	0.89	0:81	3.16	
9	Ethiopia	1.127.000 pr 1980	84838000	1.39	4.86	3.64	4.74	
8	Gambia		1 628 000	0.00	0.12	0.00	0.00	
1000	Niger		15303000	5.23	2.34	4.67	1.59	
	(ii)	Use the data for data in Table 3.7 actual number of	clearly and the candidate has remembered to give the calculated value to the nearest whole person in order to match the values given in the question examples.					
		If active	al number	wan sha	wn, it	would	be difficult	Mark for (a) (i) = 2/2
		ιο ριοί	a graph o	or und	ersiand	the re	sults. 10	
		maybe	difficult Ic	record	results	anong	suchlarge	
		numbers	of people	e.gin	BARD,	populatio	onis 84838000	
		population	Un- some pe	opie na	ly not m	eporc -the	in cases of in chad, in ss58 000,	their understanding that the different countries have different
							[3]	Mark for (a) (ii) = $1/3$

Exa	ample candidate response – middle, continued	Examiner comments
(b)	Vaccination is known to protect populations against infectious diseases. Some of the data in Table 3.1 (on page 4) and Fig. 3.1 (on page 6) support this statement. Describe the data that support this statement and comment on the data that do not support this statement. In Existence, in 2010, 94%, of children were vacuinated. but number of cases of measeles was easy high (78200 people chad among 100,000) whereas in carried affrican separatic in 2010 46%, people were vaceinated but only these care among 100,000 people are recorded. On the other hand, in Gambia, in 2003, 90%. I were vaceinated in 2010 92% and in 2011, 91%, and in 2012, 95%, were vaccinated and there were no cares reported there except very few (0.17 ramong 100,000) in 2010 So here this statement is supported.	 The candidate makes it clear which country is being described and states the year, the percentage of children vaccinated and the number of cases per 100 000 to support their statements. Mark for (b) = 2/4
(c) (d)	The successful eradication of smallpox involved an intensive global vaccination programme. It is hoped that the same can be achieved with measles. Outline two features, apart from cost, of the smallpox eradication programme that may have made it easier to eradicate than measles. <u>The exercise variora virus was scable and</u> <u>did not change is ^ surface</u> <u>did not change is ^ surface</u> <u>production easier</u> . <u>→ Vaccine produced van thermoscable and could be</u> <u>kept in hot climater for long periodr crutch</u> <u>as in the Iropicn</u>] State precisely the type of immunity gained by receiving a measles vaccine. <u>Artificial active Immunity</u> [1]	 4 Two main features are outlined here. The outline of the second feature is directly linked to the vaccination programme and gains credit. Mark for (c) = 1/2 5 The candidate knows that this is active immunity and qualifies this with the precise type of active immunity. Mark for (d) = 1/1

Exa	ample candidate response – middle, continued	Examiner comments
(e)	Planning the prevention and control of measles using a vaccination programme means that financial costs must be considered.	
	State two examples of these costs.	
	1 cost of intrastructure, to get to poor areas where	
	roads etc have not been built and cares of measles are high in Ahumber. 2 cost of moviding educational facilities to people in remote areas to educate thereof the importance	6 The second example is well described. The first example implies transport costs and is given credit.
	of gening vaccinated 6	Mark for (e) = $2/2$
	[Total: 14]	Total marks awarded = 9 out of 14

(a) (ii) Here the candidate tried to point out the disadvantages of showing the actual number of cases when they should have focused on the *advantages* of using number of cases per 100 000 people, as the question asked. The idea that different countries have different population sizes is only weakly implied by quoting the population values; a worded statement would have been better here.


(b) The trends in vaccination should have been given for the different countries here. It was not sufficient to quote one year and give the value of the number of cases per 100 000, as this did not show whether or not the vaccination programme which takes place in a country over a number of years is successful in protecting the population. Trends for other countries (Eritrea, Niger and Central African Republic) could also have been described, using data to support the description. In terms of commenting on the success of the vaccination programme, it was necessary to look at the trend of vaccination in one country and compare this to the number of cases per 100 000 for the same country, rather than take one year and compare two different countries.

(c) The candidate could have qualified their correct statement about the Variola virus not changing its surface antigens by going on to state that this meant that only one type of vaccine was required.

Mark awarded = (a) (i) 2/2, (ii) 1/3Mark awarded = (b) 2/4Mark awarded = (c) 1/2Mark awarded = (d) 1/1Mark awarded = (e) 2/2

Total marks awarded = 9 out of 14

	response –	IOW					Examiner comments
Globally, measles is an im occur in children under five	portant disease the years of age.	nat mainly aff	ects childre	n. Many deat	hs from mea	sles	
Table 3.1 shows the popu measles per 100 000 peop All six countries are classi	ole for the four year	ars 2009 to 20	ca in 2009)12.	and the nun	nber of case	s of	
Table 3.1							
country	population in	numbe	er of cases	per 100000 p	eople		
country	2009	2009	2010	2011	2012		
Central African Republic	4266000	0.26	0.05	15.31	3.12		
Chad 🖡	11 371 000	1.45 145	1.66	71.60	0.96		
Eritrea 😽	5558000	1.48 82	0.89	0.81	3.16		
Ethiopia 🔭	84838000	1.39 8%	4.86	3.64	4.74		
Gambia	1 628 000	0.00	0.12	0.00	0.00		
Niger	15303000	5.23	2.34	4.67	1.59		
Show your working Chad:	ng. 165 y. 113	71 000 =	es i <u>n∙Etniop</u> • {{762.	15 I. Cr	thea = 60	=7 56	calculations and value for Chad and Eritrea, the candidate has
Calculate the act Show your worki Chad: Chad:	$\frac{10a1}{1000} + \frac{1000}{1000} + \frac{1000}{1000$	x 848	(<u>ξ</u> 7 <u>ξ</u> 2 ξ 3 β Ο 0 Ο ο explain th	<u>اه ابر 2009</u> ۱۶ ۲. Er = ۱۱٫٫۹ . ج٫۹ ۱۱٫۶ e advantagés	$\frac{4}{2}$	57.56 567.13 [2]	calculations and value for Chad and Eritrea, the candidate has written 'Ethiopia' and the same line given th correct calculation. Th correct rounded-down answer is also given.
(ii) Use the data for data in Table 3, actual humber of	$a = \begin{bmatrix} .3 \\ .0 \\ .0 \\ .0 \\ .0 \\ .0 \\ .0 \\ .0 \\$	X 848 ,, ,	(\$762 (\$762 3) Ouo explain th sles per 10	15 / Cr = 1179 = 2.117 e advantages 0000 people	threa = 62 -2 1 9_{μ} ∞ s of showing rather than	[2]	calculations and value for Chad and Eritrea, the candidate has written 'Ethiopia' and the same line given th correct calculation. Th correct rounded-down
(ii) Use the data for data in Table 3.1 actual humber of	$\frac{10a1}{1000000} + \frac{10a1}{100000000000000000000000000000000$	X 848 2 d Ethopia to ases of mea	(\$762 (\$762 3) 000 explain th sles per 10	15 / €r = 1179 = 2.117 e advantages 0000 people	thea = 62 2 9_{μ} Cr s of showing rather than f_{μ} $Using$	[2]	calculations and value for Chad and Eritrea, the candidate has written 'Ethiopia' and the same line given th correct calculation. Th correct rounded-dowr answer is also given. Mark for (a) (i) = 2/2
(ii) Use the data for data in Table 3.1 actual number of actual num	tual number of cases. 165×113 100,000 102 = 1.39 100,000 100	7(000 = X & 4 & 8 1 & 1 & 1 1 & 1 & 1 & 1 & 1 $1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & $	(5762 (5762 3) 000 explain th sles per 10 	= 1179 $= 2000$ $= 1179$ $= 2000$ $= 2000$ $= 20000$ $= 20000$ $= 20000$ $= 20000$ $= 20000$ $= 20000$	threa = 62 -2 1 $9_{a} \propto$ s of showing rather than f using roblems.	[2]	 calculations and value for Chad and Eritrea, the candidate has written 'Ethiopia' and the same line given th correct calculation. Th correct rounded-dowr answer is also given. Mark for (a) (i) = 2/2 2 There is some hint of
(ii) Use the data for data in Table 3.1 actual number of <u>actual num</u> <u>It is easte</u>	$\frac{10a1}{1000000} + \frac{10a1}{100000000000000000000000000000000$	x & 4 & x & 4 & d Ethopia to ases of mea pullation may ca cases pe	(5762 (5762 3) 000 explain th sles per 10 	= 1179 $= 2000$ $= 1179$ $= 2000$ $= 2000$ $= 20000$	itrea = 62 .2 9,0 s of showing rather than f wing roblems. 1 of the c	[2]	 calculations and value for Chad and Eritrea, the candidate has written 'Ethiopia' and the same line given the correct calculation. The correct rounded-down answer is also given. Mark for (a) (i) = 2/2 2 There is some hint of understanding that different countries have different populations,
(ii) Use the data for data in Table 3.1 actual number of <u>actual num</u> <u>It is easte</u>	tual number of casing. 165 \times 113 100,000 1	x & 4 & x & 4 & d Ethopia to ases of mea pullation may ca cases pe	(5762 (5762 3) 000 explain th sles per 10 	= 1179 $= 2000$ $= 1179$ $= 2000$ $= 2000$ $= 20000$	threa = 62 2 9 9 s of showing rather than f wing roblems. 1 of the c	[2]	 calculations and value for Chad and Eritrea, the candidate has written 'Ethiopia' and the same line given th correct calculation. Th correct rounded-dowr answer is also given. Mark for (a) (i) = 2/2 2 There is some hint of understanding that different countries has
(ii) Use the data for data in Table 3.1 actual humber of The:nu actual number of It is ease bar avec	International content of the second s	x & 4 & x & 4 & d Ethopia to ases of mea pullation may ca cases pe	(5762 (5762 3) 000 explain th sles per 10 	= 1179 $= 2000$ $= 1179$ $= 2000$ $= 2000$ $= 20000$	threa = 62 2 9 9 s of showing rather than f wing roblems. 1 of the c	[2]	 the candidate has written 'Ethiopia' and the same line given the correct calculation. The correct rounded-down answer is also given. Mark for (a) (i) = 2/2 2 There is some hint of understanding that different countries have different populations, but not enough to be

Example candidate response – low, continued			Examiner comments	
(b)	Vaccination is known to protect populations against infectious diseases. Some of the data in Table 3.1 (on page 4) and Fig. 3.1 (on page 6) support this statement. Describe the data that support this statement and comment on the data that do not support this statement. <u>Lounday</u> evidence that prover the statement is such as the <u>country</u> like Erritrea in 2011, which has 99 % of children vacinated have 0.81 per 100 000 carent off measter. This suggest that to when higher number of people vacinated there's should be lesp <u>Cases of measter</u> .	3	The candidate includes the four items that are required to gain credit for data to support the statement: country; number of cases per 100 000; percentage vaccination value; and year. As these are all correctly extracted from the graph and the table, one mark can be given.	
(c)	Eurdence that do not support the statement is Gambia having 0.00 per 100 000 cases of meailer where anly 547. of children being vacinated. This sugget that the evidence has an error because there's a chance the other 46% are being having measlies	4 Solution	This is not quite the same as saying that a consistently high percentage vaccination will lead to a low number of cases. 'Higher' could mean 20% instead of 10% and 'less' could mean 11.5 instead of 12.0 cases per 100 000. There is no year to accompany this value for cases per 100 000 and the percentage vaccination value is not correct for any of the years for Gambia. k for (b) = 1/4	
(d)	[2] State precisely the type of immunity gained by receiving a measles vaccine. A artificeral active immunity 3	8	This is only part-way to gaining the mark as there is no precise statement about the vaccine: 'easy to produce' is too vague. This is not directly related to the global vaccination programme. k for (c) = $0/2$ Good knowledge is shown and the precise type of immunity is correctly stated. k for (d) = $1/1$	

Example candidate response – low, continued	Examiner comments
(e) Planning the prevention and control of measles using a vaccination programme means that financial costs must be considered. State two examples of these costs. 1. The $cost \sigma f$ incubators are the backers	9 Measles is caused by a virus.
2. The cost for mating enzyme is expensive.	The question is about vaccines and not enzymes.
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Mark for (e) = $0/2$
[Total: 14]	Total marks awarded = 4 out of 14

(a) (i) There is some irrelevant information in the space available for the calculation and the correct calculated value. This should have been crossed out to ensure that the examiner only considered the correct calculation.

(a) (ii) A firm statement that different countries have different populations would have helped to gain credit here. More marks could also have been gained if the idea of 'easier to use' was explained by stating that cases per 100 000 shows the proportion of the population with the disease. Further detail on 'simple to use' should have been given. This could have included the idea that it allows comparison between countries or shows the severity of the disease between countries or over time within one country.

(b) The data for Eritrea should have been qualified by stating that a high percentage vaccination throughout the years shown also produces a low number of cases of measles per 100 000. The candidate did not give a trend, supported by extracted data, for any stated country to show that an increase in percentage of children vaccinated is linked to a decrease in cases per 100 000 of measles, or vice versa.

(c) The first feature could have been qualified by explaining that only one type of vaccine needed to be developed for use so that the same one could be used throughout the eradication programme. The outline of the second feature needed to include a statement about the global vaccination programme, such as a high proportion of the world being vaccinated, or about the vaccine, such as its heat stability owing to freeze-dried preparation.

(e) The candidate had a gap in their knowledge about the type of organism causing measles. The idea of the incubator to produce bacteria is about the preparation of the vaccine, but the causative organism is a virus. The second statement about production would have gained credit if the candidate had checked their response and noted the error of 'enzyme' instead of 'vaccine'. Other examples of costs could have been wages for the health workers to deliver the vaccine or the cost of transport of the vaccine.

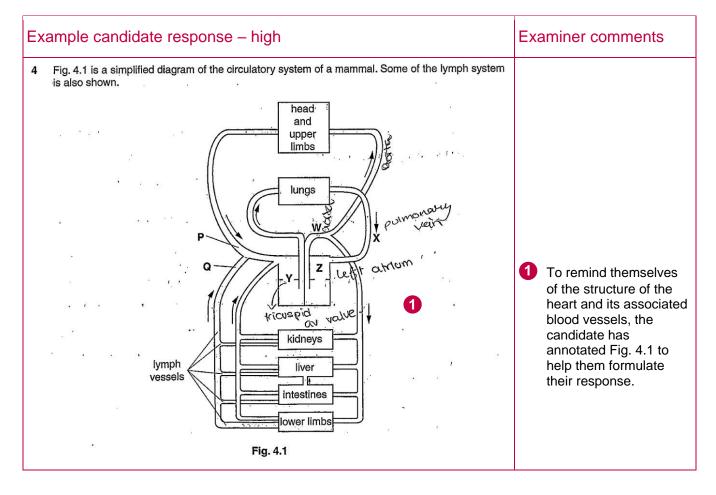
Mark awarded = (a) (i) 2/2, (ii) 0/3Mark awarded = (b) 1/4Mark awarded = (c) 0/2Mark awarded = (d) 1/1Mark awarded = (e) 0/2

Total marks awarded = 4 out of 14

Common mistakes candidates made in this question

(a) (i) Not all candidates gave the answer to the nearest whole case here. Some included the correct working, but were a factor of ten or more out in their final answer, while others rounded to 1180.

(a) (ii) Some candidates stated that cases per 100 000 were averages, rather than a proportion (or ratio). Some did not realise that the cases per 100 000 were calculated from actual reported cases of measles and stated that it was quicker to use estimates. Some incorrectly thought that the values represented the number of deaths from measles.


(b) Many candidates forgot to consider the time aspect of a vaccination programme or to realise that they should have been looking for trends over the years rather than quoting values for one year only. When quoting data extracted from the table and graph, many forgot to state one or more of: the country; whether the percentage vaccination was increasing or decreasing; the cases per 100 000. Some misread the curve for Chad and thought it represented Central African Republic. Some only used Fig. 3.1, which meant they could only comment on the percentage of children vaccinated over time. Some concentrated only on one or two countries and did not give any description or comments for the other countries.

(c) Many candidates correctly stated that the smallpox virus did not mutate, but did not go on to explain how this impacted on the vaccine and vaccination programme, namely that only one vaccine needed to be developed and could be used throughout the programme. Some mistakenly thought that the vaccine was frozen rather than being freeze-dried. A number wrote about how to improve a measles vaccination programme, but as they did not state that this was carried out for the smallpox vaccination programme, they could not gain credit for knowledge of the smallpox programme.

(d) Some candidates only stated that this was 'active immunity'. This was not enough as active immunity can be either 'artificial', as in this case, or 'natural'.

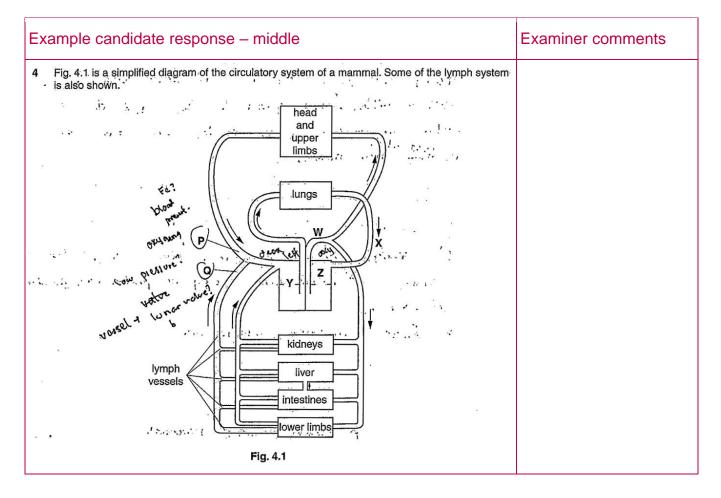
(e) Some candidates did not relate their answer to a vaccination programme and gave examples of how an individual would incur costs. Some did not make clear the difference between vaccine and vaccination, and 'vaccination would cost' is vague and not the same as 'the cost of purchasing vaccines'.

Question 4

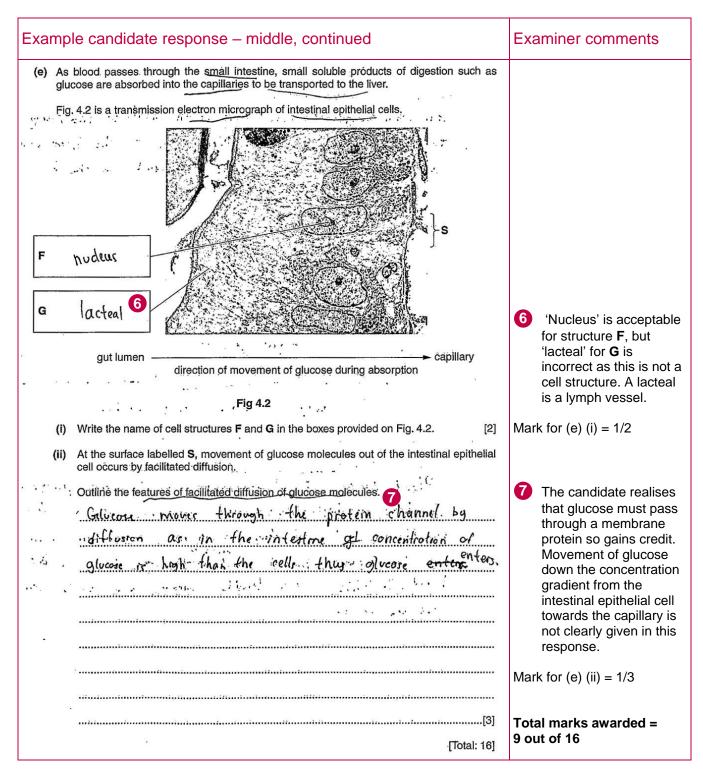
Exa	ample candidate response – high, continued	Exa	aminer comments	
(a)	The type of circulatory system shown in Fig. 4.1 is a closed double circulation.			
	Explain what is meant by a closed double circulation.	6	<u> </u>	
	Closed because all the blood vessels are interconnecting forming.	2	The response has been set out so that it is clear	
	a complete circuit so blood never leaves the vessels.		that both 'closed' circulation and 'double'	
	Dowble, because in one complete circulation blood passes through		circulation are being explained.	
	e.heart.twice.		Mark for (a) = $2/2$	
		Iviai	(a) = 2/2	
(b)	With reference to Fig. 4.1, name:	3	The candidate gains	
	blood vessel W		credit for the correct name for valve Y. Note	
	blood vessel X		that stating 'atrioventricular valve'	
	valve Y		alone would not gain the	
	heart chamber ZLeftAtriven		mark; this needs to be the 'right atrioventricular'	
(c)	State the component present in the blood at location P that is not present in the lymph at location Q in Fig. 4.1.		valve.	
	Red Blood Calls.	Mar	k for (b) = 4/4	
(d)		Mar	$k ext{ for } (c) = 1/1$	
(-)	Describe the process of gas exchange between the alveolus and the blood.			
		4	Adaptations of surfaces	
	Occurs by diffusion down the concentration gradient of each gas		for gas exchange are not required as the	
	. Oz dis enters alveali from outside air and due to thin wall of .		question asks for a description of gas	
	aluealus and its curvature, diffusion distance is short and diffusion		exchange.	
	surface area. is high so at high rate Oz dissolves in maist lining . St alleador alls of	6	A sequential account is	
	internal wall then diffuses through wall, entering through gaps in		given, demonstrating	
	.phospholipidbilausandhorough.somenoute.intocopillarybinding		good understanding of the process.	
	Misu. Lehnaurigan. yet. bedan all A. Man. Allan.		The second states are	
	dongenated blood with bigh . 202 content. CO2. diffuses out of blood wig	6	The outside air, alveolus, capillary and	
	.apillaryholesthoughphospholipidbilayer,.through.alueolor		red blood cell are all mentioned to show that	
	.path, dissolving.in. moistining. and diffusingintaairinsidealvealus		the complete process	
	.Oz.and.Cozbothnon-polarsoanpassthroughhydropholoic		has been considered.	
	[4]	7	Both respiratory gases are mentioned.	
		Mar	k for (d) = 3/4	

	Total marks awarded = 15 out of 16
[Total: 16]	Mark for (e) (ii) = 3/3
[3]	question.
·	transport of glucose, as required by the
	The focus is on the
requires no ATP or energy.	given clearly and the response is to the point.
through hydrophobic region of hilayer process is passive so	9 The main features of facilitated diffusion are
down.itscommandiangndientI.wouldnotde.alde.topass	
Passive process Protein molecule in cell membrane is a channel	
Outline the features of facilitated diffusion of glucose molecules.	
cell occurs by facilitated diffusion.	
 (i) Write the name of cell structures F and G in the boxes provided on Fig. 4.2. [2] (ii) At the surface labelled S, movement of glucose molecules out of the intestinal epithelial 	
Fig 4.2 (i) Write the name of call attractures F and C in the horse provided on Fig. 4.3 [2]	Mark for (e) (i) = 2/2
gut lumen capillary direction of movement of glucose during absorption	incorrect answer and given the correct response below.
" cell surface membrane	The candidate has clearly crossed out an
F nucleolus	
Fig. 4.2 is a transmission electron micrograph of intestinal epithelial cells.	
glucose are absorbed into the capillaries to be transported to the liver. Fig. 4.2 is a transmission electron micrograph of intestinal epithelial cells.	
(e) As blood passes through the small intestine, small soluble products of digestion such as	
Example candidate response – high, continued	Examiner comments

(a) When explaining a 'closed' circulation, a more complete response would be to name the three main types of blood vessels and the heart. However, this answer was enough to gain the marks.


(c) Although the candidate had no problem gaining this mark, it is not correct to name a red blood cell as Red Blood Cell, with upper case (capital) initials.

(d) More detail on the passage of oxygen from the alveolus to the red blood cell and vice versa (of carbon dioxide) could have been included here. The thin wall of the alveolus should have been described as the 'squamous epithelium' and the capillary wall named as the 'endothelium'. More detail on the diffusion of the gases could have included reference to the diffusion down a steep gradient, with some qualification of how a steep gradient is maintained.


(e) (ii) Although 'channel protein' was accepted, the actual type of membrane protein for the facilitated diffusion of glucose is a 'carrier protein'. One of the main features of a carrier protein for glucose is a binding site specific for glucose. On binding there is a conformational (shape) change that allows the movement of glucose across the membrane.

Mark awarded = (a) 2/2Mark awarded = (b) 4/4Mark awarded = (c) 1/1Mark awarded = (d) 3/4Mark awarded = (e) (i) 2/2, (ii) 3/3

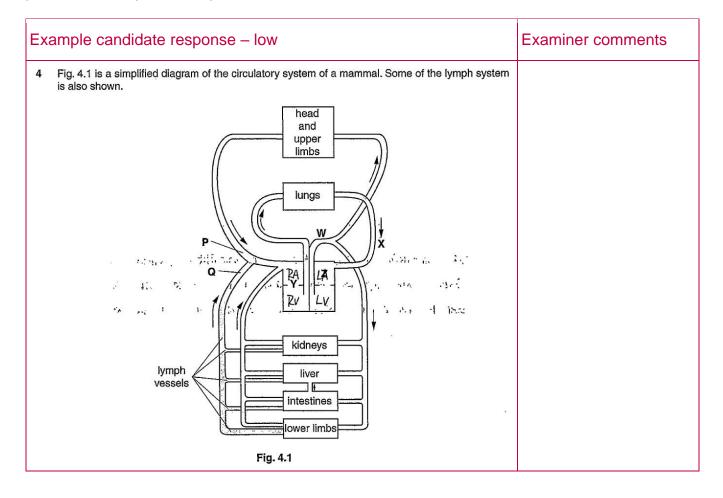
Total marks awarded = 15 out of 16

Example candidate response – middle, continued	Examiner comments	
 (a) The type of circulatory system shown in Fig. 4.1 is a closed double circulation. Explain what is meant by a closed double circulation. it is when deoxygenoded blood goes to the heart to the pumps to the lungs and Oxygenoded blood goes to the heart again and to the ether ports of the body - and to the other 1 	1 The candidate has written just enough to show an understanding that, for a full circulation around the body, the blood passes through the heart twice. There is no explanation of the term 'closed'.	
[2]	Mark for (a) = 1/2	
(b) With reference to Fig. 4.1, name: blood vessel W	 There are only three correct answers here. Although heart chamber Z is an 'atrium', the candidate has stated 'right' instead of 'left'. 	
State the component present in the blood at location P that is not present in the lymph at location Q in Fig. 4.1.	Mark for (b) = $3/4$	
(d) As blood passes through the capillary network in the lungs, gas exchange occurs.	3 This is a description of blood rather than a component.	
Describe the process of gas exchange between the alveolus and the blood.	Mark for (c) = $0/1$	
<u>Blood carrier</u> of Deoxygeneted blood corrier pumps by the blood and the pressure, and differences, oecur botween the blood and the alveolur. Oxygen mover from high concentrates from of concentrates. Crim of inter the lange passing through the proportione of rates the brod blood cell. While, Carbon droxide 5 diffuses act to the two alveolus. as	4 Although there is little detail about the pathway taken and 'the lungs' is stated rather than 'the alveolus', the candidate shows an understanding that oxygen enters the red blood cell, so gains credit.	
	5 The candidate correctly identifies the mechanism of transport of the respiratory gases and knows the direction of movement of both oxygen and carbon dioxide.	
	Mark for (d) = $3/4$	

(a) The candidate could have stated the pulmonary and systemic circulations, to be sure of gaining credit here. They should also have included an explanation of 'closed circulation', either by mentioning that blood is contained in blood vessels or by naming the three main types of blood vessels and the heart.

(b) The candidate needed to remember that the sides of the heart and the heart chambers are named as if one is facing a person and so the right-hand side of the diagram is actually the left side of the heart.

(c) The candidate should have followed through on the idea of oxygen and remembered that oxygen is carried in red blood cells. Oxygen is not considered a component of blood, as it is carried by haemoglobin within red blood cells.


(d) The oxygen should have been described as diffusing from the alveolus, rather than from the lung. The candidate could have included detail of the pathway, the squamous epithelium of the alveolus and the endothelium of the capillary.

(e) (i) The information provided stated that Fig. 4.2 showed intestinal epithelial cells. As the nuclei are obvious, with further study of Fig. 4.2 the candidate might have realised that the thin line between one cell and the next was the cell surface membrane.

(e) (ii) The 'channel protein' was acceptable here, as the candidate understood that glucose cannot cross the cell surface membrane unaided. However, 'carrier protein' would have been more correct. The movement down the concentration gradient could have been expressed as going from a high to a low concentration (a high concentration within the epithelial cell to a lower concentration outside the cell). To gain full marks, a statement that the movement is passive should have been included.

Mark awarded = (a) 1/2Mark awarded = (b) 3/4Mark awarded = (c) 0/1Mark awarded = (d) 3/4Mark awarded = (e) (i) 1/2, (ii) 1/3

Total marks awarded = 9 out of 16

Exa	ample candidate response – low	Examiner comments
(a)	The type of circulatory system shown in Fig. 4.1 is a closed double circulation. Explain what is meant by a closed double circulation. 	 The candidate attempts to explain both 'closed circulation' and 'double circulation'. Neither explanation is close enough to the required answers to gain credit. Mark for (a) = 0/2
(b)	With reference to Fig. 4.1, name: blood vessel W Akata 2 blood vessel X	2 This was accepted for 'aorta'.
	heart chamber Z	Mark for (b) = 3/2
	State the component present in the blood at location P that is not present in the lymph at location Q in Fig. 4.1. [Whon dioxide	Mark for (c) = 0/1
	The control disside capillary diffuse to the alrealus in short distance down. the concernitation gladient. And the cattan disside Oxygen Contain in the alrealus also diffusive from alrealus to blood in the copillaries. So the blood in copillary gain Oxygen and teleased carbon dioxide and the alrealus gain carbon dioxide and keleased Oxygen.	 The candidate demonstrates knowledge of the direction of movement of each of the respiratory gases and their mechanism of movement. Mark for (d) = 2/4
	[4]	

Example candidate response – low	Examiner comments
Example candidate response – low (e) As blood passes through the small intestine, small soluble products of digestion such as glucose are absorbed into the capillaries to be transported to the liver. Fig. 4.2 is a transmission electron micrograph of intestinal epithelial cells. Image: state of the state of the state of the liver. Fig. 4.2 is a transmission electron micrograph of intestinal epithelial cells. Image: state of the state of the liver. F Nucleus Image: state of the state of the liver. Image: state of the state of the liver. Image: state of the state of the liver. Image: state of the liver.	Examiner comments Mark for (e) (i) = 1/2 The candidate correctly realises that a carrier protein is involved, so is credited for this. Although 'down the
cell occurs by facilitated diffusion.	protein is involved, so is credited for this.

(a) The explanation of closed circulation needed to show understanding that blood is contained in blood vessels. The statement for double circulation should have been more precise about the 'two different paths'. Either the pulmonary and systemic circulations could have been named, or a more precise answer should have been given stating that the full circulation of blood means passage through the heart twice.

(b) The candidate could have attempted to name all the structures and not leave valve Y blank. The aorta, blood vessel W, could have been spelled correctly.

(c) A greater familiarity with the difference between blood and lymph would have helped this candidate to suggest either red blood cells or plasma proteins here. These two components are unable to pass from the blood into the tissue fluid so will not be collected by the lymph system.

(d) The candidate could have stated that oxygen enters the red blood cell and given detail on the pathway via the squamous epithelium of the alveolus and the endothelium of the capillary.

(e) (i) In Fig. 4.2 the rough endoplasmic reticulum (written as 'endoplastic' by the candidate) would not look like a single dark line separating the two cells. The best response would have been 'cell surface membrane', but if the candidate had given just 'cell membrane', this would have been accepted.

(e) (ii) The final sentence should have been completed with 'so the glucose moves through the carrier protein', or similar. The candidate could also have stated that no energy is required for the glucose to cross the membrane, and should have made clear that glucose molecules move down the concentration gradient from the cell to the outside.

Mark awarded = (a) 0/2Mark awarded = (b) 3/4Mark awarded = (c) 0/1Mark awarded = (d) 2/4Mark awarded = (e) (i) 1/2, (ii) 1/3

Total marks awarded = 7 out of 16

Common mistakes candidates made in this question

In (a), it was common for candidates to only describe double circulation and ignore 'closed circulation'. It was also common for candidates to describe closed as 'blood is unable to leave' without any mention of blood vessels. For double circulation, it was not correct to write about the passage of blood through the heart as going 'across' or 'around' the heart. Some described one complete circuit around the body as one cardiac cycle, which is incorrect. A cardiac cycle refers to the heartbeat. Another common error was to state that for one heartbeat, the blood passes into two circulations.

(b) A common error here was to spell 'aorta' incorrectly, usually as 'arota'. The other common error was to name the atrioventricular valve but forget to state that it was the *right* atrioventricular valve.

(c) Many incorrectly gave a respiratory gas, carbon dioxide or oxygen, instead of considering a larger component of blood, such as a red blood cell or plasma protein. A number also gave 'white blood cell', forgetting that these can be found in the lymph system.

(d) There was often a lack of precision in describing the movement of oxygen or carbon dioxide: oxygen was described as moving from the lung to the capillary, or carbon dioxide from the capillary to the lung, rather than giving the correct structure, 'the alveolus'. It was also common for candidates to list the adaptive features of a gas exchange surface, which did not answer the question.

(e) (i) Some candidates did not notice the faint line separating the intestinal epithelial cells and gave 'cytoplasm' as their answer.

(e) (ii) The most common mistake in outlining features of facilitated diffusion was to state that it was an active energy-requiring process. Another common mistake was to state that glucose is transported across by both channel and carrier proteins, whereas glucose is transported only by a carrier protein. Candidates who gave 'channel protein' were not penalised, but this is not strictly correct.

Question 5

Example candidate response – high	Examiner comments
5 Fig. 5.1 shows plant cells in stages of mitosis.	
cell at the start of prophase	
Fig. 5.1	
 (a) Individual chromosomes cannot be seen in the cell at the start of prophase. Changes to the chromatin occur so that by late prophase chromosomes are clearly visible. (i) Outline what occurs during early prophase so that chromosomes become visible in late prophase. 	
\$ The chramatin conclenses and coils	
during early propriase	
[1]	Mark for (a) (i) = 1/1
(ii) Describe the structure of the chromosome in late prophase. We identify and the care attaoned 1 to each other at the centromere, strands is the chromosomes to are the have a cap at the end called telomere. Coiled, so it & looks & like two identicalle strands with the attached at the centre which has the same length. [3]	 The main features of the structure of a chromosome are given first. Later in the response, more detail is given when telomeres are mentioned. Mark for (a) (ii) = 3/3

Example candidate response – high, continued		Examiner comments
	State two differences between the chromosome at metaphase and the chromosome at late anaphase. The chromesomes at metaphase is lined up at the equator, however, at anaphase it is at opposite. poles. The phromosomes at metaphase at consists of two sister chromaticls connected at However, at anaphase there is only 1 the centremere single chromaticl, centremere pointing towards One of the functions of a plant hormone known as cytokinin is to act as a cell signalling poles.	2 The candidate deals with one feature at a time and the two stages are compared to highlight the differences. The candidate names each stage to avoid confusion and uses the connector 'however' to introduce a difference. Mark for (b) = 2/2
Ĩ	Suggest how cytokinin acts as a cell signalling molecule. Cytokinin attaches attatches to the chemical receptors on the cell membrane #, the chemical receptors then activates the G-protein to send 3 aut a secondary messenger #### which amplifies the original signal, sending it to enzymes or specific cavsing them to presponse which give a specific 5 cytokinesis. [3] [Total: 9]	 The candidate has applied their knowledge of the main features of cell signalling to this example of the plant hormone cytokinin and its involvement in cytokinesis at the end of mitosis. The response is written to give a sequential account. Mark for (c) = 3/3 Total marks awarded =
		9 out of 9

(a) (ii) The candidate drew a diagram to accompany their response. The diagram should have been labelled to support the written text.

(b) To make their response easier to mark, the candidate could have set out the comparison of the second feature a little more clearly. There is space to finish the statement about the chromosomes at metaphase consisting of two sister chromatids. The candidate could have drawn a line to separate the end of this sentence from the sentence about the chromatid at late anaphase.

(c) The location of the receptors could have been described more accurately as being in the cell surface membrane of the cell.

Mark awarded = (a) (i) 1/1, (ii) 3/3 Mark awarded = (b) 2/2 Mark awarded = (c) 3/3

Total marks awarded = 9 out of 9

Example candidate response – middle	Examiner comments
5 Fig. 5.1 shows plant cells in stages of mitosis.	
cell at the start of prophase	
Fig. 5.1	
 (a) Individual chromosomes cannot be seen in the cell at the start of prophase. Changes to the chromatin occur so that by late prophase chromosomes are clearly visible. (i) Outline what occurs during early prophase so that chromosomes become visible in late prophase. During early prophase, Chromatin in the nucleus condense to form chromosomes composed of two sister chromatids. [1] (ii) Describe the structure of the chromosome in late prophase. The chromosomes are short and thick composed of two DNA molecules [3] 	 This first part is fine as an answer. The rest of the answer, 'two sister chromatids' is not necessary here, but would be useful in (a) (ii). Mark for (a) (i) = 1/1 Although the candidate uses the plural 'chromosomes', a mark is awarded for the idea of two chromatids per single chromosome. Mark for (a) (ii) = 1/3

Example candidate response – middle, continued	Examiner comments
anaphase. During metaphase, the chromosomes are aligned at the equator with spindle fibres attached to the kinetochore molecule at their centromere. By late anaphase, the sister chromalids have been mored apart to opposite ends of the poles which is achieved by shortening of microtibiles (c) One of the functions of a plant hormone known as cytokinin is to act as a cell signalling molecule and promote cytokinesis. Suggest how cytokinin acts as a cell signalling molecule. Cytokinin activates the receptors (proteins) in the cell surface membrane. Thereceptors	3 The stages are named to avoid confusion. There is just enough here to show understanding of a single chromosome at metaphase composed of two chromatids and separated chromatids at anaphase. The fact that the equator at metaphase and the poles at anaphase are noted is enough to gain the second mark, although 'ends of the poles' has been given the benefit of the doubt.
Other enzymes thereby amplifying the signal and causing the cell to undergo cytokinesis [3] [Total: 9]	The reference to 'glut' was ignored here (this is specific to glucose). The candidate demonstrates understanding that the presence of cytokinin causes a cascade of reactions that leads to cytokinesis. The location of the receptor is also given correctly. Mark for (c) = 2/3 Total marks awarded =

(a) (ii) The information that the candidate provided in (a) (i) about two sister chromatids should have been included here to gain an additional mark. The reference to 'chromosomes' and not 'a single chromosome' is also confusing. If the candidate had noted that the chromatids were joined at the centromere, or drawn a labelled diagram, this would have helped to gain maximum marks.

(b) There were a few minor errors here, though not sufficient to withhold credit. If these had been corrected, the answer would have been of better quality. The kinetochore should not have been called 'a molecule'. In addition, 'opposite ends of the poles' should have been written more simply and more correctly as 'opposite poles'. The chromosome at metaphase could have been qualified by stating that it was comprised of the two chromatids joined at the centromere.

(c) The candidate could have gained the final mark by explaining that cytokinin binds to the receptor located in the cell surface membrane. The reference to 'glut' should not have been given as glut proteins are membrane transport proteins for glucose.

Mark awarded = (a) (i) 1/1, (ii) 1/3 Mark awarded = (b) 2/2 Mark awarded = (c) 2/3

Total marks awarded = 6 out of 9

Example candidate response – low	Examiner comments
5 Fig. 5.1 shows plant cells in stages of mitosis.	
cell at the start of prophase the start of prophase for the start of p	
(a) Individual chromosomes cannot be seen in the cell at the start of prophase. Changes to the chromatin occur so that by late prophase chromosomes are clearly visible.	
(i) Outline what occurs during early prophase so that chromosomes become visible in late prophase. <u>The nuclear envelope breaks down</u> the ehromosomes <u>are visible due to breakdown of nuclear envelope and nucleus</u> . disappectioned.	1 The candidate describes events occurring in the cell during early prophase, which is not required by the question.
(ii) Describe the structure of the chromosome in late prophase.	Mark for (a) (i) = 0/1
chromatids joined together at the centromere to make a chromosome. The chromosomes are lying freely and making towards the center (to move to the taphase). [3]	 2 This is correct information so gains a mark. There is no reference to two chromatids or to sister/identical chromatids. 3 The candidate moves away from the aim of the question here and attempts to describe the behaviour of the chromosomes at late
	prophase. Mark for (a) (ii) = 1/3

 (b) State two differences between the chromosome at metaphase and the chromosome at late anaphase. <u>Chromosomes</u> <u>at metaphase</u> <u>are <u>uited</u> <u>by</u> <u>spindle</u> <u>towards</u> <u>the</u> <u>answer</u> <u>that is clearly</u> <u>laid out to show the differences. Notice that the candidate mentions two sister chromatids.</u></u> <u>iplined</u> <u>at centromere</u> <u>at metaphase</u> <u>are composed of two operatives</u> <u>and the connectid at [2]</u> <u>centromere</u>. (c) One of the functions of a plant hormone known as cytokinin is to act as a cell signalling molecule. <u>the hormose</u> <u>attaches</u> <u>to</u> <u>the</u> <u>receptor</u> <u>cells</u> <u>and</u> <u>initiales</u> <u>a</u>. <u>signal</u> <u>(sends a signal)</u> <u>to</u> <u>the</u> <u>nucleus</u> <u>to</u> <u>stort</u> <u>the</u> <u>specific</u> <u>cells</u> or a mark for target cells is too a mark for target cells or a mark for target cells or a mark for the couple to show understanding that binding to receptors. There is therefore not enough to show understanding that binding to receptors a couple to show understanding that binding to receptors. 	Example candidate response – low, continued	Examiner comments
	anaphase. <u>Chromosomes</u> at metaphase are kips lining at the equator (micid le) <u>whereas</u> at anaphase the are pulled by spindle towards the <u>opposite</u> poles. <u>Chromosomes</u> at metaphase are composed of two chromatids. <u>jained</u> at centromere, whereas at anaphase they are two separate <u>sister</u> chromaticls moved to opposite poles (not connected at [2] contromere). (c) One of the functions of a plant hormone known as cytokinin is to act as a cell signalling molecule and promote cytokinesis.	answer that is clearly laid out to show the differences. Notice that the candidate mentions two sister chromatids: this is information that could have been included in (a) (ii) . Mark for (b) = 2/2
3 out of 9	the hormospie attaches to the receptor cells and initiates a signal (sends a signal) to the nucleus to start the specific action, which is cytokinesis.	receptor cells is too ambiguous to award either a mark for target cells or a mark for binding to receptors. There is therefore not enough to show understanding that binding to receptors results in a cascade of reactions leading to cytokinesis. Mark for (c) = 0/3 Total marks awarded =

(a) (i) The candidate should have focused on the changes occurring to the DNA/chromatin to make it more visible, rather than describing events occurring at early prophase.

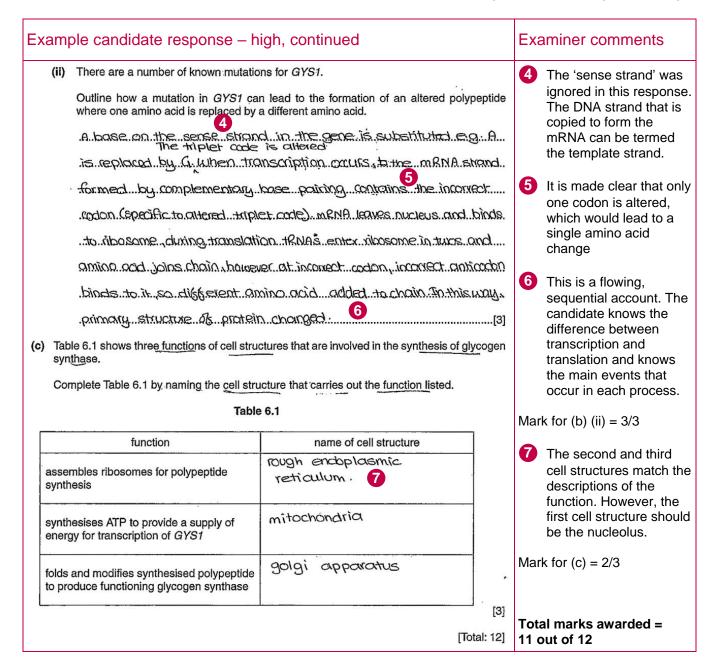
(a) (ii) More detail about the chromosome was required here. Using the term 'chromatids' is not sufficient to imply two chromatids, nor does it show understanding that the two chromatids are identical.

(c) The hormone should have been described as attaching to the receptors of the target cells, rather than stating 'receptor cells', which is wrong. It was not clear if the candidate was describing receptors in the target cells as receptor cells or describing the target cells as receptor cells. The location of the receptors should have been given. There should have been a clear reference to the binding of the hormone to a receptor, which then triggers a sequence of events ending with cytokinesis.

Mark awarded = (a) (i) 0/1, (ii) 1/3 Mark awarded = (b) 2/2 Mark awarded = (c) 0/3

Total marks awarded = 3 out of 9

Common mistakes candidates made in this question


(a) (i) and (ii) This question was misread by some candidates, who described early and then late prophase rather than the behaviour of the chromosome at prophase, as requested. There were also some who were confused about a single chromosome comprised of two sister chromatids and a homologous pair of chromosomes. An incorrect term, 'homologous chromatids', was frequently seen in (a) (i), and chromosomes were sometimes incorrectly described as 'uncoiling'.

(b) The equator was stated to be the centre or middle of the cell, which was not creditworthy. Similarly, the poles were given as the 'ends'.

(c) A common mistake was to describe cytokinin as having a receptor, rather than the receptor being on the target cell. Some misread 'cytokinin' as 'cytokine' and described stages in the immune response.

Question 6

Example candidate response – high	Examiner comments
 6 One of the enzymes involved in glycogen synthesis is glycogen synthase. The monomer of the glycogen polymer is α-glucose. (a) (i) Draw the ring form of α-glucose in the space provided. 	 The diagram is set out clearly so that it is easy for the examiner to check knowledge of the structure of α-glucose. Mark for (a) (i) = 2/2
 (ii) Glycogen synthase catalyses the formation of a covalent bond between two α-glucose molecules during glycogen synthesis. Name the type of bond formed. 	
Glycosidic bond [1]	Mark for (a) (ii) = 1/1
 (iii) Glycogen branching enzyme is another enzyme that is required for glycogen synthesis. Suggest why glycogen branching enzyme is needed in addition to glycogen synthase. Enzymes. QiespecificQOdtheir. activesitesatecomplementary to only.onetype.ofsubstrate and bandbandbandalycogen	 An excellent response showing knowledge of α,1-6 bond formation between glucose monomers and an understanding of the specificity of enzymes. Mark for (a) (iii) = 1/1
.thatodsfraspecificorderofamino.acidsi.e.	3 A comprehensive response.
	Mark for (b) (i) = 2/2

(a) (i) The candidate could have made sure that the bonds between the carbon atoms and the hydroxyl groups showed bonding between C and O. The candidate's diagram has the bond leading from the carbon atom to a location between the O and the H. This was not penalised.

(b) (i) The only error here was the misspelling: 'lenght', instead of 'length'.

(c) Careful rereading of the function and reflection on the meaning of the phrase 'assembles ribosomes' might have reminded the candidate of the role of the nucleolus.

Mark awarded = (a) (i) 2/2, (ii) 1/1, (iii) 1/1Mark awarded = (b) (i) 2/2, (ii) 3/3Mark awarded = (c) 2/3

Total marks awarded = 11 out of 12

Example candidate response – middle	Examiner comments
 6 One of the enzymes involved in glycogen synthesis is glycogen synthase. The monomer of the glycogen polymer is α-glucose. (a) (i) Draw the ring form of α-glucose in the space provided. 	1 Even if the method of writing over the corners of the ring structure with C and O is ignored, the candidate only shows 11 and not 12 hydrogen atoms. Three of the carbons, the hydroxyl groups, are not drawn in the correct position.
 [2] (ii) Glycogen synthase catalyses the formation of a covalent bond between two α-glucose molecules during glycogen synthesis. Name the type of bond formed. [1] (iii) Glycogen branching enzyme is another enzyme that is required for glycogen synthesis. Suggest why glycogen branching enzyme is needed in addition to glycogen synthase. TO cat alyst the reaction and fastes. the reaction by reaction and fastes. (iii) Energy heesses for the reaction. 	 Mark for (a) (i) = 0/2 2 This is not the correct spelling, but the candidate is awarded the mark. Mark for (a) (ii) = 1/1 3 This describes the action of an enzyme in general rather than focusing on the action of the glycogen branching enzyme.
 (b) The gene coding for glycogen synthase in muscle cells is known as GYS1. (i) Explain what is meant by a gene. G. Ene is a section in DNA that CODES For a specific cumino acid Sequence to produce a specific prodein that is needed for cell metabolism and expecibit different [2] triets for chara Cters. 	 Mark for (a) (iii) = 0/1 The information provided about a gene is a correct explanation and gains full marks. Mark for (b) = 2/2

Example candidate response – n	niddle		Examiner comments
(ii) There are a number of known mutation	ns for GYS1.	142	
Outline how a mutation in GYS1 car where one amino acid is replaced by a	n lead to the formation of an altered poly a different amino acid.	peptide	
nucleatives in a uses in transit gene will produ a.cid instad of 	change in Oder Of gene it when it i ation that mutated ce a different ami a hormal amino different cumino acid rent protein as function of the prote cures that are involved in the synthesis of g	S n.a 	 The word 'oder' is taken to mean 'order' and so a mark can be awarded. There is no other creditworthy material in the response. The candidate more or less repeats the idea that an altered polypeptide is formed. Mark for (b) (ii) = 1/3
synthase. Complete Table 6.1 by naming the cell structure that carries out the function listed.			
Table	6.1	-	
function	name of cell structure	<u>_</u>	
assembles ribosomes for polypeptide synthesis	nu cleolus.		6 Full marks are awarded here. The candidate has read the first function
synthesises ATP to provide a supply of energy for transcription of <i>GYS1</i>	mitochonavia	6	statement carefully and correctly deduces that the structure is the nucleolus.
folds and modifies synthesised polypeptide to produce functioning glycogen synthase	goigi apparatus		Mark for (c) = $3/3$
· · ·	ַן	[3] otal: 12]	Total marks awarded = 7 out of 12

(a) (i) The candidate could have practised drawing the correct ring structure of α -glucose as part of their revision.

(a) (ii) The candidate's spelling of 'glycosedic' for 'glycosidic' should have been corrected.

(a) (iii) The candidate should have used knowledge of the structure of glycogen to consider the precise function of the glycogen branching enzyme, or should have applied knowledge of enzyme specificity to explain why the formation of the different bonds requires a different enzyme.

(b) (ii) The candidate needed to continue a sequential account and give the next steps in the formation of the polypeptide chain, having begun correctly with the altered nucleotide sequence.

Mark awarded = (a) (i) 0/2, (ii) 1/1, (iii) 0/1Mark awarded = (b) (i) 2/2, (ii) 1/3Mark awarded = (c) 3/3

Total marks awarded = 7 out of 12

 comptone to the able to marks of the marks of th	er comments
 (ii) Glycogen synthase catalyses the formation of a covalent bond between two α-glucose molecules during glycogen synthesis. Name the type of bond formed. (iii) Glycogen branching enzyme is another enzyme that is required for glycogen synthase. This is necessary as the glycogen synthase. This is necessary as the glycogen synthase. (iii) Clycogen branching enzyme is needed in addition to glycogen synthase. This is necessary as the glycogen synthase. (iii) Clycogen branching enzyme is needed in addition to glycogen synthase. This is necessary as the glycogen synthase. (iii) Clycogen branching enzyme is needed in addition to glycogen synthase. (iii) Clycogen branching enzyme is needed in addition to glycogen synthase. (iii) Clycogen branching enzyme is needed in addition to glycogen synthase. (iii) Clycogen branching enzyme is needed in addition to glycogen synthase. (iii) Clycogen branching enzyme is needed in addition to glycogen synthase. (iii) Clycogen branching enzyme is needed in addition to glycogen synthase. (iii) Clycogen branching enzyme is needed in addition to glycogen synthase. (iii) Clycogen synthase in muscle cells is known as GYS1. (i) Explain what is meant by a gene. (i) Explain what is meant by a gene. (ii) Explain what is meant by a gene. (iii) Clyclens and an addition of a conding for different plockers and annoe annoe annoe and annoe annoe and annoe annoe and annoe anno	-
Gyposidic Bond [1] (iii) Glycogen branching enzyme is another enzyme that is required for glycogen synthesis. Suggest why glycogen branching enzyme is needed in addition to glycogen synthase. [1] Image: Compact of glycogen synthase. Image: Compact of glycogen synthase. [1] Image: Compact of glycogen synthase. Image: Compa	a) (i) = 0/2
	a) (ii) = $1/1$ answer is too ral because the idate has explained a branched cule will help in the all compact shape. e is no comment t the role of the ogen branching me or enzyme ificity in the nesis of glycogen. a) (iii)= $0/1$ mponent of DNA d be a nucleotide. reads as if one has the mation to produce a per of different sins as well as uce amino acids, h is not correct. b) (i) = $0/2$

Example candidate response – low, continued		Examiner comments
 (ii) There are a number of known mutations for GYS1. Outline how a mutation in GYS1 can lead to the formation of an altered polypeptide where one amino acid is replaced by a different amino acid. As the gene hes multipled, the base sequence of the mRNA Swill be altered, and will have different the coding. When It entes cytoplasm, the tink and amino acid specific to the structure at the specific to th		be formed here. The idea that a tRNA would bring a different amino acid to the ribosome is implied and is awarded a mark.
function	name of cell structure	
assembles ribosomes for polypeptide synthesis	Rough Endoplasmic 6 Reticulum	
synthesises ATP to provide a supply of energy for transcription of <i>GYS1</i>	Mitochandria	The first structure is incorrect, but the second and third are awarded marks.
folds and modifies synthesised polypeptide to produce functioning glycogen synthase	Golgi Apparetus	Mark for (c) = $2/3$
•	[0] [Total: 12]	

(a) (i) The candidate needed to learn this structure and produce a more complete diagram so that the relative positions of the H and OH groups for each carbon and the position of the CH₂OH group were shown.

(a) (iii) The candidate needed to consider the synthesis of glycogen here. They understood that glycogen is a branched molecule, so stating the function of the glycogen branching enzyme in forming α -1,6 glycosidic bonds would have gained credit.

(b) (i) The gene should have been described as a length or section of DNA and it should have been made clear that the gene codes for a polypeptide.

(b) (ii) The candidate should have begun their account with the idea that the sequence of nucleotides on the DNA would be altered, and/or stated that a base substitution had occurred. The statements about tRNA could have been more precise. The idea that a tRNA with a different anticodon would bring a different amino acid to the ribosome for translation was not clearly stated.

(c) The candidate should have given 'nucleolus' as the structure responsible for assembling ribosomes.

Mark awarded = (a) (i) 0/2, (ii) 1/1, (iii) 0/1Mark awarded = (b) (i) 0/2, (ii) 2/3Mark awarded = (c) 2/3

Total marks awarded = 5 out of 12

Common mistakes candidates made in this question

(a) (i) The CH₂OH group was frequently incorrect, for example C_2H_5OH or CH₂O. Many forgot to draw in the hydrogen for carbon 5, while a number inverted the H and OH groups for carbons 2 and 3.

(a) (ii) The spelling of 'glycosidic' was frequently incorrect. Some gave 'peptide' or 'hydrogen bond' in error.

(a) (iii) The most common mistake was to be too general and state that the enzyme was needed to form branches, or that the enzyme lowered activation energy, rather than stating precisely the type of bond catalysed by glycogen branching enzyme or showing an understanding of active sites and specificity in bond formation.

(b) (i) Many responses to this were too vague, referring to genes producing characteristics and not giving molecular detail as stated in the relevant syllabus learning outcome. Quite a few candidates confused the idea of a gene coding for a polypeptide with the genetic code and incorrectly stated that a gene had a genetic code. Some thought that a gene was only a triplet of bases. Others stated that a gene coded for an amino acid rather than a polypeptide.

(b) (ii) A change of one amino acid means that only one codon is altered. However, many candidates suggested that insertion or deletion mutations could have occurred. Some candidates did not outline any of the events in transcription and translation and wrote instead about how changes in a polypeptide would lead to a non-functioning protein.

(c) The most common mistake here was to give 'rough endoplasmic reticulum' instead of 'nucleolus' for the first function.

Cambridge Assessment International Education The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom t: +44 1223 553554 f: +44 1223 553558 e: info@cambridgeinternational.org www.cambridgeinternational.org

IGCSE is a registered trademark. Copyright © UCLES September 2017